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Abstract

We present a general framework for multidimensional classification that cap-
tures the pairwise interactions between class variables. The pairwise class inter-
actions are encoded using a collection of base classifiers (Phase 1), for which the
class predictions are combined in a Markov random field that is subsequently
used for multidimensional inference (Phase 2); thus, the framework can be po-
sitioned between multilabel Bayesian classifiers and label transformation-based
approaches. Our proposal leads to a general framework supporting a wide range
of base classifiers in the first phase as well as different inference methods in the
second phase. We describe the basic framework and its main properties, as well
as strategies for ensuring the scalability of the framework. We include a detailed
experimental evaluation based on a range of publicly available databases. Here
we analyze the overall performance of the framework and we test the behavior
of the different scalability strategies proposed. A comparison with other state-
of-the-art multidimensional classifiers show that the proposed framework either
outperforms or is competitive with the tested straw-men methods.

Keywords: Multidimensional classification, probabilistic classifiers, Markov
random fields

1. Introduction

Supervised classification is the problem of assigning a value to a distinguished
variable, the class C, for a given instance defined over a set of predictive at-
tributes. In multi-label classification, several class variables are simultaneously
considered and the task consists of assigning a configuration of values to all
the class variables. In the multi-label setting, classes (or labels) are binary.
Multi-dimensional classification is a generalization of multi-label classification
that allows class variables to have more than two values [2]. Recent literature,
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however, also uses the term multi-label classification when dealing with n-ary
class variables, so we will use both names in an interchangeable way.

A wide range of applications for multi-dimensional classification has been
found [3, Section 1]: bio-informatics, document/music/movie categorization,
semantic scene classification, multi-fault diagnosis, etc. One approach to solve a
multi-dimensional problem is to first transform the problem into a set of single-
class classification problems, and then combine the outputs to obtain a joint
configuration of the class values. Transformation-based methods range from
binary relevance, where no interaction among the class variables is modeled, to
brute-force label power set methods, where all the class variables are aggregated
into a single compound class. In-between these two extremes, we find new
and/or adapted algorithms that have been developed to deal with the multi-
dimensional problem, managing in a natural way the interactions between the
variables. From this second family, probabilistic methods and, in particular,
those based on Bayesian networks (BNs) [4] have demonstrated a convincing
performance [5]. In this paper we focus on the probabilistic approach to multi-
dimensional classification.

We propose a two-stage framework for multi-dimensional classification. The
framework can be positioned between the transformation-based classifiers and
the family of multi-dimensional probabilistic graphical models (PGMs)-based
classifiers!. In the first stage we learn a single-class classifier for each pair
of class variables in the domain, hence this stage of the framework follows a
transformation-based approach. The framework does not prescribe a particular
type of classifier, but only requires that the outcome of the classifier should be
a weighted distribution over the (compound) class values. Standard probabilis-
tic classifiers meet this criterion. In the second stage a Markov random field
(MRF) is constructed based on the results from the first stage. The MRF thus
models the dependencies between the class variables, and thereby connects the
framework to the class of multi-dimensional PGM-based classifiers. Subsequent
classification is achieved by performing inference in the induced MRF.

The proposed framework is flexible: (1) different types of classifiers can be
applied in the first stage; (2) preprocessing can be done separately for each
single-class classifier, thus allowing one to take advantage of state-of-the-art al-
gorithms for supervised discretization and feature selection; and (3) different
types of MRF-based inference algorithms can be used for the subsequent classi-
fication, and the choice of method can therefore depend on the complexity of the
model (exact or approximate inference) and the score to be maximized (calcula-
tion of marginal probabilities or a most probable explanation). Furthermore, the
general method scale with the computational resources available as the base clas-
sifiers in the first stage can be learned independently and chosen to also support
scalability at the individual classifier level [7]. Nevertheless, naively dealing with
all pairs of class variables imposes a strong limitation on the number of class vari-

I'We refer to PGM based classifiers in order to accommodate a wider range of graphical
models [6] in addition to the more common approaches based on Bayesian networks.



ables the algorithm can handle. We therefore also outline strategies for scaling
up the algorithm to datasets having a large number of class variables. Experi-
ments carried out over a collection of benchmark datasets confirm the feasibility
of the approach and show that the proposed method significantly outperforms or
is comparable to the straw-men methods included in the comparison. This paper
has a companion website, where the source-code and additional experimental
results can be found: http://simd.albacete.org/supplements/FMC.html.

We would like to remark that the proposal does not fit into the so-called
pair-wise multi-label approach, which interprets the labels of the instances as
preferences and whose goal is to obtain a ranking among the labels [8] and not
a joint configuration of class values. Furthermore, although our approach trains
several classifiers in the first phase, it does not strictly fall into the class of
ensemble methods either, as each base-classifier only provides a partial answer
to the multi-dimensional problem.

This paper extends a previous preliminary study [1]. Specifically, we explore
additional strategies to ensure scalability of the framework and we provide a sig-
nificantly expanded experimental analysis and comparison with other state-of-
the-art straw-men methods covering both accuracy and run-time performance.

The rest of the paper is structured as follows: In Section 2 we introduce the
notation and the required background in the field of multidimensional classifica-
tion; in Section 3 we describe our framework and discuss its main properties; in
Section 4 we introduce and discuss several improvements to the framework with
regards to scalability; in Section 5 we evaluate our approach by carrying out
several experiments with real world data, and finally, in Section 6, we summarize
the obtained results and introduce ideas for future work.

2. Background

2.1. Notation and Problem Definition

We assume that the available dataset consists of a collection of instances D =
{(@a®,cM), ... (a®, c®)}, where the first part of an instance, a(?) = (a?), e
agf)), is a configuration of values defined over a set A = {41,..., A,} of predic-
tive attributes, while the second part, c = (cgi), R cﬁ,?), is a configuration of
values defined over a set C = {C1,...,Cp} of classes.? Due to the restrictions
of the models analyzed in this paper, we will assume that all the variables are
discrete (nominal), i.e., the state spaces dom(A;) and dom(C;) are finite sets
of mutually exclusive and exhaustive states, Vi,1 < i < n and Vj,1 < j < m.
In Section 3.1 we will discuss the preprocessing capabilities of our proposal in
relation to continuous data.

2We will omit the superscript when no confusion is possible, just writing (a,c) and
((a1,...,an),(c1,...,cm)) instead of (a®,c(®) and ((agl)7 e ,a&f)), (cgl), . ,c%))), respec-
tively.



Our goal is to induce a multidimensional classifier f that maps configurations
of the predictive variables to configurations of the class variables:

[ XGZy dom(A;) — XL, dom(Cy),

(1,22, ..., xn) — (c1,¢2,. .. Cm),

where X denotes the Cartesian product.

2.2. FEvaluation

Although different evaluation metrics can be used to evaluate a multidimen-
sional classifier (see e.g. [, Sec. 5]), we resort in this paper to two of the more
widely used ones, both relating to accuracy. Given a dataset D consisting of ¢
multidimensional instances ((a1, ..., an), (c1,...,cn)) together with the predic-
tions obtained by a multidimensional classifier f(a1,...,a,) = (c},...,c,,), we
employ the following evaluation functions:

e Ezact match (or global accuracy).

acc(D, F) 5(c® /) (1)

w|>—
Mw

=1
where 0 is Kronecker’s delta function.

e Hamming (or mean) accuracy.

HoeoD, F) = %2 ol ), (2)

In both cases, the higher the value the better. Obviously, acc is a harder
scoring criterion than H ..

From a probabilistic perspective, different inference tasks [4] can be used
in order to maximize each of the two scores. Thus, computing the most prob-
able explanation (MPE) for the class variables will maximize global accuracy,
while maximizing the Hamming accuracy requires the computation of the most
probable marginal assignment for each of the individual class variables.

2.8. Approaches to Multi-Dimensional Classification

In the literature we can find several approaches dealing with multi-dimension-
al classification problems. Below, we briefly review some of them, detailing a
bit more those approaches used for comparison in this paper and those that
are more related to our proposal. A more general and extensive overview and
comparison of existing algorithms can be found in [3] and [9], respectively.

Transformation methods. According to [10] this family of methods transform
the multi-dimensional classification problem into one or several single-class clas-
sification problems. Perhaps the two most well-known approaches coming from



the multi-label domain are the classifiers based on label power-sets (LP) and
binary relevance (BR). In their simplest form, LP-based classifiers construct a
new (compound) single-class variable having as possible values all the different
configurations of the class values (labels) included in the training set. This
method implicitly considers the dependencies between classes, but its obvious
main drawback is that it is computationally tractable only for a relatively small
number of class variables.

On the other hand, Binary Relevance (BR) methods learn a single-class clas-
sifier (or base classifier) for each class variable, f; : X?=1 dom(A;) — dom(C;).
A solution to the multi-dimensional problem is then found by combining the
single-class outputs from the base classifiers. This method does not consider
any dependencies between class variables, and it usually performs poorly when
considering exact accuracy. However it can still provide good predictions ac-
cording to Hamming accuracy for certain domains.

In-between BR and brute-force LP-based methods other approaches have
been developed. One example is RAKEL [11], which is based on training several
single-class classifiers each using as class a compound variable constructed as
the Cartesian product of k class variables. The number of single-class variable
models is usually linear in the number of class variables, and random selection
is used to choose the k variables that will form the compound variable. Later,
from the k—tuples predicted, voting is used to obtain a joint configuration over
all the class variables.

Chain classifiers (CC) [12] are an alternative to BR that incorporate de-
pendencies between class variables, while still maintaining the computational
efficiency of BR. In CC an ordering o is defined over the class variables. Let
C,(#) be the i-th class variable according to ordering 0. As in BR, m single-class
classifiers are induced in a CC, but when learning the single-class classifier hav-
ing C,(;) as class, the variables Cy(1), . .., Cy(i—1) are also included as predictive
attributes: f; : X?=1 dom(A;) x X;c_:ll dom(Cy ) — dom(Cy(;). Therefore,
the class variable in position i of o, depends on the class variables appearing ear-
lier in the ordering. As a consequence, inference over the single-class classifiers
must be done sequentially by following the ordering imposed by ¢ and by using
the predicted values of the previous class variables as input when performing
inference. This ordering restriction is lifted in [13, 14], where each single class
classifier uses all the other class variables as predictive attributes; during infer-
ence, the values of these additional input features are found using a separate set
of base classifiers. A probabilistic approach to chain classifiers was proposed in
[15], which generalizes the original chain classifier by letting the single class clas-
sifiers f; define a probability distribution over Cs(;). In combination, the single
class classifiers define a joint distribution over all class variables, for which the
original chain classifier can be seen as a deterministic approximation. The cost
of this generalization is a corresponding increase in model complexity, which
necessitates the use of approximate inference algorithms for domains with even
a moderate number of class variables.

Adaptation methods. These are methods that directly modify /adapt existing



single-class classification algorithms to accommodate multiple classes, e.g. based
on decision trees, nearest neighbors, support vector machines, etc. See [10] for
an overview.

Multi-dimensional Bayesian Networks classifiers (MBCs) [16, 17, 5]. These
are multi-dimensional classifiers that use the formalism of BNs to model the
problem. However, as for single-class domains, instead of learning an uncon-
strained BN, the learning process is constrained by biasing the resulting graph.
Thus, in MBCs three subgraphs are usually considered: (a) the class subgraph,
which codifies dependence relations between classes; (b) the feature subgraph,
which codifies dependence relations between features (predictive attributes);
and (c) the bridge subgraph which codifies dependence relations from classes to
features.

Depending on the complexity of the types of graphs allowed in the class
and feature subgraphs, several models/algorithms can arise: trees and/or poly-
trees [16, 17, 18], k-dependence limited models [18], general BN structures [5],
etc. With respect to the search strategy used to guide the learning process,
filter and wrapper approaches have been analyzed in [5], while skeleton-based
ones are proposed in [19, 20] based on Markov blankets and in [21] using mu-
tual information. In [22] a slightly different approach is introduced, based on
concentrating the effort in the class and bridge subgraph, while assuming an
empty feature subgraph, that is, features are conditionally independent given
the classes. For the class subgraph, restricted topology structures (naive Bayes
and forest augmented networks) are considered, while for the bridge subgraph
an exact score+search method is used that considers all possible parents sets
of the features. The accuracy of the obtained classifiers is slightly worse than
the ensemble proposed by the same authors [23], but inference is much faster.
The method proposed in [23] assume that the input features are conditionally
independent given the class labels, hence focus is on learning structures over
the class labels. In contrast, [24] considers a mixture of tree structures over the
class labels, but here each of the mixture trees are conditioned on the input
features.

Ensembles. As in single-class classification, ensembles of multi-dimensional
classifiers have shown potential to improve performance compared to single clas-
sifiers. This is, for example, the case of the ensemble of CC, where each member
of the ensemble uses a different (usually random) ordering [12]. In the particular
case of using MBCs as base classifiers for the ensemble, recent studies [25, 26, 23]
explore the idea of using as many members in the ensemble as there are class
variables. In [25, 26] an undirected tree structure is first learned for the class
variables, and then each class variable is set as root and the resulting topolog-
ical ordering is used as a CC in the ensemble. The resulting configuration of
class values is obtained by voting. In [23] no structural learning is done over
the classes, and instead a naive Bayes structure among the class variables is
used, but with a different root for each member of the ensemble. In contrast
to previous approaches, the resulting configuration is obtained by probabilistic
inference.



Finally, we would like to mention two recent works which show the degree of
maturity research on MBCs has achieved. In [27] a theoretical study is carried
out to analyze the expressive power of binary relevance and chain classifiers,
proving that chain classifiers provide more expressive models than the binary
relevance method when the same type of BAN (BN augmented naive Bayes)
classifier is used as the base classifier. On the other hand, [28] addressed the
problem of Hierarchical Multi-label Classification (HMC), which addresses do-
mains for which there exists a hierarchical structure among the classes.

3. A General Framework for Multi-Label Classification

In this section we describe the proposed framework for multi-label classifi-
cation and its main capabilities.

The proposed framework for doing multi-label classification positions itself
between the family of MBCs classifiers [16, 17, 5] and transformation-based
classifiers [10], by combining the results from a collection of classifiers learned
for each possible pairwise interaction between the class variables. The legal
types of classifiers are restricted to those classifiers that for a given instance a
can provide a factor ¢;;|a : dom(C;, C;) — R* for each class pair C; and C}
such that the greater the value the higher the dependence between the class
states. We shall refer to these classifiers as base classifiers. Given the class-pair
factors produced by the base classifiers for an instance a, we pose the problem of
doing multi-label classification as an inference problem in the pairwise Markov
random field (MRF) induced by the factors. Specifically, for m class variables,
the pairwise Markov random field specified by the factors ¢;; |4 defines a joint
distribution

1
P(Cy,...,Cpla) = Enéf’ma(cucj),
i#j

Z = Z H¢ij\a(ci;0j)

C1,....Cm i#]

where

is the partition function.? Based on this specification, we perform classification
by doing inference in the MRF model. Thus, for global accuracy we look for
the most probable explanation (MPE) in the MRF

1
c* =arg max Enébij\a(ciacj)

c=(c1,..,Cm) it

wg_max ] 031(CinC)).
#J

c=(c1,..,Cm i

3We abuse notation slightly and use variable summation to denote summation over states
of a variable.



and for Hamming accuracy we consider the most probable class variable config-
urations separately:

cF = arg max Z n¢ij\a(ciacj)'

Cil#k i)

In summary, given a collection of base classifiers, multi-label classification of
an instance a consists of two steps:

1. For each pair of class variables, C; and C;, employ the corresponding base
classifier to find a factor ¢;; |, that for each configuration (c;, c;) encodes
the dependence between ¢; and ¢; for instance at

2. Establish the class-labels of a by performing inference in the pairwise
Markov random field defined by the factors ¢;; |, found in step 1.

The overall framework is flexible in the sense that it can accommodate several
different types of base classifiers (e.g., probabilistic classifiers, neural networks,
etc.). Hence, we say that a particular choice of base classifier instantiates the
framework, and in what follows we shall refer to the instantiated framework
as a factor-based multi-labeled classifier (FMC). In the present paper, we focus
on probabilistic base classifiers, and for ease of exposition we will often only
refer to naive Bayes classifiers even though other base classifiers can be applied:
for each pair of class variables C; and C; we thus have a naive Bayes classifier
(NBC), where the state space of the class variable consists of all combinations
of class labels for C; and C;. With this type of base classifier, the factors
#ij|a in the FMC correspond to the posterior probabilities P(C;, Cj|a). The
relationship between the NB base classifiers and the induced MRF is illustrated
in Figure 1 for a domain with three attributes {41, A2, A3} and three class
variables {Cy, Cs, C3}.

Comparing the proposed framework to multi-dimensional Bayesian network
classifiers (MBCs) [17, 5, 19] we see that the induced MRF plays the role of
the class-subgraph in the MBC. Similarly, the feature subgraph and the bridge
subgraph are captured by the base classifiers that, in addition, also allow each
class pair to employ different types of preprocessing and encode different depen-
dency structures. The proposed method also shares some similarities with the
method by [2], which performs multi-dimensional classification by constructing
super-classes based on a partitioning of the class variables. This partitioning is
based on (indirect) measurements of conditional class dependencies [29], and for
each identified subset a distinct multi-dimensional classifier is learned. A conse-
quence of the class partitioning is that class variables in different super-classes
are assumed independent.® In comparison, dependencies between class labels in

4Clearly, considering all pairs of base classifiers can be computationally intensive, and
strategies for learning base classifiers for only a subset of the possible class variable pairs is
explored in Section 4.

5To make the method more robust to variations in the training data, in particular in
relation to the identified dependency structures/class partitioning, [2] also considers ensembles
of super-class classifiers.



@ $231a = P(C2,C3 | a)

Figure 1: An FMC is established for a domain consisting of three attributes and three class
variables. The joint probabilities calculated using the NB base classifiers serve as factors in
the MRF, which is in turn used for finding the class labels.

the FMC are encoded in the Markov random field, which is directly obtained
based on pair-wise class interactions and provides a flexible way of encoding
label dependence without having to assume (marginal) independences between
class labels. In the FMC framework, the Markov random field thus has the role
of a secondary structure used for combining pairwise class label predictions. A
related approach is explored in [30], where a Bayesian network structure is used
for capturing label dependencies. The Bayesian network is learned directly from
the class labels in the data set, and is subsequently used to combine previously
obtained class label estimates (found using existing multi-label classifiers).

3.1. Preprocessing capabilities

Learning an FMC is, in principle, equivalent to independently learning base
classifiers for selected class variable pairs. Not only does this support scalable
learning methods to be devised, but it also allows for different preprocessing
techniques to be deployed for the different base classifiers; this e.g. includes
discretization of continuous variables as well as feature subset selection (FSS).
Consequently, the discretization of a continuous feature variable A; appearing
in two different base classifiers can produce different discretized variables if one,
e.g., employs a supervised discretization technique like MDL-based discretiza-
tion [31]. Similarly, different feature subsets can also be selected for different
base classifiers using a supervised method such as the Correlation-Based-Feature
subset selection algorithm (CFS) [32]. This enables the FMC to take a more



fine-grained class context into account when performing preprocessing as com-
pared to, e.g., some MBCs approaches that rely on a single fixed set of feature
variables. Furthermore, since preprocessing is only applied at the level of the
base classifiers, standard supervised preprocessing techniques, such as the ones
previously mentioned, can be directly employed (a property that is typically not
available for other multi-label classifiers).

We have analyzed to what extent the flexibility of applying an individual
preprocessing process to each base classifier is exploited by the learned classi-
fiers. Table 1 shows the results for running supervised MDL discretization and
CFS feature subset selection for the datasets analyzed in Section 5. For the
CFS algorithm a best first search procedure has been used. The first row shows
the total number of class pairs for each dataset, corresponding to the number
of base classifiers to be learned as well as the number of different executions
of the preprocessing methods. The second row shows the average number of
different discretizations of the continuous variables produced by the discretiza-
tion process for each base classifier; the average is taken wrt. the number of
continuous variables. The third row in the table shows the number of different
feature subsets selected for each base classifier on each dataset. From the table
we see that FMC can indeed obtain different discretizations and feature sub-
set selections when multiple runs of the preprocessing processes are performed
for the different base classifiers. The extend to which this is achieved varies,
though: comparatively minor variation is seen in, e.g., the number of different
discretizations for the data sets birds and emotions, whereas larger variation
is seen for the remaining data sets. Regarding FSS, with the exception of the
CAL500 dataset, we see that we almost always obtain a different feature subset
for each base classifier.

e & & £ > $
.{be ?’xﬁ” \"é & &00 & i e,&o eﬁ@ &0 ‘b@&

o O o & & & & & & @
No. of class pairs 171 15051 36 15 1378 351 990 15 231 91
Avg. no. of disc 4.78 27.36 33.25 6.36 - - - 12.30 - 15.13
Avg. no. of FSS 116 1171 36 15 1264 344 818 15 231 88

Table 1: The first row of the table shows the number of class pairs in the full FMC classifier
for the different data sets explored in Section 5. The second row in the table shows the average
number of different discretizations of the continuous variables; the data sets enron, genbase,
and medical do not contain any continuous variables. The third row in the table shows the
number of different feature subsets selected for the different data sets. Note that the results
in the table are independent of the particular choice of base classifier.

4. Scalable Learning and Inference

The complexity of learning and performing inference in the FMC is deter-
mined by the two stages of the algorithm:

10



e The computational complexity of doing learning and inference using all
pairwise base classifiers is quadratic in the number of class variables. Con-
cretely, if we consider all the class pairs, we have a total of m(m — 1)/2
base classifiers. This phase of the algorithm is also influenced by the com-
plexity of the selected base classifier, T'(n), characterized by the number
of predictive attributes thus the final complexity of the first stage of an
instantiated FMC is given by O(m?)-T'(n). For instance, learning a naive
Bayes classifier is linear in the number of predictive attributes and so the
overall complexity of the first stage of the algorithm would be O(m?n).
However, employing other base classifiers may increase the complexity of
this phase of the algorithm.

e Performing exact inference in the induced MRF is NP-hard [33, 34], and
with a complete model the computational complexity becomes exponential
in the number of class variables making inference infeasible for domains
with even a moderate number of class variables. The computational com-
plexity is, however, independent of the number of feature variables. Since
the number of feature variables is often far larger than the number of class
variables (cf. Table 2), in practice we thus see that the computation time
used by the two phases of the algorithm are comparable. This is also
confirmed by the experimental results in Section 5.

One strategy for reducing the complexity of the first stage is to exploit that
the overall learning setting is trivially parallelizable; we observe that most types
of standard base classifiers can be learned independently, although one could
envision complex classifiers that share substructures across class variable pairs.
Thus, this part of the learning procedure is adaptable to most parallel compu-
tation architectures such as the MapReduce architecture [35]. For the second
stage of the algorithm, one might consider a suitable approximate inference
algorithm when exact inference is not feasible.

However, even when using a MapReduce architecture and approximate infer-
ence algorithms, the computational complexity of learning the base classifiers
may still be demanding and similarly so for doing inference in the induced
MRF. One immediate approach to overcome this difficulty is to only consider
a restricted candidate subset of class variable pairs for which base classifiers
should be learned. This strategy will not only reduce the complexity of the first
stage of the framework, but will also reduce the complexity of the MRF model.
In addition, it is possible that selecting a subset of class pairs may improve the
quality of the results, as pruning edges from the MRF model may reduce the
noise introduced by edges representing spurious class dependencies.

A straightforward strategy for selecting this candidate subset of class pairs
could be to first measure the dependence/affinity between every class pair and
then make a search-based selection. We propose two strategies that are based
on measuring the empirical mutual information between all class variable pairs:

P(C;,Cy) )

MI Ci,Cj) = P Ci,Cj)lo —
( 2.0.7  (Ferin

11



Our first proposal is to build a maximum spanning tree, using the Chow-Liu
algorithm [36], over the class variables. This will be referred to as the CLtree
algorithm in the remainder of the paper. This approach reduces the complexity
of the algorithm to O(m)-T(n), as it always selects a fixed-sized subset of m —1
base classifiers; in addition, the resulting MRF is guaranteed to be connected.
Another strategy is to greedily select (according to the mutual information) the
best subset of k class pairs with k& being proportional to the number of classes
m in the dataset. This latter strategy, referred to as bestk, would learn more
complex models than the CLtree approach but still retain linear computational
complexity O(km) - T'(n). However, in the resulting MRF model, we may end
up with a disconnected class structure with some components containing single
class variables; our model can deal with this by learning a single class classifier
for each of these singleton variables and then set up the obtained distributions
as the node potentials of the disconnected variables in the MRF.

The described approaches can potentially provide a drastic reduction in the
complexity of the algorithm. However, given that the computed empirical mu-
tual information employed in the selection strategies only capture marginal de-
pendencies among a subset of the class pairs, we may unintentionally miss im-
portant dependencies, and thus fail to learn and include crucial base classifiers
and the corresponding edges in the MRF. For that reason, we propose a third
strategy, where we first compute the Markov blankets (MBs) for each class over
the space of class variables and next include all the dependencies revealed by
the learned MBs in the MRF model. We have chosen the HITON-MB [37] al-
gorithm to learn the MBs of the classes from the data, as it is a well known
algorithm that has been used successfully in related works [19], for example, to
learn the class subgraph of an MBC.

The HITON-MB algorithm computes the Markov blanket for a given variable
by evaluating several candidate subsets of variables to be included in the MB
using a G? independence test. This algorithm must be parameterized by fixing a
maximum number of elements to be tested in each possible subset of dependent
variables; in this work we have selected a maximum subset size of 3 as this
value has shown to provide good performance [37]. The procedure to select the
candidate subset of class pairs using HITON-MB starts by running the algorithm
for each class variable and learning its MB. Next, all class pairs appearing in the
resulting MBs are included in the model. This strategy, which we will refer to as
hiton, takes a different approach to alleviating the computational complexity as
compared to the CLtree and the bestk strategies. Since hiton selects a variable
number of pairs according to the dependencies found in the dataset and not
according to a fixed-size set, the scalability gain will vary depending on the
problem. The resulting models are therefore expected to obtain superior results
at the expense of efficiency.

Lastly, we propose a different strategy for pruning the model, which is based
on a forward greedy search algorithm guided by the BDeu scoring metric [38]
for directed graphical models; a consequence of the search procedure is that
we obtain a directed structure over the class variables, which we afterwards
translate into an undirected structure by simply dropping the directions on the

12



arcs. Since the BDeu metric is decomposable [4], we can efficiently compute the
score of a model as the sum of the local scores for the different nodes, which, in
turn, only depends on the node in question and its parent set. For instance, the
BDeu score with equivalent sample size « for a variable C; with parent variables
Pa(C;) is given by

|Pa(Cy)] IC
NG Niji + oiji)

BDeu(C; | Pa(C;) : D) = § lo ) +§1 J J , (3

(| (€) ) = ( gF(NZ]JraZ] g I'(ovjn) ®)

where the first sum is over the joint states of the parent set Pa(X;) and
the second one is over the states of the variable X;; N;j;; corresponds to the
number of records in D such that X; is in its kth state and its parents in their
Jjth configuration, and N;; = >}, Njj,. Similarly, a;; is equal to « divided by
the number of joint states over Pa(X;) and «;jx is equal to « divided by the
number of joint states of X; and the parents in Pa(X;).

The proposed search procedure, referred to as FSBDeu, is outlined in Al-
gorithm 1. The process can be separated into three different phases guided by
heuristic strategies with the purpose of reducing the number of evaluations and
to constrain the problem in order to enable a scalable search.

1. (Lines 1 to 3) First, the algorithm defines a topological ordering o over
the class variables by computing the score difference between the marginal
BDeu score and the conditional BDeu score for each class pair; the position
of a variable in the ordering is determined by the sum of the score differ-
ences computed for all class pairs in which the variable is involved. This
value measures the overall dependence that each class variable is involved
in. This step retains most of the computational burden of the procedure as
it requires a quadratic number of evaluations given the number of labels.

2. (Lines 4 to 11) Afterwards, the candidate variable pairs are generated ac-
cording to the ordering o: For each pair of classes C; and C; the direction
of the arc is established by the relative position of C; and C; in ¢ with
the preceding variable becoming the head of the arc. This ordering guar-
antees that there will be no directed cycles in the resulting model even if
all possible pairs are added.

3. (Lines 12 to 20) Finally a greedy forward search is performed: The pairs
are sorted by their score and are tested once following the computed order.
A pair (C;, C;) is introduced in the model if the score difference resulting
from adding C; to Pa(C};) is positive. When updating the parent sets,
the corresponding BDeu scores are updated as well. The final structure is
obtained by ignoring the directions of the arcs from the resulting model,
notice that the parent sets are only considered to measure de BDeu score.

5. Experimental Evaluation

In the first part of this section we evaluate the scalability proposals de-
scribed in the previous section in order to analyze the efficiency improvements
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Algorithm 1: The algorithm implements a forward greedy search using
the BDeu metric for selecting a reduced set of class variable pairs to be
used in a FMC model.

Input: Dc: Subset of the training data over classes C = {C1,...,Cm}
Output: A collection P of selected class pairs variables (C;, C;)

//Compute the score difference for each class pair.
1 for each C;,Cj € C,j > i compute diﬁci,cj = BDeu(Cj | C;) — BDeu(C; | @);

//Establish a topological ordering among the classes according to the sum
of all class pair scores in which the class is involved
2 for each C; € C compute sumDiffc, = Z;”:Lj#i(diﬁci’cj);

3 o <« order the variables C; € C by maximizing sumDiﬂCi;

//Create the candidate pairs according to the topological ordering
a P
s for C;,C; €C, j>ido

6 if o, > oc; then

7 | Add (C;,C)) to P
8 else

° | Add (C;,C) to P
10 end

11 end

//Sort the pairs according to the score differences
12 P « order each (C;,C;) € P by maximizing diﬂci,cj§

//Initialize empty parentsets for each class
18 for C; € C: Pa(C;) «— ;

//Perform a forward search over the ordered pairs
14 for (C;,C;) € P do
15 if BDeu(Cj,| Pa(C;) u {C;}) — BDeu(Cj, | Pa(Cj)) > 0 then

16 | Pa(Cy) « Pa(Cy) U {C1}
17 else

18 | Remove (Cy,Cj) from P
19 end

20 end

21 return P
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and how the quality varies compared to the full pairwise framework. We also an-
alyze which of the proposed strategies entails the most significant improvements
regarding the trade-off between efficiency and quality. Secondly, we perform a
comparison between our selected models and a collection of representative state-
of-the art multi-label classifiers taken from the literature.

5.1. Experimental Set-up

We evaluate our approach using different instantiations of the proposed
framework by taking two well-known Bayesian network classifiers as base clas-
sifiers: naive Bayes (NB), being a simple classifier with light computational and
memory requirements, and A1DE [39], which is a more expressive classifier but
also more computationally intensive.

We have built a prototype of the proposed framework that is based on two
different platforms: The first step of the classifier has been implemented using
the Mulan [40] library for multi-label dataset management as well as Weka [41]
for learning the base classifiers. For the second step we use the UGM® Matlab
package for performing inference over the induced MRF. A working pipeline of
this process is publicly available in the previously mentioned companion website.
The experiments were conducted on a dedicated Linux server with a Pentium
Xeon 3.0 Ghz processor and 16GB of RAM.

As performance indicators we use the two metrics described in Section 2,
global accuracy (acc) and Hamming accuracy (Hge.). By using both measures
we can provide a clear overview of the behavior of each classifier as well as
capture the difficulty of the problem; H,. being an easier metric to optimize
than acc especially for complex domains.

The experiments have been carried out using a collection of publicly available
datasets, most of them taken from the Mulan repository’. We have selected
datasets with a moderate number of labels and attributes, as it is infeasible to
measure global accuracy for domains with a large number of labels. Additionally,
we have included the CLEF1/ dataset in the experiments.® This dataset comes
from a real world challenge in the field of computer vision [42], and contains
seven binary classes as well as one multidimensional variable with 10 states, thus
moving the problem from a multi-label domain to a multidimensional one. The
characteristics of the datasets used in the experiments can be found in Table 2.

Since the standard version of the A1DE classifier cannot handle numeric
variables we have preprocessed the datasets by discretizing the continuous vari-
ables.” This has been done by applying the procedure mentioned in Section
3.1, where we take advantage of the structure of the model and apply super-
vised discretization and posterior feature subset selection to each individual base

Shttp://www.di.ens.fr/~mschmidt/Software/UGM.html

"http://mulan.sourceforge.net/datasets.html

8http://www.rovit.ua.es/dataset/vidrilo.html

9We have conducted preliminary experiments using NB with Gaussian distributions as well
as variants of the A1DE classifier capable of dealing with continuous variables [43]. However
the accuracy results were not competitive with those achieved using discretization.
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Database Classes Features Instances

Birds 19 260 645
CAL500 174 68 502
Emotions 6 72 593
Enron 53 1001 1702
Genbase 27 1186 662
Medical 45 1449 978
Scene 6 294 2407
TMC2007 22 500 28596
Yeast 14 103 2417
CLEF14* 7x2/1x10 360 9500

Table 2: Datasets used in the evaluation. *The CLFEF1j dataset contains 7 binary classes
and 1 class with 10 states.

classifier. In particular, we have discretized the numerical features using MDL-
based discretization and applied the Correlation-Feature-Subset (CFS) selection
algorithm using a best first search procedure.

5.2. Comparison Between Pruning Strategies

In Tables 3 and 4 we report on the results regarding acc and H,.., respec-
tively, for the full pairwise model and for each of the scalability strategies. The
results have been obtained by performing a 10-fold cross validation for each of
the datasets; the results highlighted in bold are the best for the corresponding
datasets. At first sight, we can observe that there is a clear difference in the
results obtained when using the different base classifiers, with A1DE obtaining
superior results as expected. However, if we compare the approaches among
themselves when using the same base classifier we can not observe a significant
difference in quality between the full pairwise model and the pruned ones re-
garding both accuracy measures. To extend our comparison, we have performed
statistical tests for both global accuracy and Hamming accuracy according to
the procedure described in [44].

A Friedman test [45] comparing all the pruning approaches, using A1DE as
base classifier, and with a 5% significance level, does not reject the hypothesis
that all classifiers are equivalent with p-value = 0.1046 for global accuracy.
However, in the case of Hamming accuracy the test is rejected with p-value
= 0.0108. A post-hoc test with a 5% significance level using the Holm correction
[46] shows that the CLtree approach obtains statistically worse results in case
of Hamming accuracy when compared to the other approaches with p-value
= 0.0095. Figure 2 shows the distribution of the mean ranks computed for the
Friedman test for each of the approaches, confirming that the CLtree has the
overall worst performance and that F'SBDeu, hiton, and the full pairwise model
have a comparable behavior.

Given the previous statistical tests, we conclude that most of the pruning
approaches obtain results comparable to the full pairwise model, especially in
the case of global accuracy. Next we will study and evaluate their results in
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Figure 2: Boxplot representing the ranks obtained for each dataset for each of the methods
evaluated for acc (left) and Haec (right). The values correspond to the mean rank among each
dataset as computed for the Friedman test.

terms of efficiency and general scalability. Figures 3 and 4 show the number
of pairs selected for each method and dataset. In these plots we see that the
full pairwise approach builds the largest models, and thus it is more inefficient
in both phases of the algorithm, especially for datasets with a high number of
classes. On the other hand, the Chow-Liu approach, CLtree, builds the least
dense models, followed by FSBDeu, bestk with k = 2m, and hiton. In order to
measure the efficiency of each pruning strategy we must not only look at the
number of selected pairs but also at the cost of the overall method; in this case,
hiton is by far the most costly strategy as the complexity of the HITON-MB
algorithm itself is exponential in the number of class pairs. On the other hand,
the FSBDeu approach is linear given the number of class pairs as the procedure
is greedy and so the number of metric statistics to be computed is fixed. This
is also the case for the bestk strategy and for the CLtree approach.

In conclusion, we propose the FSBDeu approach as the most promising
strategy, as it combines both an efficient learning scheme and the ability to
learn less dense models than both hiton and bestk. This strategy also has the
important advantage of being parameter free unlike hiton and bestk. Lastly,
the CLtree approach share computational benefits with F.SBDeu, but if we also
consider the accuracy results in Tables 3 and 4, we can observe that it generally
obtains worse results; it can, however, be considered a suitable approach if
efficiency is more important than accuracy. Finally, we would like to point to
an important detail regarding the FSBDeu and the CLtree strategies for the
CLEF14 dataset wrt. acc. From Table 3 we see that the CLtree approach
obtains the best results for this dataset, whereas the full pairwise model is the
worst. This behavior reflects the underlying model for this dataset, which can
be accurately described by a tree structure, resulting in the potential addition
of noise by other methods. Observe that the F.SBDeu approach is also capable
of learning a suitable model for this dataset.

We performed an additional experiment to compare the complexity of both
phases of the algorithm by measuring their contributions to the overall runtime.
Figure 5 shows the runtime breakdown for the full pairwise, FSBDeu and CLtree
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full-A1IDE 0.4968 0.0000 0.3683 0.3017 0.1269 0.9623 0.6431 0.6597 0.2440 0.1850
bestk=2-A1DE 0.5030 0.0000 0.3937 0.3034 0.1257 0.9578 0.6647 0.6385 0.2450 0.1990
CLtree-A1DE 0.4781 0.0000 0.4257 0.2900 0.1263 0.9578 0.6360 0.5928 0.2336 0.1787
FSBDeu-A1DE 0.4877 0.0000 0.4134 0.3253 0.1263 0.9608 0.6339 0.6581 0.2473 0.1994
hiton-A1DE 0.4999 0.0000 0.3759 0.3034 0.1275 0.9593 0.6666 0.6581 0.2443 0.1928
4 a
o \)(900 Qg\} ‘.‘so“ & v‘bee '»db\ <o %00 X
. \'ad &) &0 $° & e;b & &O 0‘;"
FMC o @) @) ) & & & & X3 4
full-NB 0.4658 0.0000 0.1383 0.2831 0.1105 0.9562 0.6227 0.5052 0.2320 0.1486
bestk=2-NB 0.4471 0.0000 0.1599 0.2950 0.1175 0.9562 0.6513 0.5289 0.2320 0.1631
CLtree-NB 0.4438 0.0000 0.1896 0.2731 0.1140 0.9547 0.6288 0.4811 0.2192 0.1399
FSBDeu-NB 0.4315 0.0000 0.1755 0.2933 0.1181 0.9562 0.6227 0.5069 0.2336 0.1684
hiton-NB 0.4625 0.0000 0.1407 0.2932 0.1169 0.9608 0.6574 0.5069 0.2331 0.1564

Table 3: Global accuracy of the FMC framework for the different pruning strategies and by
using A1DE (above) and NB (below) as base classifier. Highlighted results show the best
result for the corresponding dataset. Notice that owing to the large number of class variables
in the CAL500 dataset, it is infeasible to provide accurate predictions of the full vector and
thus the exact accuracy is very low.

® a4
@ &00 Q\Py »L‘oo & & 'sy\ @ :190 X
.‘b \'ad VQ) ‘&0 &O “\0 eb e&‘ <o 0"0
FMC > (@) O & & & & & & &
full-A1DE 0.9521 0.8635 0.8545 0.7960 0.9511 0.9986 0.9892 0.9122 0.9329 0.7939
bestk=2-A1DE 0.9523 0.8626 0.8611 0.7965 0.9503 0.9984 0.9893 0.9067 0.9321 0.7938
CLtree-A1DE 0.9488 0.8629 0.8668 0.7892 0.9493 0.9983 0.9887 0.8985 0.9303 0.7872
FSBDeu-A1DE 0.9490 0.8638 0.8647 0.7987 0.9508 0.9985 0.9888 0.9117 0.9329 0.7937
hiton-A1DE 0.9514 0.8637 0.8566 0.7968 0.9513 0.9984 0.9895 0.9117 0.9328 0.7931
® a4
@ &00 Q\Py »L‘oo & & 'sy\ @ :190 X
.‘b \'ad VQ) ‘&0 &O “\0 eb e&‘ <o 0"0
FMC o (@) O & & & & & & &
full-NB 0.9449 0.8619 0.7621 0.7835 0.9309 0.9984 0.9888 0.8853 0.9302 0.7770
bestk=2-NB 0.9388 0.8607 0.7715 0.7852 0.9379 0.9983 0.9890 0.8839 0.9292 0.7796
CLtree-NB 0.9363 0.8599 0.7858 0.7822 0.9370 0.9982 0.9884 0.8718 0.9271 0.7680
FSBDeu-NB 0.9347 0.8616 0.7798 0.7846 0.9361 0.9983 0.9884 0.8858 0.9299 0.7792
hiton-NB 0.9388 0.8617 0.7643 0.7815 0.9417 0.9984 0.9892 0.8858 0.9302 0.7752

Table 4: Hamming accuracy of the FMC framework for the different pruning strategy. High-
lighted results show the best result for the corresponding dataset.
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Figure 3: Number of pairs selected by each pruning strategy and for each dataset.
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Figure 4: Number of selected pairs in log scale (y-axis) according to the number of labels in
the datasets (x-axis) for each pruning strategy. This figure shows how the FMC framework
scales up when different pruning approaches are used as the number of labels in the dataset
grows. The comparison show that the quadratic complexity of the full model dominates the
pruning-based approaches.
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Figure 5: Breakdown of the runtime in seconds for the different pruning strategies and
datasets. Each plot shows the training time of the first stage, followed by the test time,
still from the first stage, and the test time from the second stage. All the results are obtained
as the average from 10-fold cross validation using A1DE as the base classifier. Notice that the
time scale is different for each dataset.

approaches for all the datasets: The first column corresponds to the training
time for the first stage of the algorithm; the second column shows the time for
classifying the test instances using all base classifiers; finally the third column
corresponds to the time used by the second stage, where inference is performed
in the learned MRF for each test instance (see also the discussion below). All re-
sults are expressed in seconds and have been obtained by averaging the runtime
based on 10-fold cross validation and using A1DE as base classifier. As we can
observe, in practice the first stage is less efficient than the second one, especially
when a pruning strategy is being used. There are only two exceptions to this
observation: emotions, which is a very small dataset and the training time is
therefore correspondingly low, and CAL500, which features a large number of
labels and instances, thus complicating the MRF inference procedure. It should
be noted that the tests are based on the A1DE classifier, and the observed
differences would therefore be reduced by using the NB instead.

A final point to consider regarding efficiency is the MRF inference approach
employed to obtain the final predictions. The reported results have been ob-
tained using approximate inference. Specifically, we have used the loopy belief
propagation algorithm [47], which is included in the above mentioned Matlab
package. Performing approximate inference over a MRF introduces a signifi-
cant improvement in the computational requirements of the algorithm at the
expense of a potentially detriment to the quality of the predictions. For that
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Dataset full-A1DE FSBDeu CLtree
LBP exact LBP exact LBP  exact
birds 0.9521 0.9521 0.9490 0.9490 0.9488 0.9488
CLEF14 0.8548 0.8543 0.8647 0.8579 0.8668 0.8520
emotions 0.7960 0.7960 0.7987 0.7987 0.7892 0.7892
enron 0.9511 - 0.9508 - 0.9493 0.9493
genbase  0.9986 0.9982 0.9985 0.9985 0.9983 0.9983
medical  0.9892 - 0.9888 0.9909 0.9887 -
scene 0.9117 0.9114 0.9117 0.9114 0.8985 0.8985
tmc2007 0.9329 0.9323 0.9329 0.9317 0.9303 0.9303

yeast 0.7939 0.7938 0.7937 0.7937 0.7872 0.7872

Dataset full-A1DE FSBDeu CLtree
LBP exact LBP exact LBP exact

birds 0.4968 0.4968 0.4877 0.4877 0.4781 0.4781

CLEF14 0.3701 0.3699 0.4134 0.3646 0.4257 0.3483
emotions 0.3017 0.3017 0.3253 0.3253 0.2900 0.2900
enron 0.1269 - 0.1263 - 0.1263 0.1263
genbase  0.9623 0.9501 0.9608 0.9608 0.9578 0.9578
medical  0.6431 - 0.6339 0.6735 0.6360 0.6360
scene 0.6581 0.6568 0.6581 0.6568 0.5928 0.5928

tmc2007  0.2440 0.2390 0.2473 0.2430 0.2336 0.2336
yeast 0.1850 0.1850 0.1994 0.1994 0.1787 0.1787

Table 5: Hamming accuracy (above) and global accuracy (below) for the selected models and
datasets when using exact and approximate inference.

reason we have conducted additional experiments running exact inference for
some of the smaller datasets and pruned models. Table 5 shows the accuracy
results obtained for the full pairwise model and the FSBDeu and CLtree ap-
proaches using the A1DE base classifier. From the results we see that there is
no clear difference when it comes to the final predictions using either exact or
approximate inference. However, when it comes to the complexity of the pro-
cedures the differences are significant. Figure 6 shows the runtime results for
the previous experiment, revealing that, as expected, the approximate inference
algorithm is many times faster than the exact approach.

5.8. Comparison with Other State-of-the Art classifiers

In order to evaluate the performance of our proposal we have replicated our
experimental evaluation for three well known state-of-the art multilabel clas-
sifiers, all of which have public implementations available: Binary-Relevance
(BR), Ensembles of Classifier Chains (ECC), and RAKEL [11]. The three clas-
sifiers are also instantiated with a particular base classifier, and here we have
selected the same base classifiers as for our original proposal (naive Bayes and
A1DE). Regarding the parameterization of these approaches, ECC has been
configured to learn 10 different models for the ensemble, and for RAKEL we
have used the recommended configuration [11] with 2m models having triplets
of label combinations k = 3. We have used the open implementation from the
Mulan library for the experiments.

Tables 6 and 7 show the results for global accuracy and Hamming accuracy,
respectively, for each of the classifiers instantiated with both base classifiers;
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Figure 6: Logarithmic runtime measured in seconds for the selected models and datasets when
using exact and approximate inference.

we have included our full pairwise FMC approach and the BDeu pruned model
FMC-BDeu for the sake of comparison. We have also included the same prepro-
cessing scheme described for our framework; the three straw-men methods are
also transformation-based methods that learn independent base classifiers for
which we can apply separate single class MDL discretization and CFS feature
selection. However, we have observed that, in some domains, using FSS de-
creases the performance of the multilabel classifiers when using A1DE as base
classifier, especially in terms of global accuracy. For the emotions and yeast
datasets we have therefore replaced the results in Tables 6 and 7 with the cor-
responding results obtained without using F'SS. This was, however, not feasible
for the data sets enron, medical, and genbase, as the algorithms are not able to
handle these datasets using the original full set of features.

This behavior can be explained by the internal workings of these multi-label
classifiers. In the case of transformation methods such as Binary Relevance and
RAEEL, the final output is computed by relying only on the individual class
predictions of the base classifiers. Thus, any change in accuracy of these models,
either positive or negative, can result in significant variations in the final multi-
label prediction. On the other hand, our FMC classifier uses the computed
probability distributions from the probabilistic base classifiers instead of the
individual predictions, so it is less sensitive to variations of the overall accuracy
of its base classifiers.

In general, we can observe that our proposed method obtains superior re-
sults when compared to the other state-of-the art classifiers. To extend the
comparison we have performed statistical tests following the same procedure as
employed in the previous subsection. The Friedman test with a 5% significance
level rejects the hypothesis that all classifiers are equivalent with a p—value of
2.6848e 9% in the case of global accuracy and with a p—value of 1.0862e~% for
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full-A1DE 0.4968 0.0000 0.3683 0.3017 0.1269 0.9623 0.6431 0.6597 0.2440 0.1850
full-NB 0.4658 0.0000 0.1383 0.2831 0.1105 0.9562 0.6227 0.5052 0.2320 0.1486
FSBDeu-A1DE  0.4877 0.0000 0.4134 0.3253 0.1263 0.9608 0.6339 0.6581 0.2473 0.1994
FSBDeu-NB 0.4315 0.0000 0.1755 0.2933 0.1181 0.9562 0.6227 0.5069 0.2336 0.1684
BR-A1DE 0.4564 0.0000 0.2286 *0.2377 0.0000 0.9155 0.1124 *0.5451 0.1350 *0.1117
BR-NB 0.4348 0.0000 0.0814 0.2495 0.1093 0.9758 0.5797 0.3079 0.2113 0.1039
ECC-A1DE 0.4566 0.0000 0.1463 *0.3019 0.0000 0.9185 0.1154 *0.5588 0.1478 *0.1572
ECC-NB 0.4562 0.0000 0.1033 0.3001 0.1234 0.9728 0.6205 0.3403 0.2206 0.1643
RAKEL-AIDE 0.0312 0.0000 0.3746 *0.3236 0.0000 0.0000 0.0143 *0.5376 0.1412 *0.1270
RAKEL-NB 0.4564 0.0000 0.1221 0.2983 0.1051 0.9698 0.6032 0.4674 0.2127 0.1275

Table 6: Global accuracy for the literature classifiers and the FMC. Highlighted results show

the best results for the corresponding dataset. Results marked with a

without using F'SS.

1%

has been obtained
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full-A1IDE 0.9521 0.8635 0.8545 0.7960 0.9511 0.9986 0.9892 0.9122 0.9329 0.7939
full-NB 0.9449 0.8619 0.7621 0.7835 0.9309 0.9984 0.9888 0.8853 0.9302 0.7770
FSBDeu-A1DE  0.9490 0.8638 0.8647 0.7987  0.9508 0.9985 0.9888 0.9117 0.9329 0.7937
FSBDeu-NB 0.9347 0.8616 0.7798 0.7846  0.9361 0.9983 0.9884 0.8858 0.9299  0.7792
BR-A1DE 0.9472  0.8503 0.8364 0.7797 *0.9364 0.9965 0.9755 *0.9024 0.9148 *0.7593
BR-NB 0.9322  0.8545 0.7245 0.7796  0.9312 0.9990 0.9878  0.8470 0.9267 0.7572
ECC-A1DE 0.9478 0.8503  0.8047 0.7897 *0.9366 0.9968 0.9756 *0.9048 0.9167 *0.7727
ECC-NB 0.9442  0.8526  0.7432 0.7909  0.9324 0.9989 0.9888 0.8548 0.9267 0.7812
RAKEL-A1DE  0.8427 0.6520 0.8827 *0.8027 0.7308 0.7656 *0.9361 0.8965 0.9157 *0.7691
RAKEL-NB 0.9403 0.8620 0.7606 0.7908  0.9420 0.9989 0.9884 0.8809 0.9276 0.7684

Table 7: Hamming accuracy for the straw-men classifiers and the FMC. Highlighted results

show the best result for the corresponding dataset. Results marked with a

been obtained without using F'SS.

1%

correspond has

Hamming accuracy. Following this result we performed a post-hoc test using
Holm’s procedure with a 5% significance level. The results can be found in Table
8 together with the ranking computed for the Friedman test; this test compares
all methods with the approach having the highest mean rank (FMC-full-A1DE
for acc and FMC-FSBDeu-A1DE for H,..) as control.

This post-hoc test reveals that both the full and pruned FMC classifier in-
stantiated with A1DE are the best classifiers in general, obtaining a significant
difference in the mean rank value. The classifiers are equivalent among them-
selves and statistically superior to the others for both acc and H,..

Finally we have evaluated the scalability properties of each approach by
measuring their runtime for the configured experiment. Figures 7 and 8 show the
averaged runtime based on cross validation for the training and testing phases,
respectively. This comparison confirms that the full unpruned FMC model
is by far the most complex and inefficient model. However, when including
the FSBDeu strategy the runtime becomes equivalent to the other referenced
methods in almost all the evaluated domains.
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Global Accuracy (acc) Hamming Accuracy (Hacc)
Algorithm Rank p-value Algorithm Rank p-value
FSBDeu-A1IDE  1.89 - ful-A1IDE 1.90 -
full-A1DE 2.11 8.7627e¢ 01 FSBDeu-A1DE 2.10 8.8257e 01
FSBDeu-NB 5.17  4.3286e02 RAKEL-NB 5.60  1.9862e02
ECC-NB 5.44  3.8194e~02 ful-NB 5.70  1.9862¢~02
full-NB 5.61  3.6432¢702 ECC-NB 5.80  1.9862¢702
ECC-A1DE 6.00 1.9856e—02 FSBDeu-NB 5.80  1.9862e~02
RAKEL-NB 6.28 1.2627e02 ECC-A1DE 5.90  1.8809e—02
RAKEL-AIDE  7.22 1.3047¢~93 BR-A1DE 7.20 6.3464e7 04
BR-NB 7.56  5.7415e—04 RAKEL-AIDE  7.30  5.3269¢~%4
BR-A1DE 7.72  3.9309e04 BR-NB 7.70  1.6552e—%4

Table 8: Results from the post-hoc test using Holm’s procedure for both global accuracy and
Hamming accuracy based on selected results from Tables 6 and 7. The table shows the ranking
computed for the Friedman test and the adjusted p-value using Holm’s procedure with a 5%
significance level. Boldfaced results correspond to rejected hypotheses.

birds CALS500 CLEF14 emotions enron
10.0-
, 200~ 2007 6000 -
L 150 - method
J 4000
@50 100 - 100 - . FSBDeu-NB
‘” 25- u 50 - . 2000 -
£, m m | o—- [ | —-—- .fuII—NB
=
03: genbase medical scene tmc2007 . BR-NB
T 125- 1500 80- 8000 - 20
2100~ 60- 6000 - 154 .ECC—NB
€ 75- 1000 -
g 50- s00 40- I 4000 - 107 .RAKEL—NB
25— 20- I I 2000 -
cmBmEl e N wEE mE ‘
o o Q @ @
2] a5} 1) o 2]
z z z z z
2z2%% 2az27%qa fﬂ?u%m m%|§m m%|§m
z !, >%z z LTz z L9z z L3239z zZ.,31z
dmyol dmyol dUieL suielL dmyol
sl83 sf8f3 afaf3 afaf3 sl@3
0 n 0 0 7]
oo o©or oo oo oo
Figure 7: Mean training runtime in seconds for each method and dataset.
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Figure 8: Mean test runtime in seconds for each method and dataset.
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6. Conclusions

We have introduced a new framework for multidimensional classification
based on the construction of a collection of pairwise classifiers that in com-
bination induce a Markov random field in which multi-label inference can be
performed. In our experiments, we have compared our proposal with a range of
available state-of-the art classifiers and obtained favourable results. A potential
concern about the framework is its scalability. We have outlined several strate-
gies to address this problem based on pruning class variable pairs or the induced
MRF model. The experiments show that the complexity of our approach can
be drastically reduced while maintaining competitive results.

In future work, we will study the dependency relationship between classes
and extend our experiments to additional multilabel and multidimensional do-
mains with the purpose of further exploring the capabilities of this framework.
We will look for conditional dependences between the class variables and learn-
ing specific base classifiers to maximize their impact in the overall framework
performance. Finally, a generalization of the framework using ternary or n-
dependences relations among the classes will also be considered.
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