3 research outputs found

    A storage and access architecture for efficient query processing in spatial database systems

    Get PDF
    Due to the high complexity of objects and queries and also due to extremely large data volumes, geographic database systems impose stringent requirements on their storage and access architecture with respect to efficient query processing. Performance improving concepts such as spatial storage and access structures, approximations, object decompositions and multi-phase query processing have been suggested and analyzed as single building blocks. In this paper, we describe a storage and access architecture which is composed from the above building blocks in a modular fashion. Additionally, we incorporate into our architecture a new ingredient, the scene organization, for efficiently supporting set-oriented access of large-area region queries. An experimental performance comparison demonstrates that the concept of scene organization leads to considerable performance improvements for large-area region queries by a factor of up to 150

    Query processing of spatial objects: Complexity versus Redundancy

    Get PDF
    The management of complex spatial objects in applications, such as geography and cartography, imposes stringent new requirements on spatial database systems, in particular on efficient query processing. As shown before, the performance of spatial query processing can be improved by decomposing complex spatial objects into simple components. Up to now, only decomposition techniques generating a linear number of very simple components, e.g. triangles or trapezoids, have been considered. In this paper, we will investigate the natural trade-off between the complexity of the components and the redundancy, i.e. the number of components, with respect to its effect on efficient query processing. In particular, we present two new decomposition methods generating a better balance between the complexity and the number of components than previously known techniques. We compare these new decomposition methods to the traditional undecomposed representation as well as to the well-known decomposition into convex polygons with respect to their performance in spatial query processing. This comparison points out that for a wide range of query selectivity the new decomposition techniques clearly outperform both the undecomposed representation and the convex decomposition method. More important than the absolute gain in performance by a factor of up to an order of magnitude is the robust performance of our new decomposition techniques over the whole range of query selectivity

    An Efficient Algorithm for Bulk-Loading xBR+ -trees

    Get PDF
    A major part of the interface to a database is made up of the queries that can be addressed to this database and answered (processed) in an efficient way, contributing to the quality of the developed software. Efficiently processed spatial queries constitute a fundamental part of the interface to spatial databases due to the wide area of applications that may address such queries, like geographical information systems (GIS), location-based services, computer visualization, automated mapping, facilities management, etc. Another important capability of the interface to a spatial database is to offer the creation of efficient index structures to speed up spatial query processing. The xBR + -tree is a balanced disk-resident quadtree-based index structure for point data, which is very efficient for processing such queries. Bulk-loading refers to the process of creating an index from scratch, when the dataset to be indexed is available beforehand, instead of creating the index gradually (and more slowly), when the dataset elements are inserted one-by-one. In this paper, we present an algorithm for bulk-loading xBR + -trees for big datasets residing on disk, using a limited amount of main memory. The resulting tree is not only built fast, but exhibits high performance in processing a broad range of spatial queries, where one or two datasets are involved. To justify these characteristics, using real and artificial datasets of various cardinalities, first, we present an experimental comparison of this algorithm vs. a previous version of the same algorithm and STR, a popular algorithm of bulk-loading R-trees, regarding tree creation time and the characteristics of the trees created, and second, we experimentally compare the query efficiency of bulk-loaded xBR + -trees vs. bulk-loaded R-trees, regarding I/O and execution time. Thus, this paper contributes to the implementation of spatial database interfaces and the efficient storage organization for big spatial data management
    corecore