298 research outputs found

    Split Scheduling with Uniform Setup Times

    Full text link
    We study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup a machine cannot process or set up any other job. We concentrate on the basic case in which setup times are job-, machine-, and sequence-independent. Problems of this kind were encountered when modelling practical problems in planning disaster relief operations. Our main algorithmic result is a polynomial-time algorithm for minimising total completion time on two parallel identical machines. We argue why the same problem with three machines is not an easy extension of the two-machine case, leaving the complexity of this case as a tantalising open problem. We give a constant-factor approximation algorithm for the general case with any number of machines and a polynomial-time approximation scheme for a fixed number of machines. For the version with objective minimising weighted total completion time we prove NP-hardness. Finally, we conclude with an overview of the state of the art for other split scheduling problems with job-, machine-, and sequence-independent setup times

    Parameterized complexity of machine scheduling: 15 open problems

    Full text link
    Machine scheduling problems are a long-time key domain of algorithms and complexity research. A novel approach to machine scheduling problems are fixed-parameter algorithms. To stimulate this thriving research direction, we propose 15 open questions in this area whose resolution we expect to lead to the discovery of new approaches and techniques both in scheduling and parameterized complexity theory.Comment: Version accepted to Computers & Operations Researc

    Lower bounds for Smith's rule in stochastic machine scheduling

    Get PDF
    We consider the problem to minimize the weighted sum of completion times in nonpreemptive parallel machine scheduling. In a landmark paper from 1986, Kawaguchi and Kyan [5] showed that scheduling the jobs according to the WSPT rule -also known as Smith's rule- has a performance guarantee of 12(1+2)≈1.207{1\over 2}(1+\sqrt{2}) \approx 1.207. They also gave an instance to show that this bound is tight. We consider the stochastic variant of this problem in which the processing times are exponentially distributed random variables. We show,somehow counterintuitively, that the performance guarantee of the WSEPT rule, the stochastic analogue of WSPT, is not better than 1.229. This constitutes the first lower bound for WSEPT in this setting, and in particular, it shows that even with exponentially distributed processing times, stochastic scheduling has somewhat nastier worst-case examples than deterministic scheduling. In that respect, our analysis sheds new light on the fundamental differences between deterministic and stochastic scheduling

    Malleable Scheduling Beyond Identical Machines

    Get PDF
    In malleable job scheduling, jobs can be executed simultaneously on multiple machines with the processing time depending on the number of allocated machines. Jobs are required to be executed non-preemptively and in unison, in the sense that they occupy, during their execution, the same time interval over all the machines of the allocated set. In this work, we study generalizations of malleable job scheduling inspired by standard scheduling on unrelated machines. Specifically, we introduce a general model of malleable job scheduling, where each machine has a (possibly different) speed for each job, and the processing time of a job j on a set of allocated machines S depends on the total speed of S for j. For machines with unrelated speeds, we show that the optimal makespan cannot be approximated within a factor less than e/(e-1), unless P = NP. On the positive side, we present polynomial-time algorithms with approximation ratios 2e/(e-1) for machines with unrelated speeds, 3 for machines with uniform speeds, and 7/3 for restricted assignments on identical machines. Our algorithms are based on deterministic LP rounding and result in sparse schedules, in the sense that each machine shares at most one job with other machines. We also prove lower bounds on the integrality gap of 1+phi for unrelated speeds (phi is the golden ratio) and 2 for uniform speeds and restricted assignments. To indicate the generality of our approach, we show that it also yields constant factor approximation algorithms (i) for minimizing the sum of weighted completion times; and (ii) a variant where we determine the effective speed of a set of allocated machines based on the L_p norm of their speeds

    A PTAS for Minimizing Average Weighted Completion Time With Release Dates on Uniformly Related Machines

    Get PDF
    A classical scheduling problem is to find schedules that minimize average weighted completion time of jobs with release dates. When multiple machines are available, the machine environments may range from identical machines (the processing time required by a job is invariant across the machines) at one end, to unrelated machines (the processing time required by a job on any machine is an arbitrary function of the specific machine) at the other end of the spectrum. While the problem is strongly NP-hard even in the case of a single machine, constant factor approximation algorithms have been known for even the most general machine environment of unrelated machines. Recently, a polynomial-time approximation scheme (PTAS) was discovered for the case of identical parallel machines [1]. In contrast, it is known that this problem is MAX SNP-hard for unrelated machines [10]. An important open problem is to determine the approximability of the intermediate case of uniformly related machines where each machine i has a speed si and it takes p/si time to executing a job of processing size pIn this paper, we resolve this problem by obtaining a PTAS for the problem. This improves the earlier known ratio of (2 + ∈) for the problem

    Better Unrelated Machine Scheduling for Weighted Completion Time via Random Offsets from Non-Uniform Distributions

    Full text link
    In this paper we consider the classic scheduling problem of minimizing total weighted completion time on unrelated machines when jobs have release times, i.e, R∣rij∣∑jwjCjR | r_{ij} | \sum_j w_j C_j using the three-field notation. For this problem, a 2-approximation is known based on a novel convex programming (J. ACM 2001 by Skutella). It has been a long standing open problem if one can improve upon this 2-approximation (Open Problem 8 in J. of Sched. 1999 by Schuurman and Woeginger). We answer this question in the affirmative by giving a 1.8786-approximation. We achieve this via a surprisingly simple linear programming, but a novel rounding algorithm and analysis. A key ingredient of our algorithm is the use of random offsets sampled from non-uniform distributions. We also consider the preemptive version of the problem, i.e, R∣rij,pmtn∣∑jwjCjR | r_{ij},pmtn | \sum_j w_j C_j. We again use the idea of sampling offsets from non-uniform distributions to give the first better than 2-approximation for this problem. This improvement also requires use of a configuration LP with variables for each job's complete schedules along with more careful analysis. For both non-preemptive and preemptive versions, we break the approximation barrier of 2 for the first time.Comment: 24 pages. To apper in FOCS 201

    Scheduling to Minimize Total Weighted Completion Time via Time-Indexed Linear Programming Relaxations

    Full text link
    We study approximation algorithms for scheduling problems with the objective of minimizing total weighted completion time, under identical and related machine models with job precedence constraints. We give algorithms that improve upon many previous 15 to 20-year-old state-of-art results. A major theme in these results is the use of time-indexed linear programming relaxations. These are natural relaxations for their respective problems, but surprisingly are not studied in the literature. We also consider the scheduling problem of minimizing total weighted completion time on unrelated machines. The recent breakthrough result of [Bansal-Srinivasan-Svensson, STOC 2016] gave a (1.5−c)(1.5-c)-approximation for the problem, based on some lift-and-project SDP relaxation. Our main result is that a (1.5−c)(1.5 - c)-approximation can also be achieved using a natural and considerably simpler time-indexed LP relaxation for the problem. We hope this relaxation can provide new insights into the problem
    • …
    corecore