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Multilabel classification (MLC) learning, which is widely applied in real-world applications, is a very important problem in
machine learning. Some studies show that a clustering-based MLC framework performs effectively compared to a nonclustering
framework. In this paper, we explore the clustering-based MLC problem. Multilabel feature selection also plays an important role
in classification learning because many redundant and irrelevant features can degrade performance and a good feature selection
algorithm can reduce computational complexity and improve classification accuracy. In this study, we consider feature dependence
and feature interaction simultaneously, and we propose a multilabel feature selection algorithm as a preprocessing stage before
MLC. Typically, existing cluster-based MLC frameworks employ a hard cluster method. In practice, the instances of multilabel
datasets are distinguished in a single cluster by such frameworks; however, the overlapping nature of multilabel instances is such
that, in real-life applications, instances may not belong to only a single class. Therefore, we propose a MLC model that combines
feature selection with an overlapping clustering algorithm. Experimental results demonstrate that various clustering algorithms
show different performance for MLC, and the proposed overlapping clustering-based MLC model may be more suitable.

1. Introduction

The multilabel classification (MLC) problem, which is appli-
cable to awide variety of domains, such asmusic classification
and bioinformatics [1], has received increasing attention.
However, situations where single instances are associated
with multiple labels remain challenging. Most algorithms
treat such MLC tasks as multiple binary classification tasks.
However, this approach may not consider potential correla-
tions among features and labels.

A good MLC solution must be effective and efficient;
however, a large number of redundant and irrelevant attrib-
utes may increase computational costs and the time required
to learn and test a multilabel classifier, which reduces class-
ification performance. Feature selection, which is an impor-
tant technique in data mining and machine learning, has
been widely used in classification models to enhance per-
formance. Selecting features before applying classification
methods to original datasets has many advantages, such as

refining the data, reducing computational costs, and improv-
ing classification accuracy [2, 3]. Therefore, we utilise a
feature selection algorithm to improve the quality of MLC.

Various feature selection methods have been proposed,
for example, statistics, rough set methods, information gain,
and mutual information (MI). A wide variety of research has
shown that no single feature selection method can handle
all situations. Many studies have demonstrated that MI-
based feature selection methods are effective and efficient
because the MI can handle different types of attributes,
does not make any assumptions, and can measure nonlinear
relations between variables [4]. Recently, many algorithms
to select significant features for MLC have been proposed.
However, most of these methods do not consider that a single
attribute may affect various labels differently. The concept of
interaction information has become more relevant because it
can reflect the relevance, redundancy, and complementarity
among attributes and labels; thus, it is an effective feature
selection method. In this study, we propose an algorithm to

Hindawi
Mathematical Problems in Engineering
Volume 2018, Article ID 2814897, 12 pages
https://doi.org/10.1155/2018/2814897

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/208552179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-5815-9773
http://orcid.org/0000-0002-4906-7025
https://doi.org/10.1155/2018/2814897


2 Mathematical Problems in Engineering

improveMLC performance by selecting significant attributes
based on interaction information between attributes and
labels.

Some studies have shown that clustering-based MLC
methods can improve predictive performance and reduce
time costs; however, those studies used nonoverlapping
clustering methods to handle multilabel datasets. We know
that, inMLC, one object may belong tomultiple classes; how-
ever, algorithms based on nonoverlapping clustering, that is,
hard division methods, do not consider such situations. In
contrast, overlapping clustering-based methods consider this
situation when they handle datasets. Therefore, we propose
an overlapping clustering-based MLC (OCBMLC) model.

The remainder of this paper is organised as follows: Sec-
tion 2 describes related work, Section 3 provides background
information, Section 4 describes the proposed multilabel
feature selection algorithm and MLC model, Section 5 intro-
duces experimental data, evaluation criteria, and experimen-
tal results, and conclusions and suggestions for future work
are presented in Section 6.

2. Related Work

Currently, a variety of algorithms have been developed to
handle MLC problems [5–15]. In traditional classification
methods, each instance has a single label; however, in MLC,
an instance can have more than one label. MLC algorithms
can be divided into problem transformation methods (PT)
and algorithm adaptation methods (AA) [9].

PT methods convert multilabel data to single-label data;
thus, a single-label classification method can be used. Label
powerset, binary relevance [10], and random ensemble learn-
ing with k-label sets [11] are classic PT methods. The AA
approaches extend single-label algorithms to process multil-
abel data directly. BP-MLL [12] andML-KNNare twopopular
AAmethods. BP-MLL is awidely usedMLCbackpropagation
algorithm. An important characteristic of this algorithm is
the introduction of an error function that considers multiple
labels.TheML-KNNAAmethod [13] determines the labels of
a new object using the maximum a posteriori principle. The
ML-KNN algorithmobtains a label set based on the statistical
information of the label sets of the 𝑘-nearest neighbours of a
test instance.

Many studies have proven that redundant and irrelevant
features can increase computational costs, reduce perfor-
mance, and result in overfitting. These problems also exist in
MLC. Many feature selection methods have been proposed
to handle these problems and improve MLC. Battiti [14]
proposed the Mutual Information Feature Selection algo-
rithm, which selects themaximum relevance term, to address
these problems. Peng et al. [15] introduced an improvement
algorithm called Minimal-Redundancy and Max-Relevance,
and Lin et al. [16] proposed a multilabel feature selection
algorithm that combinesMI withmax-dependency andmin-
redundancy. In addition, over the past few years, unsuper-
vised, clustering, and other technologies have been used to
reduce dimensionality. For example, Li et al. [17] proposed
a clustering-guided sparse structural learning algorithm that
integrates clustering and a sparse structure in a united

framework to select the most useful features. They also pro-
posed an algorithm [18] that employs nonnegative spectral
clustering and controls the redundancy between features
to select significant features. Cai et al. [19] presented the
Unified Sparse Subspace Learning (USSL) framework, which
employs a dimension reduction technique that incorporates
a subspace learning method. The USSL framework has
demonstrated good performance. Li et al. [20] proposed
the Robust Structured Subspace Learning (RSSL) framework
that combines subspace learning theory and features learn-
ing. Their experimental results demonstrated that the RSSL
framework performed well for image understanding tasks.

Recently, Kommu et al. [21] proposed two methods
based on probabilistic theory to solve multilabel learning
problems. In the first method, their algorithm uses logistic
regression and a nearest neighbour classifier for MLC. Note
that Partial Information is used in this approach. In the
second method, their algorithm deals with the concept of
grouping related labels. Association Rules are also introduced
in the second approach. Guo and Li [22] proposed the
Improved Conditional Dependency Networks framework for
MLC.Thismethoduses label correlations in the training stage
and CDNs in the testing stage. Yu et al. [23] used a rough sets
approach for MLC that considers the associations between
labels. They evaluated the performance of their approach
using seven multilabel datasets.

Nasierding et al. [24, 25] presented an effective CBMLC
framework that combines a clustering algorithm with an
MLC algorithm. Various clustering methods, such as 𝑘-
means, EM, and Sequential Information Bottleneck, are
used for training. Note that, with this framework, labels are
ignored during training phase. Nasierding et al. [26] com-
pared clustering and nonclustering MLC methods for image
and video annotations. Tahir et al. [27] proposed a method
that combines a multilabel learning approach with fusion
techniques. They used various multilabel learners to select
a label set and demonstrated that ensemble techniques can
avoid the disadvantages of different learners.

3. Background Theory

3.1. Entropy and Mutual Information. In this section, we
introduce the theories of Entropy and MI. Here, we assume
that all variables are discrete or data attributes can be dis-
cretised using different discrete methods. Shannon’s entropy
[28] is the uncertainty measure of a random variable, and
it has been widely used in various domains. Here, let𝑋 ∈ {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a discrete variable and 𝑝(𝑥𝑖) =
probability {𝑋 = 𝑥} be the probability density function.
Formally, the entropy of𝑋 is defined as follows:

𝐻(𝑋) = − 𝑛∑
𝑖=1

𝑝 (𝑥𝑖) log (𝑝 (𝑥𝑖)) . (1)

Assume that 𝑋 and 𝑌 ∈ {𝑦1, 𝑦2, . . . , 𝑦𝑚} are two random
discrete variables. 𝑝(𝑥𝑖, 𝑦𝑗) is the joint probability of𝑋 and𝑌.
The joint entropy𝐻(𝑋, 𝑌) is defined as follows:

𝐻(𝑋, 𝑌) = − 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑝 (𝑥𝑖, 𝑦𝑗) log (𝑝 (𝑥𝑖, 𝑦𝑗)) . (2)
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If the value of random variable 𝑋 is known and variable𝑌 is not, the remaining uncertainty of variable 𝑌 can be
measured by the conditional entropy defined as follows:

𝐻(𝑌 | 𝑋) = − 𝑚∑
𝑗=1

𝑛∑
𝑖=1

𝑝 (𝑦𝑗, 𝑥𝑖) log (𝑝 (𝑦𝑗 | 𝑥𝑖)) . (3)

The minimum value of 𝐻(𝑌 | 𝑋) is zero when random
variable 𝑌 is statistically dependent on random variable 𝑋.
The maximum conditional entropy value occurs when the
two variables are statistically independent.

The relationship between conditional and joint entropy
can be defined as follows:

𝐻(𝑋, 𝑌) = 𝐻 (𝑋) + 𝐻 (𝑌 | 𝑋) = 𝐻 (𝑌) + 𝐻 (𝑋 | 𝑌) . (4)

MI is the amount of information shared by two variables
and is defined as follows:

𝐼 (𝑋, 𝑌) = 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑝 (𝑥𝑖, 𝑦𝑗) log( 𝑝 (𝑥𝑖, 𝑦𝑗)𝑝 (𝑥𝑖) 𝑃 (𝑦𝑗)) . (5)

Note that the two random variables are statistically
independent when 𝐼(𝑋, 𝑌) is zero. The relation between MI
and entropy can be defined as follows:

𝐼 (𝑋, 𝑌) = 𝐻 (𝑌) − 𝐻 (𝑌 | 𝑋) = 𝐻 (𝑋) − 𝐻 (𝑋 | 𝑌)
= 𝐻 (𝑋) + 𝐻 (𝑌) − 𝐻 (𝑋, 𝑌) . (6)

Let 𝑍 be a random variable 𝑍 = {𝑧1, 𝑧2, . . . , 𝑧𝑘}. The con-
ditional MI and joint MI represent the information of two
variables in the context of a third variable and are defined as
follows:

𝐼 (𝑋; 𝑍 | 𝑌) = 𝐻 (𝑋 | 𝑍) − 𝐻 (𝑋 | 𝑍, 𝑌)
𝐼 (𝑋, 𝑌; 𝑍) = 𝐼 (𝑋; 𝑍 | 𝑌) − 𝐻 (𝑌, 𝑍) . (7)

Multi-information, whichwas introduced byMcGill [29],
is an extension of two random variables that can handle
the interaction among more than two random variables.
Mathematically, multi-information is defined as follows:

𝐼 (𝑋; 𝑌; 𝑍) = 𝐼 (𝑋, 𝑍; 𝑌) − 𝐼 (𝑋, 𝑍) − 𝐼 (𝑌; 𝑍) . (8)

Multi-information can be positive, negative, or zero [30].
If the multi-information value is zero, the random variables
are independent in the context of the third variable. If the
value is negative, the variables have redundant information
and a positive value indicates that together the random
variables can provide more information than each variable
taken individually.

3.2. Overlapping Clustering Algorithm. Fuzzy 𝐶-Means
(FCM) algorithms are widely used in fuzzy clustering learn-
ing. Fuzzy clustering, which is a type of overlapping cluster-
ing, differs from hard clustering. The FCM clustering algo-
rithm assigns data points (examples) to a cluster, and the
fuzzy membership of data points indicates the extent to
which data points pertain to their clusters [31].

Suppose 𝑋 ∈ {𝑥1, 𝑥2, . . . , 𝑥𝑛} is a set of 𝑛 vectors for𝑐 clustering. Vectors 𝑥𝑖 ∈ 𝑅𝑠 represent the attributes of the
object 𝑥𝑖. Here, a fuzzy partitionmatrix𝑀𝑓𝑐 (𝑐×𝑛) is defined
as

𝑀𝑓𝑐 = {𝑊∈ 𝑅𝑐𝑛 | 𝑤𝑖𝑘 ∈ [0, 1] , ∀𝑖, 𝑘; 𝑐∑
𝑖=1

𝑤𝑖𝑘
= 1, ∀𝑘; 0 < 𝑛∑

𝑘=1

𝑤𝑖𝑘 < 𝑛, ∀𝑖} ,
(9)

where 1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑘 ≤ 𝑛.
Note that examples can belong to more than one cluster

with different degrees of membership. The object function of
the FCM algorithm obtains the minimum value as follows
[32]:

min 𝐽𝑚 (𝑊,𝑉) = 𝑛∑
𝑗=1

𝑐∑
𝑖=1

𝑤𝑚𝑖𝑗 𝑑2𝑖𝑗 (𝑥𝑖, V𝑖) , (10)

where𝑊 = {𝑤𝑖𝑗} is themembership degreematrix, parameter𝑚 ∈ (1, +∞) is the weight exponent that defines the fuzziness
of the resulting clusters, and 𝑑𝑖𝑗 = ‖𝑥𝑘 − 𝑝𝑖‖ is the Euclidian
distance between object 𝑥𝑘 and the cluster centre V𝑖.

The objective function is minimized by updating the
partition matrix and cluster centre as follows:

V𝑖 = ∑𝑛𝑘=1 (𝑤𝑖𝑘)𝑚 𝑥𝑘∑𝑛𝑘=1 (𝑤𝑖𝑘)𝑚

𝑤𝑖𝑘𝑏 = 𝑐∑
𝑗=1

[
[(

𝑑(𝑏)
𝑖𝑘𝑑(𝑏)
𝑗𝑘

)
2/(𝑚−1)]

]
−1

.
(11)

The FCMmembership function is defined as follows:

𝑢𝑖,𝑗 = 𝑐∑
𝑡=1

[
[(

𝑥𝑗 − V𝑖
𝐴𝑥𝑗 − V𝑡
𝐴)
2/(𝑚−1)]

]
−1

. (12)

Here, 𝑢𝑖,𝑗 is themembership value of the 𝑗th object and 𝑖th
cluster, 𝑐 is the number of clusters, and V𝑖 is the cluster centre
of the 𝑖th cluster.

4. Proposed Multilabel Classification Model

4.1. Proposed Multilabel Feature Selection Method. In infor-
mation theory, 𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑛} is the original feature set,
and the subset 𝑆 = {𝑓1, 𝑓2, . . . , 𝑓𝑘} is the compact feature
subset where 𝑛 > 𝑘. The selected subset 𝑆 = {𝑓1, 𝑓2, . . . , 𝑓𝑘}
should maximise the joint information between the subset 𝑆
with compact dimension 𝑘 and the class label 𝐶.

MI (𝐹; 𝐶) = MI (𝑓1, 𝑓2, . . . , 𝑓𝑘; 𝐶) . (13)

Such a method is impractical because it is difficult to
calculate the high-dimensional probability density function.
Therefore, some efficient methods have been proposed to
approximate the ideal solution [14–16]. Generally, most mul-
tilabel feature selection methods based on MI consider the
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relevance and redundancy terms. In practice, such methods
and their variants calculate the MI between a candidate
feature and the selected features subset; however, they do
not sufficiently consider interaction information among
attributes and class labels, ignore feature cooperation, and
allow all features to be competitive.

We know that a candidate feature for multilabel feature
selection should have one of the highestMI values for all class
labels. This is referred to as the relevance term. Multilabel
feature relevance terms have been defined previously, and we
use the following definition.

Definition 1. Let 𝑓𝑖 denote a candidate feature and 𝑙𝑘 ∈ 𝐿 be a
class label. The relevance term is expressed as follows:

𝐷 = ∑
𝑙𝑘∈𝐿

MI (𝑓𝑖; 𝑙𝑘) . (14)

We can obtain two properties according to this definition.

Property 2. If candidate feature 𝑓𝑖 and each class label 𝑙𝑘 ∈𝐿 are mutually independent, then the MI of 𝑓𝑖 and 𝐿 is
minimum.

Property 3. If each class label 𝑙𝑘 ∈ 𝐿 is determined completely
by 𝑓𝑖, then the MI of 𝑓𝑖 and 𝐿 is maximum.

According to the above properties, we can useDefinition 1
to select relevant candidate features. However, classes com-
bined with previously selected features may produce interac-
tion. Therefore, we should consider the interaction informa-
tion among the candidate feature, the selected features, and
the classes during feature selection. Differing from exist-
ing feature selection methods, we consider the interaction
information between a feature and a single class and the
pairwise interaction between features and all class labels. Our
interaction metric is defined as follows:

𝐼 = ∑
𝑙𝑘∈𝐿

∑
𝑓𝑗∈𝑆

MI (𝑓𝑖; 𝑓𝑗; 𝑙𝑘) . (15)

Here, 𝑆 is the selected features subset, 𝐿 denotes the label set,
and 𝑓𝑖 denotes the candidate feature.

It is well known that multilabel feature selection attempts
to select a set of features with the highest discrimination
power for all labels. According to the above discussion, we
combine (14) and (15) using the feature interactionmaximum
of the minimum criteria to propose a new goal function
(referred to as max-dependence and interaction (MDI)) for
multilabel feature selection. Here, the candidate features
are considered to have the highest relevance and beneficial
interaction with all class labels. The proposed MDI goal
function is expressed as follows:

MDI = argmax[[∑𝑙𝑘∈𝐿MI (𝑓𝑖; 𝑙𝑘)

+min∑
𝑙𝑘∈𝐿

∑
𝑓𝑗∈𝑆

MI (𝑓𝑖; 𝑓𝑗; 𝑙𝑘)]] .
(16)

With this function, the first term is the relevance between
the candidate features and all class labels, and the second
term focuses on the interaction information among 𝑓𝑖, 𝑓𝑗,
and 𝐿. The proposed goal function can select features with
the greatest discrimination power. The pseudocode of the
proposed algorithm is as Pseudocode 1.

4.2. ProposedMultilabel ClassificationModel. There are some
experimental results that show that CBMLC methods can
improve the predictive classification performance and reduce
algorithm training time compared to existing popular multi-
label methods [24–26].The results of those models show that
the classification performance of clustering-basedmethods is
effective. However, those algorithms were used for nonover-
lapping clustering methods, such as EM and 𝑘-means, prior
to MLC. Therefore, the original data will be set into several
disjoint data clusters in nonoverlapping methods.

Clustering methods are usually classified into hard clus-
tering and fuzzy clustering. In hard clustering, instances
are distinguished in a single cluster. However, due to the
overlapping nature of instances, generally, they do not belong
to only a single class in real-world applications.This property
limits the practical application of hard clustering, especially
for MLC.

FCM is an effective classic fuzzy clustering method based
on an objective function concept and is widely used in
clustering. The FCM approach uses alternating optimisation
strategies to solve nonlinear and nonmonitor clustering
problems. We know that one instance may own multiple
classes in multilabel data, and the FCM algorithm can handle
one instance that belongs to more than one cluster simul-
taneously. This allows the use of a fuzzy clustering method
that assigns a single object to several clusters. Therefore, we
propose the OCBMLC model in combination with the FCM
algorithm to improve performance. Figure 1 shows the basic
procedure of the proposed OCBMLC model.

5. Experiments and Results

5.1. Datasets. In our experiments, we used three public
multilabel datasets, that is, the emotions, yeast, and scene
datasets. These datasets were taken from the Mulan Library.
The emotions dataset contains examples of songs accord-
ing to people’s emotions [33]. The yeast dataset includes
information about genes functions [34], and the scene [35]
dataset includes a series of landscape patterns. Table 1
shows the statistics of the three multilabel benchmark
datasets.

In Table 1, “Domain” denotes the dataset domain, “In-
stances” is the number of instances in the dataset, “Features”
is the number of attributes, “Labels” is the number of labels in
the datasets, and “Cardinality” is the average number of labels
associated with each instance.

5.2. Experimental Setting. At the multilabel feature selection
stage, in order to calculateMI convenience, we discretise con-
tinuous features into 10 bins using an equal-width strategy.
The evaluation approaches for MLC differ from traditional
single-label classifications. Note that the Hamming loss and
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(1) (Initialisation) Set 𝑋 ← “initial set of 𝑛 features”;𝑆 ← “empty set”.(2) (Computation of the MI with the output class set)
For ∀𝑥𝑖 ∈ 𝑋, ∀𝑙𝑖 ∈ 𝐿 compute ∑𝑙𝑘∈𝐿MI(𝑥𝑖; 𝑙𝑘)(3) (Choice of the first feature) Find the feature 𝑥 that
maximizes ∑𝑙𝑘∈𝐿MI(𝑥𝑖; 𝐿); set𝑋 ← 𝑋 \ {𝑥𝑖}; set 𝑆 ← {𝑥𝑖}.(4) (Greedy selection) Repeat until |𝑆| = 𝑘;
(selection of the next feature) choose the feature𝑥𝑖 = argmax[∑𝑙𝑘∈𝐿MI(𝑥𝑖; 𝑙𝑘) +min∑𝑙𝑘∈𝐿∑𝑓𝑗∈𝑆MI(𝑥𝑖; 𝑥𝑗; 𝑙𝑘)];
set𝑋 ← 𝑋 \ {𝑥𝑖}; set 𝑆 ← 𝑆 ∪ {𝑥𝑖};(5) (output) Output the set 𝑆 with the selected features.

Pseudocode 1

Train datasets

Original datasets

Multilabel feature
selection

Test instances

Clustering train data into groups
(overlapping clustering algorithm)

Algorithm adaptation method

Clustering a test instance into one of
the groups

Classifying the instance based on the
multilabel classification method

Figure 1: Basic procedure of OCBMLC model.

Table 1: The statistic of the multilabel benchmark datasets.

Dataset Domain Instances Features labels Cardinality
Emotions Music 593 72 6 1.869
Yeast Biology 2417 103 14 4.237
Scene Image 2407 294 6 1.074

micro 𝐹1-measure evaluation criteria are widely used for
MLC; thus, we used these criteria in our experiments.

Note that non-OCBMLC models use 𝑘-means and EM
algorithms to cluster original datasets, and OCBMLC model
uses the FCM algorithm on the data after dimension reduc-
tion. The overlapping and nonoverlapping frameworks both
employML-KNN as the classifier.The number of clusters 𝑘 in𝑘-means, EM, and FCM is all set between 2 to 7. In this study,
a cross-validation strategy was used for each combination
of algorithm framework and dataset. All experiments used

MATLAB 2012 on an Intel Core-i5 2.3 GHz processor with
8GB memory.

5.3. Evaluation Metrics. The evaluations of an MLC system
differ from that of a single-label classification system. Note
that some criteria that evaluate the performance of an MLC
system have been employed previously [36]. Among such
evaluation metrics, we employed Hamming loss and the
micro 𝐹1-measure criteria.

Here, let 𝑆 = {(𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛)} be a set of n test
examples and 𝑌∗ = ℎ(𝑥𝑖) be the predict label set for the
test instance 𝑋𝑖. 𝑌𝑖 is the ground truth label set for 𝑋𝑖. The
Hamming loss indicates the number of erroneous labels to the
total number of labels, where a smaller Hamming loss value
indicates better classification performance. The Hamming
loss value is calculated as follows:

Hamming Loss = 1𝑛
𝑛∑
𝑖=1

1𝑄
⋅ 𝑄∑
𝑞=1

(𝛿 (𝑞 ∈ 𝑌∗𝑖 ∧ 𝑞 ∉ 𝑌𝑖) + 𝛿 (𝑞 ∉ 𝑌∗𝑖 ∧ 𝑞 ∈ 𝑌𝑖)) .
(17)

The micro 𝐹1-measure represents the harmonic means
between precision and recall, and it is calculated from false
positives, false negatives, true positives, and true negatives.
The𝐹1-measure andmicroaveraging are evaluated as follows:

𝐹1-measure = 1𝑁
𝑁∑
𝑖=1

2 𝑌𝑖 ∩ 𝑍𝑖𝑍𝑖 + 𝑌𝑖
𝑀micro = 𝑀(𝑀∑

𝑙=1

𝑡𝑝𝑙, 𝑀∑
𝑙=1

𝑓𝑝𝑙, 𝑀∑
𝑙=1

𝑡𝑛𝑙, 𝑀∑
𝑙=1

𝑓𝑛𝑙) .
(18)

Here, 𝑡𝑝𝑙 denotes true positives and 𝑓𝑝𝑙 denotes false
positives, and 𝑡𝑛𝑙 and 𝑓𝑛𝑙 are true and false negatives,
respectively, for 𝑙 labels after a separate binary evaluation
is performed. Note that a greater micro 𝐹1-measure value
indicates better classification performance of a multilabel
algorithm.

5.4. Results. In this study, we used Hamming loss and the
micro 𝐹1-measure as experimental evaluation metrics and



6 Mathematical Problems in Engineering

K-means + ML-KNN
EM + ML-KNN
MDI + FCM +

MDI + FCM +

MDI + FCM +
ML-KNN (20%)

ML-KNN (30%)

ML-KNN (40%)

2.5 3 3.5 4 4.5 5 5.5 6 6.52 7
Number of clusters

0.198

0.2

0.202

0.204

0.206

0.208

0.21

0.212

H
am

m
in

g 
lo

ss

Figure 2: Hamming loss for all models and the number of clusters in emotions.
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Figure 3: Micro 𝐹1 for all models and the number of clusters in
emotions.

employed ML-KNN as the multilabel classifier. Note that, in
all cases, we indicate the best results in bold values in Tables
2, 3, 4, 5, 6, 7, 8, and 9.

5.4.1. Comparisons of Feature Selection Methods. To demon-
strate the efficacy of the proposed feature selection algorithm,
we compared the proposed feature selection method to other
MLC models based on clustering using the emotion dataset.
We also compared a feature selection method that only con-
siders the dependence between features and classes using the
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Figure 4: Hamming loss for all models and the number of clusters
in yeast.

proposed algorithm in which interaction information among
features and classes is considered. Here, we refer to the crite-
rion that considers only dependence as the max-dependence
criterion, where DEP max = max∑𝑙𝑘∈𝐿MI(𝑓𝑖; 𝑙𝑘). This
criterion was used to select candidate features.

In this experiment, “DEP max” represents the features
selected by the max-dependence criterion, which ignores
interaction information when selecting candidate features,
and “MDI” represents features selected by the proposed
algorithm, which considers dependence and interaction
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Figure 5: Micro 𝐹1measure for all models and the number of clusters in yeast.

Table 2: Hamming loss measure for the models based on 𝑘-means
clustering on emotions dataset. 𝑛 is the number of attributes, and 𝑘
is the amount of clusters. 𝑠% is the average value of Hamming loss.

Classification model 𝑘 𝑛 Emotions𝑘-means + ML-KNN 2 72 0.2018
EM +ML-KNN 2 72 0.2019
DEP max + 𝑘-means + ML-KNN 2 𝑠% 0.2021
MDI + 𝑘-means + ML-KNN 2 𝑠% 0.2016𝑘-means + ML-KNN 3 72 0.2021
EM +ML-KNN 3 72 0.2013
DEP max + 𝑘-means + ML-KNN 3 𝑠% 0.2034
MDI + 𝑘-means + ML-KNN 3 𝑠% 0.1986𝑘-means + ML-KNN 4 72 0.2106
EM +ML-KNN 4 72 0.2030
DEP max + 𝑘-means + ML-KNN 4 𝑠% 0.2156
MDI + 𝑘-means + ML-KNN 4 𝑠% 0.2024𝑘-means + ML-KNN 5 72 0.2119
EM +ML-KNN 5 72 0.2027
DEP max + 𝑘-means + ML-KNN 5 𝑠% 0.2168
MDI + 𝑘-means + ML-KNN 5 𝑠% 0.2005𝑘-means + ML-KNN 6 72 0.2089
EM +ML-KNN 6 72 0.2030
DEP max + 𝑘-means + ML-KNN 6 𝑠% 0.2078
MDI + 𝑘-means + ML-KNN 6 𝑠% 0.2056𝑘-means + ML-KNN 7 72 0.2120
EM +ML-KNN 7 72 0.2064
DEP max + 𝑘-means + ML-KNN 7 𝑠% 0.2126
MDI + 𝑘-means + ML-KNN 7 𝑠% 0.2030

information among the candidate features and each class
simultaneously. Here, we selected the top 𝑛% (𝑛 = 20, 30, 40)

Table 3: Micro 𝐹1-measure for all models on emotions dataset. 𝑛 is
the number of attributes, and 𝑘 is the amount of clusters. 𝑠% is the
average value of micro 𝐹1-measure.

Classification model 𝑘 𝑛 Emotions𝑘-means + ML-KNN 2 72 0.6538
EM +ML-KNN 2 72 0.6585
DEP max + 𝑘-means + ML-KNN 2 𝑠% 0.6572
MDI + 𝑘-means + ML-KNN 2 s% 0.6590𝑘-means + ML-KNN 3 72 0.6562
EM +ML-KNN 3 72 0.6614
DEP max + 𝑘-means + ML-KNN 3 𝑠% 0.6532
MDI + 𝑘-means + ML-KNN 3 𝑠% 0.6650𝑘-means + ML-KNN 4 72 0.6375
EM +ML-KNN 4 72 0.6523
DEP max + 𝑘-means + ML-KNN 4 𝑠% 0.6350
MDI + 𝑘-means + ML-KNN 4 𝑠% 0.6635𝑘-means + ML-KNN 5 72 0.6427
EM +ML-KNN 5 72 0.6571
DEP max + 𝑘-means + ML-KNN 5 𝑠% 0.6430
MDI + 𝑘-means + ML-KNN 5 𝑠% 0.6590𝑘-means + ML-KNN 6 72 0.6411
EM +ML-KNN 6 72 0.6596
DEP max + 𝑘-means + ML-KNN 6 𝑠% 0.6423
MDI + 𝑘-means + ML-KNN 6 𝑠% 0.6621𝑘-means + ML-KNN 7 72 0.6380
EM +ML-KNN 7 72 0.6549
DEP max + 𝑘-means + ML-KNN 7 𝑠% 0.6382
MDI + 𝑘-means + ML-KNN 7 𝑠% 0.6576

features for MLC according to the MDI and DEP max
criteria, and we used the average Hamming loss and micro
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Table 4: Hamming lossmeasure for all models on emotions dataset.𝑛 is the number of attributes, and 𝑘 is the amount of clusters.

Classification model 𝑘 𝑛 Emotions𝑘-means + ML-KNN 2 72 0.2018 ± 0.0167
EM +ML-KNN 2 72 0.2019 ± 0.0265
MDI + FCM +ML-KNN 2

20% 0.2055 ± 0.0033
30% 0.2017 ± 0.0151
40% 0.2012 ± 0.0072𝑘-means + ML-KNN 3 72 0.2021 ± 0.0182

EM +ML-KNN 3 72 0.2013 ± 0.0204
MDI + FCM +ML-KNN 3

20% 0.1997 ± 0.0009
30% 0.1983 ± 0.0154
40% 0.2024 ± 0.0012𝑘-means + ML-KNN 4 72 0.2106 ± 0.0251

EM +ML-KNN 4 72 0.2030 ± 0.0261
MDI + FCM +ML-KNN 4

20% 0.2009 ± 0.0018
30% 0.1991 ± 0.0108
40% 0.2002 ± 0.0111𝑘-means + ML-KNN 5 72 0.2119 ± 0.0122

EM +ML-KNN 5 72 0.2027 ± 0.0289
MDI + FCM +ML-KNN 5

20% 0.2006 ± 0.0037
30% 0.2011 ± 0.0075
40% 0.2034 ± 0.0100𝑘-means + ML-KNN 6 72 0.2089 ± 0.0177

EM +ML-KNN 6 72 0.2030 ± 0.0239
MDI + FCM +ML-KNN 6

20% 0.2118 ± 0.0150
30% 0.2018 ± 0.0054
40% 0.2019 ± 0.0129𝑘-means + ML-KNN 7 72 0.2120 ± 0.0183

EM +ML-KNN 7 72 0.2064 ± 0.0243
MDI + FCM +ML-KNN 7

20% 0.2063 ± 0.0139
30% 0.2031 ± 0.0041
40% 0.2060 ± 0.0130

𝐹1-measure values based on the selected top 𝑛% (𝑛 =20, 30, 40) features subset by comparing the values from the
original feature sets.

Table 2 shows theHamming loss values obtainedwhenwe
used the features selected according to MDI, DEP max, and
the original features from the emotion dataset, and Table 3
shows the micro 𝐹1-measure values when we employed
features selected according to MDI, DEP max, and the
original features. In terms of the feature selection methods,
we found that the performance of DEP max is no better than
that of the other models even though we used the original
feature subset. However, the MDI performance is better and
more stable when the clustering number 𝑘 is 2 to 7. It is likely
that features selected by only considering Max-Relevance
could generate abundant redundancy, which means that the
dependence among those features could be large. Therefore,
the proposed feature selection function may be better suited
for MLC, and we observed the same from the experimental
results.

Table 5: Micro 𝐹1-measure for all models on emotions dataset. 𝑛 is
the number of attributes, and 𝑘 is the amount of clusters.

Classification model 𝑘 𝑛 Emotions𝑘-means + ML-KNN 2 72 0.6538 ± 0.0211
EM +ML-KNN 2 72 0.6585 ± 0.0425
MDI + FCM +ML-KNN 2

20% 0.6490 ± 0.0295
30% 0.6611 ± 0.0291
40% 0.6382 ± 0.0286𝑘-means + ML-KNN 3 72 0.6562 ± 0.0340

EM +ML-KNN 3 72 0.6614 ± 0.0343
MDI + FCM +ML-KNN 3

20% 0.6591 ± 0.0419
30% 0.6745 ± 0.0265
40% 0.6398 ± 0.0181𝑘-means + ML-KNN 4 72 0.6375 ± 0.0432

EM +ML-KNN 4 72 0.6523 ± 0.0437
MDI + FCM +ML-KNN 4

20% 0.6590 ± 0.0420
30% 0.6734 ± 0.0341
40% 0.6575 ± 0.0165𝑘-means + ML-KNN 5 72 0.6427 ± 0.0240

EM +ML-KNN 5 72 0.6571 ± 0.0481
MDI + FCM +ML-KNN 5

20% 0.6633 ± 0.0170
30% 0.6733 ± 0.0243
40% 0.6552 ± 0.0237𝑘-means + ML-KNN 6 72 0.6411 ± 0.0227

EM +ML-KNN 6 72 0.6596 ± 0.0321
MDI + FCM +ML-KNN 6

20% 0.6303 ± 0.0458
30% 0.6653 ± 0.0116
40% 0.6524 ± 0.0155𝑘-means + ML-KNN 7 72 0.6380 ± 0.0222

EM +ML-KNN 7 72 0.6549 ± 0.0404
MDI + FCM +ML-KNN 7

20% 0.6561 ± 0.0248
30% 0.6660 ± 0.0219
40% 0.6568 ± 0.0233

5.4.2. Comparisons of Multilabel Classification Models. The
results obtained by the MLC models with the emotions
dataset relative to Hamming loss and the micro 𝐹1-measure
are shown in Tables 4 and 5. We selected the top 𝑛% (𝑛 =20, 30, 40) in the selected feature subset as the final feature
subset for use with the proposedmodel. Table 4 demonstrates
that the proposed OCBMLC framework achieved the lowest
Hamming loss value (0.1983 ± 0.0154) with the emotions
dataset. Table 5 shows that the proposed framework achieved
the highest micro 𝐹1-measure (0.6745 ± 0.0265) with the
emotions dataset. As shown in Figures 2 and 3, the predictive
performance of the proposed model achieved the best results
with the emotions dataset when 𝑘 = 3. As shown in Figures
2 and 3, respectively, the Hamming loss demonstrates the
minimum value and the micro 𝐹1-measure demonstrates the
maximum value when we used the MDI feature selection
method to select the top 𝑛% (𝑛 = 30) features as the classifi-
cation attributes subset.

To demonstrate the classification performance of the
proposed model, we also selected the top 𝑝% (𝑝 = 20, 30, 40)
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Table 6: Hamming loss measure for all models on yeast dataset. 𝑛 is
the number of attributes, and 𝑘 is the amount of clusters.

Classification model 𝑘 𝑛 Yeast𝑘-means + ML-KNN 2 103 0.1955 ± 0.0117
EM +ML-KNN 2 103 0.1964 ± 0.0117
MDI + FCM +ML-KNN 2

20% 0.1958 ± 0.0130
30% 0.1931 ± 0.0109
40% 0.1922 ± 0.0098𝑘-means + ML-KNN 3 103 0.1994 ± 0.0135

EM +ML-KNN 3 103 0.1953 ± 0.0120
MDI + FCM +ML-KNN 3

20% 0.1967 ± 0.0170
30% 0.1921 ± 0.0107
40% 0.1899 ± 0.0118𝑘-means + ML-KNN 4 103 0.2002 ± 0.0129

EM +ML-KNN 4 103 0.1984 ± 0.0120
MDI + FCM +ML-KNN 4

20% 0.1986 ± 0.0129
30% 0.1943 ± 0.0119
40% 0.1912 ± 0.0126𝑘-means + ML-KNN 5 103 0.2026 ± 0.0123

EM +ML-KNN 5 103 0.1992 ± 0.0116
MDI + FCM +ML-KNN 5

20% 0.1997 ± 0.0147
30% 0.1941 ± 0.0113
40% 0.1949 ± 0.0132𝑘-means + ML-KNN 6 103 0.2040 ± 0.0111

EM +ML-KNN 6 103 0.2017 ± 0.0124
MDI + FCM +ML-KNN 6

20% 0.1977 ± 0.0124
30% 0.1971 ± 0.0113
40% 0.1968 ± 0.0113𝑘-means + ML-KNN 7 103 0.2020 ± 0.0087

EM +ML-KNN 7 103 0.2025 ± 0.0114
MDI + FCM +ML-KNN 7

20% 0.2107 ± 0.0106
30% 0.2030 ± 0.0106
40% 0.2035 ± 0.0112

in the selected feature subset as an experimental feature
subset. The Hamming loss and micro 𝐹1-measure results of
the MLC model with the yeast dataset are shown in Tables
6 and 7. As shown in Figures 4 and 5, the Hamming loss
and micro 𝐹1-measure demonstrate the best results when𝑘 = 3 with 40% of the features selected from the original
data attributes. In addition, it was found that the evaluation
criterion value of MLC was reduced with an increasing
number of clusters.

Tables 8 and 9 show that the OCBMLC model achieved
the top predictive performance (Hamming loss = 0.0879 ±0.0048; micro 𝐹1 = 0.7281 ± 0.0206) with the scene dataset.
Figures 6 and 7 show that the Hamming loss and micro 𝐹1-
measure values outperformed the “EM and ML-KNN” and
“𝑘-means and ML-KNN” models when 𝑘 = 2 and 30% of the
features of the original data attributes were selected for the

Table 7: Micro 𝐹1-measure for all models on yeast dataset. 𝑛 is the
number of attributes, and 𝑘 is the amount of clusters.

Classification model 𝑘 𝑛 Yeast𝑘-means + ML-KNN 2 103 0.6385 ± 0.0243
EM +ML-KNN 2 103 0.6398 ± 0.0213
MDI + FCM +ML-KNN 2

20% 0.6390 ± 0.0287
30% 0.6451 ± 0.0230
40% 0.6481 ± 0.0240𝑘-means + ML-KNN 3 103 0.6332 ± 0.0246

EM +ML-KNN 3 103 0.6405 ± 0.0236
MDI + FCM +ML-KNN 3

20% 0.6372 ± 0.0335
30% 0.6461 ± 0.0239
40% 0.6486 ± 0.0250𝑘-means + ML-KNN 4 103 0.6314 ± 0.0251

EM +ML-KNN 4 103 0.6347 ± 0.0251
MDI + FCM +ML-KNN 4

20% 0.6378 ± 0.0277
30% 0.6409 ± 0.0265
40% 0.6348 ± 0.0261𝑘-means + ML-KNN 5 103 0.636 ± 0.0264

EM +ML-KNN 5 103 0.6309 ± 0.0225
MDI + FCM +ML-KNN 5

20% 0.6315 ± 0.0272
30% 0.6312 ± 0.0244
40% 0.6359 ± 0.0247𝑘-means + ML-KNN 6 103 0.6222 ± 0.0230

EM +ML-KNN 6 103 0.6280 ± 0.0239
MDI + FCM +ML-KNN 6

20% 0.6327 ± 0.0257
30% 0.6384 ± 0.0248
40% 0.6393 ± 0.0238𝑘-means + ML-KNN 7 103 0.6243 ± 0.0190

EM +ML-KNN 7 103 0.6258 ± 0.0227
MDI + FCM +ML-KNN 7

20% 0.6227 ± 0.0249
30% 0.6252 ± 0.0213
40% 0.6265 ± 0.0225

scene dataset.Thus, we conclude that the proposedOCBMLC
model outperforms the other classification models.

When we selected the top 30% or 40% of features
using the proposed feature selection algorithm for MLC, the
proposed OCBMLC model achieved the best performance
because it can select features with max-dependence in con-
sideration of the classes and interaction among features and
each class. Thus, the proposed feature selection algorithm
can select features with the best discrimination power. The
experimental results prove that the proposed feature selection
algorithm directly improves classification performance, and
it is almost always better than models that use all total
features from the data. The experimental results also show
that the model based on overlapping clustering outperforms
models based on hard clustering. In a multilabel dataset,
one instance may belong to multiple labels; however, hard
clustering methods attempt to assign a single instance to a
single label. Therefore, such methods may not be suitable
for multilabel datasets. In contrast, overlapping clustering



10 Mathematical Problems in Engineering

Table 8: Hamming loss measure for all models on scene dataset. 𝑛
is the number of attributes, and 𝑘 is the amount of clusters.

Classification model 𝑘 𝑛 Scene𝑘-means + ML-KNN 2 294 0.0921 ± 0.0092
EM +ML-KNN 2 294 0.0913 ± 0.0017
MDI + FCM +ML-KNN 2

20% 0.0926 ± 0.0034
30% 0.0879 ± 0.0048
40% 0.0892 ± 0.0043𝑘-means + ML-KNN 3 294 0.0951 ± 0.0087

EM +ML-KNN 3 294 0.0957 ± 0.0008
MDI + FCM +ML-KNN 3

20% 0.0955 ± 0.0032
30% 0.0872 ± 0.0051
40% 0.0908 ± 0.0043𝑘-means + ML-KNN 4 294 0.0948 ± 0.0098

EM +ML-KNN 4 294 0.0990 ± 0.0014
MDI + FCM +ML-KNN 4

20% 0.0973 ± 0.0040
30% 0.0917 ± 0.0043
40% 0.0925 ± 0.0019𝑘-means + ML-KNN 5 294 0.0994 ± 0.0106

EM +ML-KNN 5 294 0.1028 ± 0.0032
MDI + FCM +ML-KNN 5

20% 0.0974 ± 0.0017
30% 0.0915 ± 0.0055
40% 0.0949 ± 0.0108𝑘-means + ML-KNN 6 294 0.1001 ± 0.0073

EM +ML-KNN 6 294 0.1056 ± 0.0028
MDI + FCM +ML-KNN 6

20% 0.0970 ± 0.0015
30% 0.0957 ± 0.0060
40% 0.0956 ± 0.0116𝑘-means + ML-KNN 7 294 0.0987 ± 0.0068

EM +ML-KNN 7 294 0.1050 ± 0.0033
MDI + FCM +ML-KNN 7

20% 0.0989 ± 0.0014
30% 0.0965 ± 0.0026
40% 0.0975 ± 0.0026

methods consider situations where single instances do in fact
belong to multiple classes.

6. Conclusion

This paper has proposed an overlapping clustering-based
MLC model that includes a feature selection phase for
original datasets. We have also proposed a new multilabel
feature selection algorithm that can effectively select sig-
nificant features to improve classification performance. The
proposed MLC framework includes an initial overlapping
clustering phase. The proposed model considers the fact
that multilabel data examples may not be related to a single
class but may belong to multiple classes in many cases.
Therefore, overlapping clustering may be more suitable for
such situations. Experimental results show that the proposed
model can increase predictive performance compared to a

Table 9: Micro 𝐹1-measure for all models on scene dataset. 𝑛 is the
number of attributes, and 𝑘 is the amount of clusters.

Classification model 𝑘 𝑛 Scene𝑘-means + ML-KNN 2 294 0.7146 ± 0.0280
EM +ML-KNN 2 294 0.7107 ± 0.0075
MDI + FCM +ML-KNN 2

20% 0.7161 ± 0.0190
30% 0.7281 ± 0.0206
40% 0.7257 ± 0.0145𝑘-means + ML-KNN 3 294 0.7060 ± 0.0269

EM +ML-KNN 3 294 0.7011 ± 0.0094
MDI + FCM +ML-KNN 3

20% 0.7115 ± 0.0149
30% 0.7235 ± 0.0227
40% 0.7231 ± 0.0162𝑘-means + ML-KNN 4 294 0.7051 ± 0.0278

EM +ML-KNN 4 294 0.6864 ± 0.0023
MDI + FCM +ML-KNN 4

20% 0.7061 ± 0.0158
30% 0.7188 ± 0.0211
40% 0.7187 ± 0.0195𝑘-means + ML-KNN 5 294 0.6916 ± 0.0330

EM +ML-KNN 5 294 0.6724 ± 0.0096
MDI + FCM +ML-KNN 5

20% 0.7108 ± 0.0103
30% 0.7010 ± 0.0305
40% 0.7001 ± 0.0332𝑘-means + ML-KNN 6 294 0.6900 ± 0.0187

EM +ML-KNN 6 294 0.6606 ± 0.0080
MDI + FCM +ML-KNN 6

20% 0.6998 ± 0.0024
30% 0.6993 ± 0.0322
40% 0.6961 ± 0.0413𝑘-means + ML-KNN 7 294 0.6938 ± 0.0211

EM +ML-KNN 7 294 0.6637 ± 0.0143
MDI + FCM +ML-KNN 7

20% 0.6870 ± 0.0095
30% 0.6958 ± 0.0147
40% 0.6918 ± 0.0147

nonoverlapping clustering framework. In addition, the results
demonstrate that feature selection plays an important role
in classification. In future, we plan to further explore and
develop a better and more robust feature selection method
or overlapping clustering algorithm for MLC tasks.
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Figure 6: Hamming loss for all models and the number of clusters
in scene.
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Figure 7: Micro 𝐹1 measure for all models and the number of
clusters in scene.
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