
Mathematical Programming manuscript No.
(will be inserted by the editor)

Alexander Grigoriev ·Maxim Sviridenko ·Marc Uetz

Machine scheduling with resource dependent
processing times

Received: date / Revised version: date

Abstract We consider machine scheduling on unrelated parallel machines with the objective
to minimize the schedule makespan. We assume that, in addition to its machine dependence,
the processing time of any job is dependent on the usage of a discrete renewable resource, e.g.
workers. A given amount of that resource can be distributed over the jobs in process at any
time, and the more of that resource is allocated to a job, the smaller is its processing time.
This model generalizes the classical unrelated parallel machine scheduling problem by adding a
time-resource tradeoff. It is also a natural variant of a generalized assignment problem studied
previously by Shmoys and Tardos. On the basis of an integer linear programming formulation
for a relaxation of the problem, we use LP rounding techniques to allocate resources to jobs,
and to assign jobs to machines. Combined with Graham’s list scheduling, we show how to
derive a 4-approximation algorithm for the scheduling problem. We also show how to tune
our approach to yield a 3.75-approximation algorithm. This is achieved by applying the same
rounding technique to a slightly modified linear programming relaxation, and by using a more
sophisticated scheduling algorithm that is inspired by the harmonic algorithm for bin packing.
We finally derive inapproximability results for two special cases, and discuss tightness of the
integer linear programming relaxations.

1. Introduction

Unrelated parallel machine scheduling to minimize the makespan, R| |Cmax in
the three-field notation of Graham et al. [7], is one of the classical problems in
combinatorial optimization. Given are n jobs that have to be scheduled on m
parallel machines, and the processing time of job j if processed on machine i
is pij . The goal is to minimize the latest job completion, the makespan Cmax. If
the number of machines m is part of the input, the best approximation algorithm
to date is a 2-approximation by Lenstra, Shmoys and Tardos [20]. Moreover, the
problem cannot be approximated within a factor smaller than 3/2, unless P=NP
[20]. When the processing times pij are identical on all machines i, the problem
is called identical parallel machine scheduling, or P | |Cmax. It is strongly NP-
hard [4] and admits a polynomial time approximation scheme [12].

Shmoys and Tardos [23] consider the unrelated parallel machine scheduling
problem with the additional feature of costs λij if job j is processed on machine i.
They show that, if a schedule with total cost Λ and makespan T exists, a schedule
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with total cost Λ and makespan at most 2T can be found in polynomial time.
The proof relies on rounding the solution of an LP relaxation. They obtain the
same result even for a more general version of the problem, namely when the
processing time pij of any job-machine pair is not fixed, but may be reduced
linearly, in turn for a linear increase of the associated cost λij [23]. Note that,
in both versions of the problem studied in [23], the costs λij are nonrenewable
resources, such as a monetary budget, with a global budget Λ.

In this paper, we consider another generalization of the unrelated parallel
machine scheduling problem R| |Cmax; and at the same time a variant of the
problem considered by Shmoys and Tardos [23]. Namely, we assume that the
processing time of the jobs can be reduced by utilizing a discrete renewable
resource, such as additional workers that can be allocated to the jobs. More
precisely, a maximum number of k units of a resource is available at any time.
It may be used to speed up the jobs, and the available amount of k units of
that resource must not be exceeded at any time. In contrast to the linearity
assumption on the costs and processing times in [23], the only assumption we
make in this paper is that the processing times pijs, which now depend also
on the number s of allocated resources, are non-increasing in s for each job-
machine pair. That is, we assume that pij0 ≥ pij1 ≥ · · · ≥ pijk for all jobs j
and all machines i. Two other, more special machine scheduling settings will be
briefly addressed as well. One is the problem where the processing time of any
job is independent of the machine that processes the job, the identical parallel
machine scheduling problem P | |Cmax. The other is the problem where the jobs
are assigned to machines beforehand, sometimes also called dedicated parallel
machine scheduling [16,17].

As a matter of fact, machine scheduling problems with the additional feature
of a nonrenewable resource constraint, such as a total budget, have received
quite some attention in the literature as time-cost tradeoff problems. To give a
few references, see [2,14,18,23,24]. Surprisingly, time-resource tradeoff problems
with a renewable resource constraint, such as personnel, have received much
less attention, although they are not less appealing from a practical viewpoint.
To give an example, one may think of production planning where additional
(overtime) workers can be allocated to specific tasks within the production in
order to reduce the production cycle time. Some (restricted) versions of the
problem considered in this paper were addressed in [11,13,16,21,25].

2. History, related work and results

This paper is the synthesis of our two conference papers [9] and [10]. To the
best of our knowledge, the unrelated machine scheduling problem with the addi-
tional feature of processing times that depend on a renewable resource was first
considered in [9]. In that paper, we prove the existence of a 6.83-approximation
algorithm. Subsequently, Kumar, Marathe, Parthasarathy, and Srinivasan [19]
prove that there exists a randomized 4-approximation algorithm for that prob-
lem. Then main result of their paper is a randomized rounding procedure that
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is applicable to several relaxations for unrelated machine scheduling problems.
Inspired by their paper, in [10] we show how to obtain a deterministic 3.75-
approximation for the scheduling problem at hand. To that end, we use a de-
randomized version of the rounding procedure of Kumar et al. [19]. This pro-
cedure considerably improves upon the weaker rounding procedure proposed in
our earlier paper [9]. The improved rounding alone yields a deterministic 4-
approximation algorithm for the scheduling problem. The further improvement
to a 3.75-approximation algorithm is due to a modified linear programming re-
laxation in combination with a more sophisticated scheduling algorithm. In fact,
the scheduling algorithm resembles a restricted version of the harmonic algo-
rithm for bin packing. The present paper reflects this evolution of results by
first presenting the simpler 4-approximation algorithm, and then presenting the
slightly more sophisticated 3.75-approximation algorithm.

Related work. Let us next discuss further related work. In a manuscript by Grig-
oriev et al. [8], a restricted version of the problem at hand is addressed. They
consider the setting where jobs are assigned to machines beforehand, the dedi-
cated parallel machine setting. Furthermore, their model assumes a binary re-
source, that is, there is just one unit of a renewable resource that can be used
to speed up the jobs, and at any time at most one job can make use of it. Any
job has a reduced processing time if the resource is used. Finally, the number
of machines m in their paper is considered fixed, and not part of the input.
For that problem, they derive a (3 + ε)–approximation algorithm, and for the
problem with m = 2 machines, they derive (weak) NP-hardness and a fully poly-
nomial time approximation scheme [8]. Grigoriev and Uetz [11] have generalized
the approximation result of [8]. The model of [11] is a dedicated machine set-
ting as well, and assumes a linear time-resource tradeoff: There are k units of
a renewable resource available, and the processing time pj of any job becomes
pjs = pj − bj · s if s of the k resources are used. Using a quadratic programming
relaxation, a (3+ ε)–approximation algorithm is derived in [11], for an arbitrary
number of machines m.

Jobs with resource dependent processing times also appear in the literature
as malleable or parallelizable tasks, e.g. in [21,25]. In these models, jobs can
be processed on one or more parallel processors, and they have non-increasing
processing times pjs in the number s of processors used. Any processor can only
handle one job at a time, and the goal is to minimize the schedule makespan.
Turek et al. [25] derive a 2–approximation algorithm for this problem. In fact,
the model considered in [25] is just a special case of the problem considered in
this paper. Interpreting the parallel processors as a generic ‘resource’ that may
be allocated to jobs, the problem of [25] corresponds to the problem considered
in this paper, when letting n jobs with resource dependent processing times be
processed in parallel, but each on its own machine. In particular, the number
of machines m then equals the number of jobs n. Mounie et al. [21] consider
yet another variant where the processor allocations must be contiguous (for that
problem, [25] includes a 2.7–approximation). Moreover, in [21] it is not only
assumed that the processing times pjs are non-increasing in s, but also the
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total work s · pjs are assumed to be non-decreasing in s. For that problem, a
(
√

3 + ε)–approximation is derived in [21]. An unpublished journal version of
that paper [22] claims an improved performance bound of (3/2 + ε). Finally, an
asymptotic fully polynomial approximation scheme for malleable task scheduling
was proposed by Jansen [13].

When we restrict even further, and assume that the decision on the allocation
of resources to jobs is fixed beforehand, we are back at (machine) scheduling
under resource constraints as introduced by Blazewicz et al. [1]. More recently,
such problems with dedicated machines have been discussed by Kellerer and
Strusevich [16,17]. We refer to these papers for various complexity results, and
note that NP-hardness of the problem with dedicated machines and a binary
resource was established in [16]. More precisely, they show weak NP-hardness
for the case where the number of machines is fixed, and strong NP-hardness for
an arbitrary number of machines [16].

Results and methodology. Our approach is based upon an integer linear pro-
gramming formulation that defines a relaxation of the problem. It takes as input
all possible processing times pijs of jobs. The main idea behind this relaxation
is the utilization of an aggregate version of the resource constraints, yielding a
formulation that does not require time-indexed variables. The problem and the
corresponding relaxations are formally introduced in Section 3.

Section 4 then discusses the LP rounding procedure. We show how to round
a fractional solution to an integer solution without loosing too much in terms
of violation of the constraints. This rounding procedure can be seen as a deran-
domized version of the randomized rounding proposed by Kumar et al. [19], and
it considerably improves upon the rounding used in the conference version of
this paper [9]. In fact, the new rounding procedure can be viewed as an exten-
sion of the Shmoys and Tardos rounding theorem for the generalized assignment
problem [23]. In this extension we consider the generalized assignment problem
on a bipartite multigraph instead of a simple bipartite graph. Note that the
techniques from [23] do not seem to be extendible to the case of a multigraph.

In Section 5, we show how to obtain a reasonably simple 4-approximation
algorithm for the scheduling problem. From the rounded solution of the LP
relaxation, we extract both the machine assignments and the resource allocations
for the jobs. We then use Graham’s greedy list scheduling [5] to generate a
feasible schedule. Using the LP lower bound, we prove that this schedule is not
more than a factor 4 away from the optimum. Note that this performance bound
matches the one of the randomized algorithm by Kumar et al. [19].

Next, in Section 6 we show how to tune our approach in order to yield a
3.75–approximation algorithm. We achieve this –at the cost of loosing a bit of
simplicity– by applying the rounding techniques from Section 4 to a slightly more
sophisticated integer programming relaxation, and by modifying the scheduling
algorithm appropriately. In fact, the scheduling algorithm can be interpreted as
a restricted version of the harmonic algorithm for bin packing.

Section 7 addresses lower bounds. Concerning lower bounds on the approx-
imability, note that the unrelated parallel machine problem with resource de-
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pendent processing times is a generalization of the classical unrelated machine
scheduling problem R| |Cmax. Therefore an approximation algorithm with perfor-
mance guarantee smaller than 3/2 cannot exist, unless P=NP [20]. In Section 7,
we furthermore show that the same inapproximability threshold of 3/2 holds
for both, the identical and the dedicated parallel machine settings with resource
dependent processing times. Concerning tightness of our analysis, we finally pro-
vide an instance showing that, for any ε > 0, the integer linear programming
relaxations that we use can be a factor (2− ε), respectively (1.75− ε) away from
the optimum solution. Hence, our LP-based analysis cannot yield anything bet-
ter than that. This lower bound holds for all three problem settings, unrelated,
parallel, and dedicated machine scheduling.

We end with some concluding remarks and open problems in Section 8.

3. Problem definition and LP relaxation

Let V = {1, . . . , n} be a set of jobs. Jobs must be processed non-preemptively on
a set M = {1, . . . ,m} of unrelated (or identical, or dedicated) parallel machines.
The objective is to find a schedule that minimizes the makespan Cmax, that is, the
time of the last job completion. During its processing, a job j may be assigned
an amount s ∈ {0, 1, . . . , k} of an additional resource, for instance additional
workers, that may speed up its processing. If s resources are allocated to a job j,
and the job is processed on machine i, the processing time of that job is pijs.
The only assumption on the processing times, regarding their dependence on the
amount of allocated resources, is monotonicity. That is, we assume that

pij0 ≥ pij1 ≥ · · · ≥ pijk

for every machine-job pair (i, j). Without loss of generality, we also assume that
all processing times pijs are integral. Hence, we can restrict to feasible schedules
where the jobs only start (and end) at integral points in time.

The allocation of resources to jobs is restricted as follows. At any time, no
more than the available k units of the resource may be allocated to the set of
jobs in process. Moreover, since we assume a discrete resource, the amount of
resources assigned to any job must be integral, and we require it to be the same
along its processing. In other words, if s ≤ k units of the resource are allocated
to some job j, tj and t′j denote j’s starting and completion time, respectively,
only k − s of the resources are available for other jobs between tj and t′j .

We finally introduce an additional piece of notation. Since we do not assume
that the functions pijs are strictly decreasing in s, the only information that
is effectively required is the breakpoints of pijs, that is, indices s where pijs <
pij,s−1. Hence, define the ‘relevant’ indices for job j on machine i as

Sij = {0} ∪ {s | s ≤ k, pijs < pij,s−1} ⊆ {0, . . . , k} .

Considering this index sets obviously suffices, since in any solution, if s units of
the resource are allocated to some job j, we may as well only use s′ units, where
s′ ≤ s and s′ ∈ Sij , without violating feasibility.
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Integer programming relaxation. Let xijs denote binary variables, indicating
that an amount of s resources is used for processing job j on machine i. Then
consider the following integer linear program, referred to as (IP).∑

i∈M

∑
s∈Sij

xijs = 1 , ∀ j ∈ V , (1)

∑
j∈V

∑
s∈Sij

xijs pijs ≤ C , ∀ i ∈ M , (2)

∑
j∈V

∑
i∈M

∑
s∈Sij

xijs s pijs ≤ k C , (3)

xijs = 0 , if pijs > C, (4)
xijs ∈ {0, 1} , ∀ i, j, s. (5)

Here, C represents the schedule makespan. Equalities (1) make sure that every
job is assigned to one machine and uses a constant amount of resources during its
processing. Inequalities (2) express the fact that the total processing on each ma-
chine is a lower bound on the makespan. Inequality (3) represents the aggregated
resource constraint: In any feasible schedule, the left-hand side of (3) is the total
resource consumption of the schedule. Because no more than k resources may
be consumed at any time, the total resource consumption cannot exceed k C.
Observe that we only use a single, time-aggregated resource constraint. Clearly,
this constraint does not model the dynamics of a renewable resource. Yet it turns
out that constraint (3) suffices to yield reasonably good lower bounds. In fact,
we explicitly use this relaxed formulation of the resource constraints in order to
bypass the problem to model the dynamics of a renewable resource, e.g. by using
a more complicated time-indexed formulation. Finally, constraints (4) make sure
that we do not use machine-resource pairs such that the job processing time ex-
ceeds the schedule makespan. These constraints are obviously redundant for the
integer program (IP), but they will play a role later when rounding a fractional
solution for the linear relaxation of (IP). Summarizing the above observations,
we have:

Lemma 1. If there is a feasible schedule with makespan C for the unrelated
machine scheduling problem with resource dependent processing times, integer
linear program (1)–(5) has a feasible solution (C, x).

Because constraint (3) only limits the total resource consumption over the
whole scheduling horizon, this integer program may have a feasible solution for
some integer value of C even though a feasible schedule with makespan C does
not exist; see also Example 1 in Section 7.

Linear programming relaxation. The integer linear program (IP) with the 0/1-
constraints on x relaxed to

xijs ≥ 0 , j ∈ V , s ∈ Sij , i ∈ M
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also has a solution for value C if there is a feasible schedule for the original
scheduling problem with makespan C. We note that it can be solved in polyno-
mial time, because it has a polynomial number of variables and constraints. Since
we assume integrality of data, we are actually only interested in integral values C.
Moreover, an upper bound for C is given by

∑
j∈V mini∈M{pijk}. Therefore, by

using binary search on possible values for C, we can find in polynomial time
the smallest integral value C* such that the linear programming relaxation of
(1)–(5) has a feasible solution xLP. We therefore obtain the following.

Lemma 2. The smallest integral value value C* such that the linear program-
ming relaxation of (1)–(5) has a feasible solution is a lower bound on on the
makespan of any feasible schedule, and it can be computed in polynomial time.

Notice that, as long as we insist on constraints (4), we can not just solve a single
linear program minimizing C, since constraints (4) depend nonlinearly on C.
Moreover, due to the fact that we only search for integral values C, the binary
search on C does not entail any additional approximation error.

4. The rounding procedure

Given a feasible solution (C*, xLP) for the linear programming relaxation of (1)–
(5), the vector xLP may clearly be fractional. We aim at rounding this fractional
solution to an integer one without sacrificing too much in terms of violation of
the constraints (2) or (3). To this end, in the proceedings version of this paper
the following lemma is proved.

Lemma 3 (Grigoriev et al. [9]). Let C* be the lower bound on the makespan
of an optimal solution as defined in Lemma 2, then for any ε > 0 we can find a
feasible solution x∗ = (x∗ijs) for the following integer linear program in polyno-
mial time. ∑

i∈M

∑
s∈Sij

xijs = 1 , ∀ j ∈ V,

∑
j∈V

∑
s∈Sij

xijs pijs ≤
(

1 +
1

1− ε

)
C* , ∀ i ∈ M ,

∑
j∈V

∑
i∈M

∑
s∈Sij

xijs s pijs ≤
k

ε
C* ,

xijs ∈ {0, 1} , ∀ i, j, s .

The proof relies on a 2-phase rounding procedure. In the first rounding phase,
a fractional solution xLP is rounded to another fractional solution x̄, in such a
way that for every machine-job pair (i, j) there is exactly one index s (amount of
resource) such that x̄ijs is nonzero. This new fractional solution x̄ then defines a
solution for an LP relaxation for the generalized assignment problem discussed
by Shmoys and Tardos [23]. Therefore, one can utilize the rounding procedure
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proposed in [23] as a second rounding phase, and Lemma 3 can be derived. We
refer to [9] for a proof of Lemma 3, and note that it allows us to derive an
approximation algorithm with performance guarantee (4 + 2

√
2) ≈ 6.83 for the

unrelated parallel machine problem, and (3 + 2
√

2) ≈ 5.83 for the dedicated
parallel machine problem [9].

The result of Lemma 3 can be further improved by observing that in an
optimal LP-solution, there is at most one fractional assignment of each job to
any machine. This was observed by Kellerer [15]. However, we next derive an
even stronger result, which will be used to obtain an approximation algorithm
with performance guarantee 4 for the unrelated parallel machine setting. We
present a rounding procedure that is inspired by a recent paper by Kumar et
al. [19]. In fact, it can be seen as a deterministic version of the randomized
rounding algorithm of [19]. In the following lemma, we replace the total resource
consumptions of jobs, s pijs, by arbitrary (nonnegative) coefficients cijs.

Lemma 4. Let C* be the minimal integer for which the following linear program
has a feasible solution∑

i∈M

∑
s∈Sij

xijs = 1 , ∀ j ∈ V, (6)

∑
j∈V

∑
s∈Sij

xijs pijs ≤ C*, ∀ i ∈ M , (7)

∑
j∈V

∑
i∈M

∑
s∈Sij

xijscijs ≤ kC* , (8)

xijs = 0 , if pijs > C, (9)
xijs ≥ 0 , ∀ i, j, s , (10)

and let (C*, xLP) be the corresponding feasible solution, then we can find a fea-
sible solution x∗ = (x∗ijs) for the following integer linear program in polynomial
time. ∑

i∈M

∑
s∈Sij

xijs = 1 , ∀ j ∈ V, (11)

∑
j∈V

∑
s∈Sij

xijs pijs ≤ C* + pmax, ∀ i ∈ M , (12)

∑
j∈V

∑
i∈M

∑
s∈Sij

xijscijs ≤ kC* , (13)

xijs ∈ {0, 1} , ∀ i, j, s , (14)

where pmax = max{pijs | xLP
ijs > 0} and cijs ≥ 0 are arbitrary fixed coefficients.

One option to prove the lemma is to derandomize the corresponding randomized
rounding algorithm of [19], using the method of conditional probabilities. For
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reasons of self-containedness and accessibility, we nevertheless prefer to present
a direct proof here. Notice, however, that the basic elements of the proof are
indeed the same as in [19].

Proof. The rounding algorithm works in stages. Let x denote the current frac-
tional solution in a given stage. In the first stage, define x = xLP, and notice
that xLP fulfills (11)–(13). Subsequently, we alter the current solution x, while
maintaining validity of constraints (11) and (13).

In each stage, we consider a bipartite multigraph G(x) = (V ∪M,E), where
the set E of edges is defined as follows. For every pair i ∈ M and j ∈ V , E
contains a set of parallel edges, namely one for each fractional value 0 < xijs < 1,
s = 0, . . . , k. Therefore, we could have up to k + 1 parallel edges between every
machine-job pair (i, j). Notice that the degree of any non-isolated vertex v ∈ V
is at least 2, due to constraint (11). We furthermore eliminate isolated vertices
from graph G(x).

We will encode each edge e ∈ E by the triplet (i, j, s). For every vertex
w ∈ V ∪ M let dw denote its degree in G(x), and let Ew be the edges incident
to w. We define a variable εijs for every edge (i, j, s) ∈ E and a set of linear
equations: ∑

(i,j,s)∈Ej

εijs = 0, j ∈ V , (15)

∑
(i,j,s)∈Ei

pijsεijs = 0, i ∈ M and di ≥ 2 . (16)

Let c1 and c2 be the number of constraints in (15) and (16), respectively.
Let r ≤ min{c1 + c2, |E|} be the rank of that system. Now observe that c1 ≤
|V | ≤ |E|/2, because of constraint (11). Moreover, c2 ≤ |E|/2 by definition.
Thus we obtain that either r ≤ c1 +c2 ≤ |E|−1 or c1 = c2 = |E|/2. In the latter
case, constraints (11), the degree condition in (16), and the fact that there are
no isolated vertices, imply that there are exactly |E| vertices in G(x). Hence,
the degree of each vertex must equal 2 (and graph G(x) is a collection of even
cycles).

Consider the first case when r ≤ |E|−1. Since the system of linear equations
(15)–(16) is underdetermined, by Gaussian elimination we can find a general
solution of this system in the form εijs =

∑|E|−r
t=1 αtijsδt in polynomial time.

Here, δt, t = 1 . . . , |E| − r, are the real valued parameters representing the
degrees of freedom of the linear system, and αtijs 6= 0 are the corresponding
coefficients. Hence, by fixing δ2 = δ3 = · · · = δ|E|−r = 0, we obtain a solution
εijs = α1ijsδ1. For convenience of notation we just write εijs = αijsδ, and note
that δ is an arbitrary parameter.

Next, we can define a new fractional solution of the original linear program
by letting

x̄ijs =

{
xijs + αijsδ if xijs is fractional,
xijs otherwise.
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Due to constraints (15) and (16) we obtain that constraints (11) are satisfied for
all j ∈ V , and constraints (12) are satisfied for all i ∈ M except those vertices
(machines) i ∈ M that have |Ei| = 1. Finally, since

∑
j∈V

∑
i∈M

∑
s∈Sij

x̄ijscijs

is a linear function of δ we obtain that constraint (13) is satisfied either for
positive or for negative δ. Therefore, by choosing δ either maximal or minimal
such that 0 ≤ x̄ijs ≤ 1 and such that constraint (13) is still satisfied, we obtain
a new solution with one more integral variable satisfying constraints (11) and
(13).

Repeating the above procedure we either end up with an integral solution x,
fulfilling constraints (11) and (13), together with an empty graph G(x), or we
end up with some fractional solution x such that the degree of each vertex in
G(x) is at most 2 (even exactly 2). This means that at most two fractional jobs
are assigned to any machine, and each fractional job is assigned to at most two
machines. If that happens, we continue with with a rounding procedure that is
akin to the dependent rounding that was proposed by Gandhi et al. [3]. Let us
therefore call the following rounding stages late stages, and the previous ones
early stages.

In a late stage, the maximum vertex degree in G(x) is 2. Moreover, since
G(x) is bipartite, we can partition G(x) into two matchings M1 and M2. Thus
we can define a new fractional solution

x̄ijs =


xijs for xijs integral,
xijs + δ for (i, j, s) ∈ M1,

xijs − δ for (i, j, s) ∈ M2,

for some δ. Again, since
∑

j∈V

∑
i∈M

∑
s∈Sij

x̄ijscijs is a linear function of δ

we obtain that constraint (13) is satisfied either for positive or for negative δ.
Therefore, by choosing δ either maximal or minimal such that 0 ≤ x̄ijs ≤ 1 and
such that constraint (13) is still satisfied, we obtain a new solution with at least
one more integral variable, still satisfying constraint (13). Moreover, since the two
edges incident to any vertex v ∈ V must belong to different matchings M1 and
M2, the assignment constraint (11) remains valid, too. Notice that the resulting
graph G(x̄) still has vertex degrees at most 2, since only edges are dropped due to
the rounding. Hence, we can iterate the rounding until all variables are integral.

At the end of the rounding algorithm we obtain an integral solution that
obviously satisfies constraints (11). Since in every step we have chosen a solution
minimizing a linear function corresponding to constraint (13), we obtain that this
constraint is satisfied too.

To show that constraints (12) are satisfied for each i ∈ M , we have to show
that the left hand side of the original constraint (2) increases by at most pmax =
max{pijs | xLP

ijs > 0}. We consider the rounding stage when (2) is violated for
machine i ∈ M .

On the one hand, this might happen in an early stage when di = 1. In this
case, however, since there is exactly one fractional edge incident to i, we could
add at most pmax in any future rounding stages to the total load of machine i.
Hence, constraint (12) is fulfilled by machine i.
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On the other hand, the violation of the original constraint (2) might happen
in a late stage, where all vertices in G(x) have degree at most 2. When di = 1
we argue as before. So assume di = 2. Consider machine i together with its
two incident edges (i, j, s) and (i, j′, s′). Whenever xijs + xij′s′ ≥ 1 before the
rounding, we claim that the total load of machine i increases by at most pmax by
any possible further rounding. This because the total remaining increase in the
left hand side of (2) for machine i is at most (1−xijs)pijs+(1−xij′s′)pij′s′ ≤ pmax.
So assume that xijs + xij′s′ < 1. We claim that at most one of the jobs j and j′

will finally be assigned to machine i. To see why, consider the stage where one
of these variables was rounded to an integer. Recalling that edges (i, j, s) and
(i, j′, s′) must belong to different matchings M1 and M2, we may assume that
xijs is rounded up, and xij′s′ is rounded down. Clearly, xijs + xij′s′ < 1 holds
before that rounding stage. Assuming that xijs is rounded to 1, it must hold
that xij′s′ ≥ 1− xijs, because otherwise xij′s′ would become negative. In other
words, xijs + xij′s′ ≥ 1, a contradiction. Hence, the only way to round one of
the variables xijs or xij′s′ to an integer, is to round xij′s′ down to 0. Therefore
edge (i, j′s′) disappears, and indeed, at most job j can be assigned to machine i.
Clearly, the resulting increase in the left hand side of (2) for machine i is again
at most pmax. Hence, constraint (12) is fulfilled after the rounding. ut

5. An LP-based 4-approximation algorithm

Our approach to obtain a constant factor approximation for the scheduling prob-
lem is now the following. We first use the rounded integral solution from Lemma
4 in order to decide both, on the amount of resources allocated to every individ-
ual job j, and on the machine where this job must be executed. More precisely,
job j must be processed on machine i and use s additional resources iff x∗ijs = 1,
where x∗ is the feasible integral solution of (11)–(14) obtained after the round-
ing of Lemma 4. To that end, in Lemma 4 we let coefficients cijs be equal to
the total resource consumption of job j when assigned to machine i and using
s units of additional resources, cijs = s pijs. After the machine assignments and
resource allocations are fixed, the jobs are scheduled according to the greedy list
scheduling algorithm of Graham [5], in arbitrary order.

Algorithm LP-Greedy: Let the resource allocations and machine as-
signments be fixed as determined by the solution of the LP-based round-
ing procedure. The algorithm iterates over time epochs t, starting at t = 0.
We do the following until all jobs are scheduled.
– Check if some yet unscheduled job can be started at time t on an idle

machine without violating the resource constraint. If yes, schedule the
job to start at time t; ties are broken arbitrarily.

– If no job can be scheduled on any of the machines at time t, update t
to the next smallest job completion time t′ > t.

Theorem 1. Algorithm LP-Greedy is a 4–approximation algorithm for unre-
lated parallel machine scheduling with resource dependent processing times.
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The fact that the algorithm requires only polynomial time follows directly from
the fact that both, solving and rounding the LP relaxation, as well as the greedy
scheduling, can be implemented in polynomial time.

To verify the performance bound, we first need some additional notation.
Consider some schedule produced by algorithm LP-Greedy, and denote by
CLPG the corresponding makespan. Denote by COPT the makespan of an optimal
schedule. For the schedule of LP-Greedy let Cβ denote the earliest point in time
after which only big jobs are processed, big jobs being defined as jobs that have
a resource consumption larger than k/2. Denote by β = CLPG − Cβ the length
of the period in which only big jobs are processed (note that possibly β = 0).

Next, we fix a machine, say machine i, on which some job completes at
time Cβ which is not a big job. Due to the definition of Cβ such a machine must
exist, because otherwise all machines were idle right before Cβ , contradicting
the definition of the greedy algorithm. Between time 0 and Cβ , periods may
exist where machine i is idle. Denote by B the total length of busy periods
on machine i in interval [0, Cβ ], and by I the total length of idle periods on
machine i in interval [0, Cβ ]. We then have that

CLPG = B + I + β . (17)

Due to (12), we get that for machine i

B ≤
∑
j∈V

∑
s∈Sij

x∗ijs pijs ≤ C* + pmax ≤ 2 C* . (18)

Here, notice that the last inequality follows from constraint (4) in the relaxation,
since pmax ≤ C*.

The next step is an upper bound on I + β, the length of the idle periods on
machine i, and the final period where only big jobs are processed.

Lemma 5. We have that
I + β ≤ 2 C* .

Proof. First, observe that the total resource consumption of the schedule is at
least I k

2 + β k
2 . This because, on the one hand, all jobs after Cβ are big jobs

and they require at least k/2 resources by definition. On the other hand, during
idle periods on machine i between 0 and Cβ , at least k/2 of the resources must
be consumed by the schedule as well. Assuming the contrary, there was an idle
period on machine i with at least k/2 free resources. But after that idle period,
due to the selection of Cβ and machine i, some job is processed on machine i
which is not a big job. This job could have been processed earlier during the idle
period, contradicting the definition of the greedy algorithm. Next, recall that
k C* is an upper bound on the total resource consumption of the schedule, due
to (13). Hence, we obtain

k C* ≥ I
k

2
+ β

k

2
.

Dividing by k/2 yields the claimed bound on I + β. ut
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Now we are ready to prove the performance bound of Theorem 1.

Proof (of Theorem 1). Use (17) together with (18) and Lemma 5 to obtain

CLPG = B + I + β ≤ 2 C* + 2 C* ≤ 4 COPT ,

where the last inequality follows from Lemma 2. That completes the proof. ut

6. An LP-based 3.75-approximation algorithm

We next show how to tune the techniques presented in Section 5 to yield a 3.75–
approximation algorithm. To achieve this result, we apply the same rounding as
in Lemma 4 to another integer programming relaxation. Moreover, we modify
the greedy scheduling algorithm appropriately.

Let Bij ⊆ Sij be the set of breakpoints that lie in the interval (k/2, k], i.e.,
Bij = {s ∈ Sij | k/2 < s ≤ k }. If any two jobs are processed using s resources,
where s ∈ Bij , these two jobs cannot be processed in parallel. Then consider the
following integer linear program.∑

i∈M

∑
s∈Sij

xijs = 1 , ∀ j ∈ V , (19)

∑
j∈V

∑
s∈Sij

xijs pijs ≤ C , ∀ i ∈ M , (20)

∑
j∈V

∑
i∈M

1.5
∑

s∈Sij

xijs
s

k
pijs+ 0.25

∑
s∈Bij

xijspijs

 ≤ 1.75C , (21)

xijs = 0 , if pijs > C, (22)
xijs ∈ {0, 1} , ∀ i, j, s. (23)

Lemma 6. If there is a feasible schedule with makespan C for the unrelated
machine scheduling problem with resource dependent processing times, integer
linear program (19)–(23) has a feasible solution (C, x̃).

Proof. Fix some feasible schedule with makespan C and let x̃ be the solution
corresponding to that schedule, i.e. we have x̃ijs = 1 if job j is processed on
machine i and uses s additional resources and x̃ijs = 0 otherwise. To prove the
lemma we only have to verify validity of the new total resource constraint (21).
For any feasible schedule, two jobs with resource consumption larger then k/2
cannot be processed in parallel, so∑

j∈V

∑
i∈M

∑
s∈Bij

x̃ijspijs ≤ C. (24)

Combining (24) with valid inequality (3) we derive inequality (21). ut
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As before, by binary search on C while using Lemma 6 instead of Lemma 1,
we can find a lower bound C* on the makespan of an optimal solution for the
unrelated machine scheduling problem.

Lemma 7. Let C* be the lower bound on the makespan of an optimal solution,
and let (C*, xLP) be the corresponding feasible solution of the LP-relaxation of
(19)–(23), then we can find a feasible solution x∗ = (x∗ijs) for the following
integer linear program in polynomial time.∑

i∈M

∑
s∈Sij

xijs = 1 , ∀ j ∈ V, (25)

∑
j∈V

∑
s∈Sij

xijs pijs ≤ C* + pmax, ∀ i ∈ M , (26)

∑
j∈V

∑
i∈M

1.5
∑

s∈Sij

xijs
s

k
pijs+ 0.25

∑
s∈Bij

xijspijs

 ≤ 1.75C* , (27)

xijs ∈ {0, 1} , ∀ i, j, s , (28)

where pmax = max{pijs | xLP
ijs > 0}.

Proof. The proof follows from Lemma 4 with

cijs =

{(
1.5s
1.75k + 0.25

1.75

)
pijs for all s ∈ Bij ,

1.5s
1.75k pijs for all s ∈ Sij \Bij .

ut

Now, we are ready to present an algorithm with an improved approximation
guarantee. To that end, we first partition the set of jobs J into three groups
J1, J2, and J3 according to the amount of resources consumed. Define J1 =
{j | k/2 < s∗ ≤ k and xijs∗ = 1}, J2 = {j | k/3 < s∗ ≤ k/2 and xijs∗ = 1},
and J3 = {j | s∗ ≤ k/3 and xijs∗ = 1}.

Algorithm Improved-LP-Greedy: Let the resource allocations and
machine assignments be determined by the rounded LP solution as in
Lemma 7. The algorithm schedules jobs group by group. In the first phase
it schedules jobs from J1 one after another (they cannot be processed in
parallel since they consume too much resources). Let C1 be the completion
time of the last job from J1. In the second phase the algorithm schedules
jobs from J2 starting at time C1. The algorithm always tries to run two
jobs from J2 in parallel. Let C2 be the first time when the algorithm fails
to do so. This could happen either because J2 is empty or all remaining
jobs must be processed on the same machine, say M1. In the last case
the algorithm places all remaining jobs on M1 without idle time between
them. In the third phase the algorithm greedily schedules jobs from J3,
starting no earlier than time C2. So if some job from J3 can be started
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at the current time C2, we start processing this job. When no jobs can
start at the current time we increment the current time to the next job
completion time and repeat until all jobs are scheduled. Let C3 be the
completion time of the last job from the set J2 ∪ J3.

We now estimate the makespan CLPG of the schedule. Consider the machine i
with the job that finishes last in the schedule. Let B be the total time when
machine i is busy and I be the total time when machine i is idle in the interval
[0, CLPG], i.e., CLPG = B + I. By constraint (26) in Lemma 7, we have B ≤
C* + pmax ≤ 2C*, where the last inequality follows from (22).

To bound the total idle time on machine i we consider two cases. We first
consider the case where the job that finishes last belongs to J1 or J2. If the last
job is from J1, intervals [C1, C2] and [C2, C3] have length 0. If the last job is
from J2, there is no idle time on machine i in the interval [C2, C3]. Thus in both
cases, there is no idle time on machine i in the interval [C2, C3]. Let I1 be the
total idle time on machine i during [0, C1] and I2 be the total idle time during
[C1, C2]. Then I = I1 + I2 is the total idle time on machine i. Since we process
one job at a time from J1 during the time interval [0, C1] and two jobs at a time
from J2 during [C1, C2], the total resource consumption of the schedule during
idle times on machine i is at least

I1
k

2
+ I2

2k

3
.

Letting RI := I1/2 + 2I2/3, the total resource consumption of the schedule
during idle times on machine i is at least RIk, and we therefore get

I = I1 + I2 = 1.5 RI + 0.25 I1

≤
∑
j∈V

∑
i∈M

(
1.5

∑
s∈Sij

x∗ijs

s

k
pijs + 0.25

∑
s∈Bij

x∗ijspijs

)

≤ 1.75C* . (29)

Here, the first inequality holds since
∑

j∈V

∑
i∈M

∑
s∈Sij

x∗ijs
s
kpijs equals the

total resource consumption of the schedule divided by k, and since I1 ≤ C1 =∑
j∈V

∑
i∈M

∑
s∈Bij

x∗ijspijs. The second inequality follows from (27).
Similarly, if the last job in the schedule belongs to J3, let I1 be the total

idle time on machine i during [0, C1], I2 be the total idle time on machine i
during [C1, C2] and I3 be the total idle time on machine i during [C2, C3]. Then
I = I1 + I2 + I3 is the total idle time on machine i. Again, we process one job at
a time from J1 during the time interval [0, C1], and two jobs at a time from J2

during [C1, C2]. Moreover, due to the resource constraint the last job –which is
from J3– could not be scheduled at idle times on machine i during [C2, C3], so
the total resource consumption of the schedule during idle times on machine i in
[C2, C3] is at least 2/3 k. Hence, the total resource consumption of the schedule
during idle times on machine i is at least

I1
k

2
+ (I2 + I3)

2k

3
.
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Again, letting RI := I1/2 + 2(I2 + I3)/3, the total resource consumption of the
schedule during idle times on machine i is at least RIk, and we get

I = I1 + (I2 + I3) = 1.5 RI + 0.25 I1 .

Exactly as before in (29) we conclude that I ≤ 1.75C*. Therefore, in either of
the two cases we have CLPG = B + I ≤ 2 C* + 1.75 C* = 3.75 C*, and we have
proved the following theorem.

Theorem 2. Algorithm Improved-LP-Greedy is a 3.75–approximation algo-
rithm for unrelated parallel machine scheduling with resource dependent process-
ing times.

7. Lower bounds and special cases

In identical parallel machine scheduling, the processing time of a job does not
depend on the machine it is processed on. It is obviously a special case of the
unrelated parallel machine model considered in Section 5. Moreover, in dedicated
machine scheduling [16,17], the jobs are assigned to machines beforehand. By
letting all but one machine assignment result in very large processing times,
this is a special case of the unrelated parallel machine model as well. Therefore,
Theorems 1 and 2 yield the same results for these two special cases.

Corollary 1. Algorithm LP-Greedy is a 4-approximation algorithm, and Al-
gorithm Improved-LP-Greedy is a 3.75-approximation algorithm for identi-
cal or dedicated parallel machine scheduling with resource dependent processing
times.

Lower bounds on approximation. The problem with unrelated machines does
not allow for an approximation algorithm with performance guarantee smaller
than 3/2 (unless P=NP), as it generalizes the classical unrelated machine schedul-
ing problem [20]. We next show that the same inapproximability threshold exists
for the problems with identical or dedicated parallel machines.

Theorem 3. There is no polynomial time approximation algorithm for identical
or dedicated parallel machine scheduling with resource dependent processing times
that has a performance guarantee smaller than 3/2, unless P=NP.

Proof. The proof relies on a gap-reduction from Partition [4]: Given n in-
tegers aj , with

∑n
j=1 aj = 2k, it is NP-complete to decide if there exists a

subset W ⊆ {1, . . . , n} with
∑

j∈W aj = k. Let us define an instance of the
machine scheduling problem (either dedicated or identical machines) as follows.
Each aj gives rise to one job j with an individual machine. Hence, we have n
jobs and m = n machines (and in fact it does not matter for what follows if the
machines are identical or dedicated). There are k units available of the additional
resource. Any job j has a processing time defined by

pjs =

{
3 if s < aj

1 if s ≥ aj .
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Hence, the aj ’s are the only breakpoints in the functions pjs, and the functions
pjs can be encoded in O( log aj ), for all jobs j. Therefore the transformation is
indeed polynomial. We claim that there exists a feasible schedule with makespan
Cmax < 3 if and only if there exists a solution for the Partition problem.
Otherwise, the makespan is at least 3. To this end, observe that in any solution
with makespan Cmax < 3, we may assume that each job j consumes exactly aj

units of the resource: If it was less than aj for some jobs j, the makespan would
be at least 3; if it was more than aj for some job j, letting the resource allocation
equal aj does not violate feasibility, while maintaining the same processing time.
Now, if and only if there is a solution, say W , for the Partition problem, there
exists a resource feasible schedule with makespan 2, namely where jobs j ∈ W
start at time 0, and all jobs j 6∈ W start at time 1. ut

Finally, it is not difficult to see that the above proof yields the same inapprox-
imability result for the problems with identical or dedicated parallel machines,
even if the resource consumption of any job j is fixed beforehand to aj (with a
processing time of 1).

Corollary 2. There is no polynomial time approximation algorithm for identical
or dedicated parallel machine scheduling with an additional (renewable) resource
constraint that has a performance guarantee smaller than 3/2, unless P=NP.

In contrast to this corollary, note that for dedicated machines, there exists a
polynomial time algorithm if the number of machines is 2 [17], and a PTAS if
the number of machines m is fixed and the resource is binary (i.e., k = 1) [16].

Lower bound for the (integer) linear program. We next give an instance to show
that the integer linear programs that we use can be a factor (2− ε), respectively
(1.75− ε) away from the optimal solution. Hence, our LP-based analysis cannot
yield anything better than that. This even holds for all three versions of the
problem, the unrelated, identical, and dedicated machine setting.

Example 1 Consider a problem with m = 2 machines and k units of the addi-
tional resource, where k is odd. There are n = 2 jobs, with resource-dependent
processing times

pijs =

{
2k + 1 if s < k

2

k if s > k
2

for both machines i and both jobs j. ut

Consider the integer solution x for the integer linear program (1)–(5), where
x11s = x22s = 1 for s = dk/2e, and xijs = 0 otherwise. Clearly, constraints
(1) and (5) are satisfied. Moreover, the machine inequalities (2) yield k ≤ C,
and inequality (3) yields k(k + 1) = 2kdk/2e ≤ kC. Thus define C = (k + 1),
and these two constraints are satisfied as well. With C = (k + 1), constraint (4)
is fulfilled too. Hence, with C = k + 1 there exists a feasible solution for the
integer linear program (1)–(5). A fortiori, we know that for the corresponding
linear programming relaxation, C* ≤ k + 1. But in the optimal solution of the
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scheduling problem, COPT = 2k by letting the two jobs be processed sequentially,
each with s > k/2 units of the resource. Hence, the ratio between COPT and C*

can be as large as (2−ε), for any ε > 0. With the same reasoning (and the same
instance) one can verify that the ratio between COPT and C* can be as large as
(1.75− ε) for the stronger integer linear programming relaxation (19)–(23).

Observation 1 There are instances where the lower bound provided by the inte-
ger linear programming relaxation (1)–(5) has a feasible solution that is a factor
(2−ε) away from the optimum, for any ε > 0. The same holds for integer linear
program (19)–(23) with an optimality gap of (1.75− ε), for any ε > 0.

The bad quality of the lower bounds provided by the relaxations is obviously a
consequence of the fact that we only use an aggregate formulation of the resource
constraints, whereas any schedule has to respect the resource constraints at any
time.

8. Concluding Remarks

Our results use a class of formulations that only use one aggregate resource
constraint. An example shows that this leads to an optimality gap of 2 (1.75,
respectively). However, we have not been able to prove tightness of our anal-
ysis. Hence it can be conjectured that even for the class of formulations we
use, stronger approximation results might be obtained by using other schedul-
ing algorithms and a more sophisticated analysis. Stronger results might also
be obtainable using other formulations of the problem that better reflect the
dynamics of a renewable resource constraint.

Moreover, it remains open at this point if the unrelated parallel machine
scheduling problem with resource dependent processing times admits a stronger
inapproximability results than the lower bound 3/2. Since the problem adds an
additional time-resource tradeoff to the classical problem R| |Cmax, one could
conjecture it to be more difficult. Yet, the inapproximability results of 3/2 al-
ready holds for the problem without additional resources, R| |Cmax.
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