88 research outputs found

    Scheduling under Linear Constraints

    Full text link
    We introduce a parallel machine scheduling problem in which the processing times of jobs are not given in advance but are determined by a system of linear constraints. The objective is to minimize the makespan, i.e., the maximum job completion time among all feasible choices. This novel problem is motivated by various real-world application scenarios. We discuss the computational complexity and algorithms for various settings of this problem. In particular, we show that if there is only one machine with an arbitrary number of linear constraints, or there is an arbitrary number of machines with no more than two linear constraints, or both the number of machines and the number of linear constraints are fixed constants, then the problem is polynomial-time solvable via solving a series of linear programming problems. If both the number of machines and the number of constraints are inputs of the problem instance, then the problem is NP-Hard. We further propose several approximation algorithms for the latter case.Comment: 21 page

    A PTAS for single machine scheduling with controllable processing times

    Get PDF
    We deal with a single machine scheduling problem in which each job has a release date, a delivery time and a controllable processing time. The fact that the jobs have a controllable processing time means that it is allowed to compress (a part of) the processing time of the job, in return for compression cost. The objective is to find a schedule that minimizes the total cost, that is, the latest delivery time of any job plus the total compression cost. In this note we discuss how the techniques of Hall and Shmoys [3] and Hall [1] can directly be applied to design a polynomial time approximation scheme for this problem

    Notes on Max Flow Time Minimization with Controllable Processing Times

    Get PDF
    In a scheduling problem with controllable processing times the job processing time can be compressed through incurring an additional cost. We consider the identical parallel machines max flow time minimization problem with controllable processing times. We address the preemptive and non-preemptive version of the problem. For the preemptive case, a linear programming formulation is presented which solves the problem optimally in polynomial time. For the non-preemptive problem it is shown that the First In First Out (FIFO) heuristic has a tight worst-case performance of 3−2/m, when jobs processing times and costs are set as in some optimal preemptive schedul

    Resource Management in Machine Scheduling Problems: A Survey

    Get PDF
    The paper is a survey devoted to job scheduling problems with resource allocation. We present the results available in the scientific literature for commonly used models of job processing times and job release dates, i.e., the models in which the job processing time or the job release date is given as a linear or convex function dependent on the amount of the additional resource allotted to the job. The scheduling models with resource dependent processing times or resource dependent release dates extend the classical scheduling models to reflect more precisely scheduling problems that appear in real life. Thus, in this paper we present the computational complexity results and solution algorithms that have been developed for this kind of problems

    A common framework and taxonomy for multicriteria scheduling problems with Interfering and competing Jobs: Multi-agent scheduling problems

    Get PDF
    Most classical scheduling research assumes that the objectives sought are common to all jobs to be scheduled. However, many real-life applications can be modeled by considering different sets of jobs, each one with its own objective(s), and an increasing number of papers addressing these problems has appeared over the last few years. Since so far the area lacks a uni ed view, the studied problems have received different names (such as interfering jobs, multi-agent scheduling, mixed-criteria, etc), some authors do not seem to be aware of important contributions in related problems, and solution procedures are often developed without taking into account existing ones. Therefore, the topic is in need of a common framework that allows for a systematic recollection of existing contributions, as well as a clear de nition of the main research avenues. In this paper we review multicriteria scheduling problems involving two or more sets of jobs and propose an uni ed framework providing a common de nition, name and notation for these problems. Moreover, we systematically review and classify the existing contributions in terms of the complexity of the problems and the proposed solution procedures, discuss the main advances, and point out future research lines in the topic

    Machine Scheduling with Resource Dependent Processing Times

    Get PDF
    We consider several parallel machine scheduling settings with the objective to minimize the schedule makespan. The most general of these settings is unrelated parallel machine scheduling. We assume that, in addition to its machine dependence, the processing time of any job is dependent on the usage of a scarce renewable resource. A given amount of that resource, e.g. workers, can be distributed over the jobs in process at any time, and the more of that resource is allocated to a job, the smaller is its processing time. This model generalizes classical machine scheduling problems, adding a time-resource tradeoff. It is also a natural variant of a generalized assignment problem studied previously by Shmoys and Tardos. On the basis of integer programming formulations for relaxations of the respective problems, we use LP rounding techniques to allocate resources to jobs, and to assign jobs to machines. Combined with Graham''s list scheduling, we thus prove the existence of constant factor approximation algorithms. Our performance guarantee is 6.83 for the most general case of unrelated parallel machine scheduling. We improve this bound for two special cases, namely to 5.83 whenever the jobs are assigned to machines beforehand, and to (5+e), e>0, whenever the processing times do not depend on the machine. Moreover, we discuss tightness of the relaxations, and derive inapproximability results.operations research and management science;

    Acta Cybernetica : Volume 15. Number 3.

    Get PDF
    corecore