22 research outputs found

    A universal space-time architecture for multiple-antenna aided systems

    No full text
    In this tutorial, we first review the family of conventional multiple-antenna techniques, and then we provide a general overview of the recent concept of the powerful Multiple-Input Multiple-Output (MIMO) family based on a universal Space-Time Shift Keying (STSK) philosophy. When appropriately configured, the proposed STSK scheme has the potential of outperforming conventional MIMO arrangements

    Performance Evaluation of DS-CDMA Receivers Using Genetic Algorithm

    Get PDF
    Direct sequence-code division multiple access (DS-CDMA) technique is used in cellular systems where users in the cell are separated from each other with their unique spreading codes. In recent times DS-CDMA has been used extensively. These systems suffers from multiple access interference (MAI) due to other users transmitting in the cell, channel inter symbol interference (ISI) due to multipath nature of channels in presence of additive white Gaussian noise(AWGN). Spreading codes play an important role in multiple access capacity of DS-CDMA system. M-sequences, gold sequences etc., has been traditionally used as spreading codes in DS-CDMA. These sequences are generated by shift registers and periodic in nature. So these sequences are less in number and also limits the security. This thesis presents an investigation on use of new type of DS CDMA receiver called Genetic Algorithm based DS-CDMA receiver. Genetic Algorithm is robust optimization technique and does not fall into local minima hence this gives better weight optimization of any system. This Thesis investigates the performance of GA based DS-CDMA communication using gold code sequences. Extensive simulation studies demonstrate the performance of the different linear and nonlinear DS-CDMA receivers like RAKE receiver, matched filter (MF) receiver, minimum mean square error (MMSE) receiver using gold sequences and the performance have been compared with GA based receiver

    Hybrid Dy-NFIS & RLS equalization for ZCC code in optical-CDMA over multi-mode optical fiber

    Get PDF
    For long haul coherent optical fiber communication systems, it is significant to precisely monitor the quality of transmission links and optical signals. The channel capacity beyond Shannon limit of Single-mode optical fiber (SMOF) is achieved with the help of Multi-mode optical fiber (MMOF), where the signal is multiplexed in different spatial modes. To increase single-mode transmission capacity and to avoid a foreseen “capacity crunch”, researchers have been motivated to employ MMOF as an alternative. Furthermore, different multiplexing techniques could be applied in MMOF to improve the communication system. One of these techniques is the Optical Code Division Multiple Access (Optical-CDMA), which simplifies and decentralizes network controls to improve spectral efficiency and information security increasing flexibility in bandwidth granularity. This technique also allows synchronous and simultaneous transmission medium to be shared by many users. However, during the propagation of the data over the MMOF based on Optical-CDMA, an inevitable encountered issue is pulse dispersion, nonlinearity and MAI due to mode coupling. Moreover, pulse dispersion, nonlinearity and MAI are significant aspects for the evaluation of the performance of high-speed MMOF communication systems based on Optical-CDMA. This work suggests a hybrid algorithm based on nonlinear algorithm (Dynamic evolving neural fuzzy inference (Dy-NFIS)) and linear algorithm (Recursive least squares (RLS)) equalization for ZCC code in Optical-CDMA over MMOF. Root mean squared error (RMSE), mean squared error (MSE) and Structural Similarity index (SSIM) are used to measure performance results

    On Development of Some Soft Computing Based Multiuser Detection Techniques for SDMA–OFDM Wireless Communication System

    Get PDF
    Space Division Multiple Access(SDMA) based technique as a subclass of Multiple Input Multiple Output (MIMO) systems achieves high spectral efficiency through bandwidth reuse by multiple users. On the other hand, Orthogonal Frequency Division Multiplexing (OFDM) mitigates the impairments of the propagation channel. The combination of SDMA and OFDM has emerged as a most competitive technology for future wireless communication system. In the SDMA uplink, multiple users communicate simultaneously with a multiple antenna Base Station (BS) sharing the same frequency band by exploring their unique user specific-special spatial signature. Different Multiuser Detection (MUD) schemes have been proposed at the BS receiver to identify users correctly by mitigating the multiuser interference. However, most of the classical MUDs fail to separate the users signals in the over load scenario, where the number of users exceed the number of receiving antennas. On the other hand, due to exhaustive search mechanism, the optimal Maximum Likelihood (ML) detector is limited by high computational complexity, which increases exponentially with increasing number of simultaneous users. Hence, cost function minimization based Minimum Error Rate (MER) detectors are preferred, which basically minimize the probability of error by iteratively updating receiver’s weights using adaptive algorithms such as Steepest Descent (SD), Conjugate Gradient (CG) etc. The first part of research proposes Optimization Techniques (OTs) aided MER detectors to overcome the shortfalls of the CG based MER detectors. Popular metaheuristic search algorithms like Adaptive Genetic Algorithm (AGA), Adaptive Differential Evolution Algorithm (ADEA) and Invasive Weed Optimization (IWO), which rely on an intelligent search of a large but finite solution space using statistical methods, have been applied for finding the optimal weight vectors for MER MUD. Further, it is observed in an overload SDMA–OFDM system that the channel output phasor constellation often becomes linearly non-separable. With increasing the number of users, the receiver weight optimization task turns out to be more difficult due to the exponentially increased number of dimensions of the weight matrix. As a result, MUD becomes a challenging multidimensional optimization problem. Therefore, signal classification requires a nonlinear solution. Considering this, the second part of research work suggests Artificial Neural Network (ANN) based MUDs on thestandard Multilayer Perceptron (MLP) and Radial Basis Function (RBF) frameworks fo

    Joint quantum-assisted channel estimation and data detection

    No full text
    Joint Channel Estimation (CE) and Multi-User Detection (MUD) has become a crucial part of iterative receivers. In this paper we propose a Quantum-assisted Repeated Weighted Boosting Search (QRWBS) algorithm for CE and we employ it in the uplink of MIMO-OFDM systems, in conjunction with the Maximum A posteriori Probability (MAP) MUD and a near-optimal Quantum-assisted MUD (QMUD). The performance of the QRWBS-aided CE is evaluated in rank-deficient systems, where the number of receive Antenna Elements (AE) at the Base Station (BS) is lower than the number of supported users. The effect of the Channel Impulse Response (CIR) prediction filters, of the Power Delay Profile (PDP) of the channels and of the Doppler frequency have on the attainable system performance is also quantified. The proposed QRWBS-aided CE is shown to outperform the RWBS-aided CE, despite requiring a lower complexity, in systems where iterations are invoked between the MUD, the CE and the channel decoders at the receiver. In a system, where U=7 users are supported with the aid of P=4 receive AEs, the joint QRWBS-aided CE and QMUD achieves a 2 dB gain, when compared to the joint RWBS-aided CE and MAP MUD, despite imposing 43% lower complexity

    Application of genetic algorithm to wireless communications

    Get PDF
    Wireless communication is one of the most active areas of technology development of our time. Like all engineering endeavours, the subject of the wireless communication also brings with it a whole host of complex design issues, concerning network design, signal detection, interference cancellation, and resource allocation, to name a few. Many of these problems have little knowledge of the solution space or have very large search space, which are known as non-deterministic polynomial (NP) -hard or - complete and therefore intractable to solution using analytical approaches. Consequently, varied heuristic methods attempts have been made to solve them ranging from simple deterministic algorithms to complicated random-search methods. Genetic alcyorithm (GA) is an adaptive heuristic search algorithm premised on the evolutionary ideas of evolution and natural selection, which has been successfully applied to a variety of complicated problems arising from physics, engineering, biology, economy or sociology. Due to its outstanding search strength and high designable components, GA has attracted great interests even in the wireless domain. This dissertation is devoted to the application of GA to solve various difficult problems spotlighted from the wireless systems. These problems have been mathematically formulated in the constrained optimisation context, and the main work has been focused on developing the problem-specific GA approaches, which incorporate many modifications to the traditional GA in order to obtain enhanced performance. Comparative results lead to the conclusion that the proposed GA approaches are generally able to obtain the optimal or near-optimal solutions to the considered optimisation problems provided that the appropriate representation, suitable fitness function, and problem-specific operators are utilised. As a whole, the present work is largely original and should be of great interest to the design of practical GA approaches to solve realistic problems in the wireless communications systems.EThOS - Electronic Theses Online ServiceBritish Council (ORS) : Newcastle UniversityGBUnited Kingdo

    Bacterial Foraging Based Channel Equalizers

    Get PDF
    A channel equalizer is one of the most important subsystems in any digital communication receiver. It is also the subsystem that consumes maximum computation time in the receiver. Traditionally maximum-likelihood sequence estimation (MLSE) was the most popular form of equalizer. Owing to non-stationary characteristics of the communication channel MLSE receivers perform poorly. Under these circumstances ‘Maximum A-posteriori Probability (MAP)’ receivers also called Bayesian receivers perform better. Natural selection tends to eliminate animals with poor “foraging strategies” and favor the propagation of genes of those animals that have successful foraging strategies since they are more likely to enjoy reproductive success. After many generations, poor foraging strategies are either eliminated or shaped into good ones (redesigned). Logically, such evolutionary principles have led scientists in the field of “foraging theory” to hypothesize that it is appropriate to model the activity of foraging as an optimization process. This thesis presents an investigation on design of bacterial foraging based channel equalizer for digital communication. Extensive simulation studies shows that the performance of the proposed receiver is close to optimal receiver for variety of channel conditions. The proposed receiver also provides near optimal performance when channel suffers from nonlinearities

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Feature Grouping-based Feature Selection

    Get PDF

    Resource allocation in non-orthogonal multiple access technologies for 5G networks and beyond.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.The increasing demand of mobile and device connectivity poses challenging requirements for 5G wireless communications, such as high energy- and spectral-efficiency and low latency. This necessitates a shift from orthogonal multiple access (OMA) to Non-Orthogonal Multiple Access (NOMA) techniques, namely, power-domain NOMA (PD-NOMA) and code-domain NOMA (CD-NOMA). The basic idea behind NOMA schemes is to co-multiplex different users on the same resource elements (time slot, OFDMA sub-carrier, or spreading code) via power domain (PD) or code domain (CD) at the transmitter while permitting controllable interference, and their successful multi-user detection (MUD) at the receiver albeit, increased computational complexity. In this work, an analysis on the performance of the existing NOMA schemes is carried out. Furthermore, we investigate the feasibility of a proposed uplink hybrid-NOMA scheme namely power domain sparse code multiple access (PD-SCMA) that integrates PD-NOMA and CD-NOMA based sparse code multiple access (SCMA) on heterogeneous networks (HetNets). Such hybrid schemes come with resource allocation (RA) challenges namely; codebook allocation, user pairing and power allocation. Therefore, hybrid RA schemes namely: Successive Codebook Ordering Assignment (SCOA) for codebook assignment (CA), opportunistic macro cell user equipment (MUE)- small cell user equipment (SUE) pairing (OMSP) for user pairing (UP), and a QoS-aware power allocation (QAPA) for power allocation (PA) are developed for an energy efficient (EE) system. The performance of the RA schemes is analyzed alongside an analytical RA optimization algorithm. Through numerical results, the proposed schemes show significant improvements in the EE of the small cells in comparison with the prevalent schemes. Additionally, there is significant sum rate performance improvement over the conventional SCMA and PD-NOMA. Secondly, we investigate the multiplexing capacity of the hybrid PD-SCMA scheme in HetNets. Particularly, we investigate and derive closed-form solutions for codebook capacity, MUE multiplexing and power capacity bounds. The system’s performance results into low outage when the system’s point of operation is within the multiplexing bounds. To alleviate the RA challenges of such a system at the transmitter, dual parameter ranking (DPR) and alternate search method (ASM) based RA schemes are proposed. The results show significant capacity gain with DPR-RA in comparison with conventional RA schemes. Lastly, we investigate the feasibility of integrating the hybrid PD-SCMA with multiple-input multipleoutput (MIMO) technique namely, M-PD-SCMA. The attention to M-PD-SCMA resides in the need of lower number of antennas while preserving the system capacity thanks to the overload in PDSCMA. To enhance spectral efficiency and error performance we propose spatial multiplexing at the transmitter and a low complex joint MUD scheme based on successive interference cancellation (SIC) and expectation propagation algorithm (EPA) at the receiver are proposed. Numerical results exhibit performance benchmark with PD-SCMA schemes and the proposed receiver achieves guaranteed bit error rate (BER) performance with a bounded increase in the number of transmit and receive antennas. Thus, the feasibility of an M-PD-SCMA system is validated
    corecore