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A PTAS for Minimizing Average Weighted Completion Time with 
Release Dates on Uniformly Related Machines 

Chandra Chekuri* Sanjeev ~ h a n n a i  

Abstract 

A classical scheduling problem is to find schedules that minimize average weighted completion time of 
jobs with release dates. When multiple machines are available, the machine environments may range from 
identical machines (the processing time required by a job is invariant across the machines) at one end, to 
unrelated machines (the processing time required by a job on any machine is an arbitrary function of the 
specific machine) at the other end of the spectrum. While the problem is strongly NP-hard even in the case 
of a single machine, constant factor approximation algorithms have been known for even the most general 
machine environment of unrelated machines. Recently, a polynomial-time approximation scheme (PTAS) 
was discovered for the case of identical parallel machines [I]. In contrast, it is known that this problem is 
MAX SNP-hard for unrelated machines [lo]. An important open problem is to determine the approximability 
of the intermediate case of uniformly related machines where each machine i has a speed si and it takes p / s i  
time to executing a job of processing size p. In this paper, we resolve this problem by obtaining a PTAS for 
the problem. This improves the earlier known ratio of (2 + 6 )  for this problem. 

1 Introduction 

Scheduling to minimize average weighted completion time is one of the most well studied class of problems in 
scheduling theory. In this paper we concentrate on the following variant. We are given a set of n jobs where 
each job j has a processing time pj, a weight wj and a release date rj before which it cannot be scheduled. 
The goal is to schedule the jobs on a set of m machines non-preemptively with the objective of minimizing the 
quantity Cj wjCj where Cj is the completion time of j in the schedule. The specific machine environment we 
consider in this paper is the uniformly related case in which each machine i has a speed si and it takes pj/si 
time for machine i to execute job j. In the cr I p I -y scheduling notation' introduced by Graham et al. [7] this 
problem is denoted as Qlrjl Cj wjCj. Using some non-trivial extensions to the ideas introduced in [I] we obtain 
a polynomial time approximation scheme (PTAS) for this problem. Our ideas also extend to the preemptive case 
QIrj, pmtn) Cj wjCj but we omit the details of that result in this version. 

While a few restricted variants are polynomial time solvable cases (PI 1 C Cj , 1 ( 1 C wj Cj, R( I C Cj), 
most variants of scheduling to minimize average completion time are strongly NP-hard including preemptive 
cases [12]. In the last few years considerable progress has been made in understanding the approximability of 
many of these NP-hard variants. Constant and logarithmic ratio approximations were found for many variants 
on diverse machine environments (one, parallel, unrelated) and with a variety of constraints on the jobs (release 

'Bell Labs, 600 Mountain Ave, Murray Hill, NJ 07974. E-mail: chekuriOresearch . bell-labs . corn. 
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dates, precedence constraints, delays) [14, 8, 3, 5, 6, 131. See [8, 11 for more details on the history of these 
developments. Several new and interesting techniques were introduced in the process. Hoogeven et al. [lo] 
obtained MAX SNP-hardness for some variants especially those with precedence constraints and on unrelated 
machines. These results led to some conjectures regarding the approximability of variants with release dates only. 
In particular the problem 1 lrj 1 C wj Cj was conjectured to have a PTAS and Plrj I Cj wj Cj was conjectured not 
to have a PTAS (the problem R1r.j I Cj WjCj was shown to be MAX SNP-hard in [lo]). Most of the ideas that led 
to constant factor approximation algorithms did not seem to lead to the design of polynomial time approximation 
schemes since they were based on either preemptive relaxations or linear programming relaxations that had 
integrality gaps. Skutella and Woeginger [16] obtained a PTAS for the problem PI( Cj wjCj using some ideas 
from Alon et al. [2]. The basic technique used is grouping of jobs based on similar values of wj/pj and finding 
good schedules for each group separately. The schedules for the different groups could be combined together 
on the same machine using Smith's rule since there are no release dates. These ideas do not extend to the case 
when jobs have release dates in particular for the parallel machine variants. More recently substantial progress 
was made in [I]  where polynomial time approximation schemes were obtained for scheduling jobs with release 
dates on single, identical parallel machines, and a constant number of unrelated machines both with and without 
preemptions allowed. 

The above mentioned results improved our understanding of the approximability of scheduling with release 
dates by showing that problems admitting a PTAS (identical parallel and constant number of unrelated) were 
sufficiently close to the case that is MAX SNP-hard (unrelated machines). An open problem that remained was 
to determine the approximability of the related machine case, a strong generalization of the identical machine 
problem, and an important special case of the unrelated machine problein. In this paper we obtain a PTAS for 
this case, improving the earlier known ratio of (2 + E )  [15]. 

Techniques: Scheduling on related machines generalizes the case of identical parallel machines in a natural 
way. Not surprisingly, we use as our starting point a dynamic programming framework, presented in [I], that was 
used to obtain PTASes for identical parallel machines and a constant number of unrelated machines. Informally 
speaking, the framework requires three key problems to be solved: (i) how to maintain polynomial size descrip- 
tion of jobs that remain to be scheduled at any given time, (ii) a polynomial size description of how machines 
interact as one proceeds from one instant of time to the next, and (iii) a polynomial-time algorithm for (1 + E)- 
approximating the special case where we have only a constant number of distinct release dates. Unfortunately, 
the ideas used for solving these problems in the identical machines case are inadequate in the case of related 
machines. The main contribution of this paper is the development of new ideas that enable us to extend the 
framework and obtain a PTAS for our problem. In the identical machine case we could separate jobs into large 
and small based on their size and the crucial element that allowed the earlier approxin~ation schemes was that at 
any point in time there are only O(1) distinct large job sizes to consider. This allowed for explicit maintenance 
of certain parameters associated with each large job size class (such as how many are left, how many to schedule 
etc.) in time and space mO('). The small jobs are easy to handle using a greedy approach. At a high level the 
main difference in the related machine case is in the possibility of having up to 0 (log m) geometrically spaced 
speeds (we show how to reduce an arbitrary instance to such a restricted instance). Thus the fastest machine 
could be m times faster than the slowest one. Because of the different speeds jobs cannot be classified as large 
and small in an absolute manner. Thus at any time instant there could be up to R(1ogm) job sizes that could 
potentially be executed as large. Much of the dynamic programming framework of [I] can be pushed to handle 
this extra complexity but at the cost of increasing the running time to mo("grn). Each of the three key steps in 
the dynamic programming framework has this dependence on the number of speeds. In this paper we show how 
to relax the requirements in such a way as to still apply the broad framework but obtain a polynomial running 
time. Doing this requires several new properties of near optimal schedules that we describe. 

In this extended abstract we concentrate on getting the central ideas across and we omit formal proofs in the 



interest of clarity and conciseness. We focus here only on the non-preemptive case. The details of the preemptive 
case are similar and we omit them from this version. Finally, we do not make here any attempt to optimize the 
various dependencies on E, and defer it to the final version. 

2 Preliminaries 

We first discuss some general techniques and lemmas that apply throughout our paper. We aim to transform any 
input into one with simple structure. This will help in efficient enumeration and implementation of dynamic 
programming techniques. Some of these transformations will be similar to those in [I] but we will point out the 
new ideas necessary for the related machine case as we go along. After the preprocessing of the input we use 
a dynamic programming framework to find a schedule with a special structure that is guaranteed to be within a 
1 + O(E) factor of the optimum. We sequence several transformations of the input problem. Each transformation 
potentially increases the objective function value by 1 + O(E), SO we can perform a constant number of them 
while still staying within 1 + O ( E )  of the original optimum. Using notation consistent with [I] we say that a 
transformation produces 1 + 0 ( c )  loss. To argue that a transformation does not produce more than a 1 + O(E) 
loss we typically take an optimal schedule and show how a near optimal schedule exists with the properties 
desired after the transformation. The basic techniques we use for this are quite simple and already described in 
[ I ] .  We go over two such ideas since we will be using them repeatedly. The first is ordering certain subset of 
jobs by the ratio wj/pj (Smith's ratio). This is motivated by Smith's optimal algorithm for scheduling on a single 
machine with with no release dates [17]. When we have many jobs that are released at the same time we will be 
able to show that there are approximate schedules that use this order in selecting the jobs for execution, especially 
when the jobs are small. The second transformation is time stretching. It is best understood by mapping time 
t to (1 + e ) t .  Consider a single machine schedule where we map the completion time of each job according to 
the above mapping. This will worsen the schedule value by only a (1 + E) factor. However, since the processing 
times of the jobs remain the same this leaves extra "space" in the schedule which we exploit to schedule other 
jobs. This allows us to obtain schedules with nicer structure while losing only a 1 + O(E) factor. 

Notation: To simplify notation we will assume throughout the paper that 1 / ~  is integral. We use Cj and Sj to 
denote the completion and start time respectively of job j ,  and OPT to denote the objective value of the optimal 
schedule. The number of jobs and machines is denoted by n and m respectively. We denote the speed of a 
machine i by si and assume w.1.o.g. that s l  > sz > . . . > s,. 

2.1 Input Transformations 

We start with some transformations that are simple generalizations of those in [I]. In Subsections 2.1 .l, 2.1.2, 
and 2.1.3 we introduce new ideas that are crucial for the related machines case. 

Geometric Rounding: Our first simplification creates a well-structured set of possible processing times, re- 
lease dates, and machine speeds. 

Lemma 2.1 With (1 + E)  loss, we can assume that all processing times, release dates, and machine speeds are 
integer powers of 1 + E. 

For an arbitrary integer x, we define R, := (1 + E)". As a result of Lemma 2.1 we can assume that all release 
dates are of the form R, for some integer x. We partition the time interval (0, oo) into disjoint intervals of the 
form Iz := [R,, R,+l). We will use I, to refer to both the interval and the size (R,+l - R,) of the interval. 
We will often use the fact that I, = ER,, i. e., the length of an interval is E times its start time. Observe that the 
notion of time is independent of the machine speeds. 



Large and Small Jobs: As in [I] we classify jobs as small and large. Jobs are small if their processing time is 
sufficiently small relative to the interval in which they run so as to be treated as a fractional job. Large jobs are 
those that take up a substantial portion of the interval. Note that this definition is both a function of the job size 
and the interval. A difficulty with related machines is that a job in an interval could be small or large depending 
on the machine on which it is processed. Therefore we say that a job is large or small by qualifying with the 
speed class we have in mind. To be more precise we say that a job p j  is small with respect to an interval I, for 
speed se if pj/se 5 E~I,, otherwise it is large. We will often simply see that a job p j  is scheduled as small (large) 
to indicate that it will be scheduled in some interval I, on some machine with speed sse so that pj/se 5 E ~ I ,  

(pj/se > e3IX). The following lemma states that a job is not arbitrarily large relative to its start time. 

Lemma 2.2 With 1 + E loss, we can enforce Sj > € p j / ~ ~ ( ~ )  for all jobs j where k(j )  is the machine on which j 
is processed. 

Crossing Jobs: While most jobs run completely inside one interval, some jobs cross over multiple intervals, 
creating complexity we would like to avoid. The next two lemmas simplify this problem: we can assume that no 
job crosses too many intervals, and we can assume there are no small crossing jobs at all. 

Lemma 2.3 Each job crosses at most s := [logl+,(l + intervals. 

Lemma 2.4 With 1 + E loss we restrict attention to schedules in which no small job crosses an interval. 

Lemma 2.5 With 1 + E loss we restrict attention to schedules in which each job that is scheduled as large starts 
at one of 1/c4 equi-spaced instants within any interval. 

Proof. By definition, there can be at most 1/c3 jobs that can be scheduled as large on any machine in any 
interval. If we move the starting time of each such job to the next equi-spaced instant and stretch the interval by 
a (1 + €)-factor, we obtain a feasible schedule of the form indicated in the lemma. 

2.1.1 0 (log m) Speed Classes 

Intuition suggests that machines much slower than the fastest machine can be ignored with little loss in the 
schedule value. We formalize this intuition below. Let sl > sz > . . . s, be the speeds of the machines. We can 
assume that m > 1/e3 for otherwise we can use the algorithm in [I] to obtain a PTAS. 

Lemma 2.6 With (1 + E) loss we can ignore machines with speed less than sl/,s . A. 
Proof Sketch. Consider an optimal schedule S and let k ( j )  be the machine on which job j is executed in 
S. Let Ai = Ck(j)=i wjCj be the contribution of machine i to the schedule value. Let l be such that A! = 

minl,i<l/,3 Ai. We obtain a new schedule as follows. We remove the jobs allocated to Me and execute them on 
MI in aPdelayed fashion. By time stretching on MI it is clear that we can execute the jobs of Me with no more 
than a 1/e2 factor delay. Since Ae 5 e3 . OPT this does not effect the schedule by more than a (1 + E)  factor. We 
schedule the jobs allocated on all the slow machines (the ones with speed smaller than sl/cs . 6) and assign them 
to Me. We do this as follows. All the jobs that start in each of the slow machines in the interval I, are scheduled 
in the interval I, on Me. It is easy to see that all the jobs will complete on Me within the same interval I, and 
hence their completion times are affected by no more than a (1 + E) factor. 

Following Lemma 2.1 and Lemma 2.6 we can assume that our instance has O ( l o g m / ~ )  distinct speeds. 
We group machines with the same speed in to classes and refer to them as a speed class. Let K be the exact 
number of classes we have with the implicit understanding that K = O(1og m). For 1 5 i 5 K let mi and si 
denote the number of machines and the common speed of the machines in the ith class where we assume that 
sl > s 2  > . . . > SK. We will denote by Mj machines in the jth speed class. 



2.1.2 Generating Extra Machines 

The lemma below shows that any schedule can be transformed into a 1 + O(e)-approximate schedule where we 
use only a (1 - €)-fraction of the machines from any sufficiently large machine class. We will assume from here 
on that we are working with this reduced allocation of machines. The remaining extra machines would be useful 
in a key step for implementing the dynamic programming. 

Lemma 2.7 Given m machine instance of identical parallel machines where m > 1/c3 there is a 1 + O(e)- 
approximate schedule on m ( 1  - e3) machines. 

2.1.3 Shifting 

Our next goal is to show that we can preprocess the input instance I in such a way that we can guarantee 
a schedule in which every job will be completed within a constant number of intervals from its release. We 
accomplish this by selectively retaining only a fraction of the jobs released in each interval and shifting the 
rest to later intervals. This basic idea plays a crucial role in obtaining the PTAS for the parallel machine case 
Plrjl Cj wjCJ [I]. Jobs released in an interval I, are classified into small or one of O(1) large size classes. 
Small jobs were ordered in non-increasing order according to the ratio wj/pj and large jobs in each size class in 
decreasing order of their weights. In each class the number of jobs retained is restricted by the volun~e that could 
be processed in the interval I,. The rest are shifted to the next interval. Since the number of classes is O(1) the 
total volume of jobs released at R, in the modified instance was O(1) times the volume of I,. By time shifting 
one could show that there exists an approximate schedule in which all the jobs at I, could be finished within 
0 (1) intervals after R,. This enabled locality in dynamic programming. 

However, there is no simple generalization of the above ideas to the related machine case because the notion 
of small and large jobs is now relative to the machine speed as well. The number of distinct job sizes that can be 
executed as large in an interval could be R(1og m )  and we cannot afford to have a volume of jobs released at I, 
that is G(log m) times the processing capability of the machines in I,. We design a new procedure below that 
essentially still retains the property concerning the volume. The proof that this procedure leads only an 1 + O(E) 
loss is more involved. We describe the shifting procedure formally below. 

Let J, be the set of jobs released at R,. For each speed class i from K down to 1 the following process is 
done. 

a Let T; and H; be the small and large jobs with respect to speed si released at R, that are still to be 
processed. 

a The number of distinct size classes in H: is 0(1/e2). In each size class we pick jobs in order of non- 
increasing weights until the sum of processing times of jobs picked just exceeds misil,/e2 or we run out 
of jobs. 

a We pick jobs in T: in non-increasing wj/pj ratio until the processing time of the jobs picked just exceeds 
misiI, or we run out of jobs. 

a We remove the jobs picked from T$ and H: from J,. 

Jobs that are not picked in any speed class are shifted to the next interval. We repeat this process with each 
successive interval. Let I' be the modified instance obtained after the shifting process above and for each x let 
JL be the set of jobs released at R, in I/. 

Lemma 2.8 For any given rounded job size s let a: (S)  and bg (S)  denote the number of jobs of size s started in 
I, as small and large respectively in an optimal schedule S.  There exists a 1 + O(E)-approximate schedule S' 
such that jbr each s and x either a: ( S f )  < $b:(~') or bg (St)  = 0. 



Proof. Consider an optimal schedule S .  Suppose a: ( S )  > $ b i  ( S )  for some size s and interval s.  We create 
a modified schedule S t  as follows. We take all the jobs executed as large and execute them as small within the 
same interval I,. Since the number of jobs executed as small is much larger that those executed as large it is 
easily seen that this can be accomplished by stretching the interval by only a (1 + 6 )  factor and in the modified 
schedule b:(S1) = 0. This can be done simultaneously for all s and x which do not satisfy the lemma and no 
interval stretches by more than a 1 + E factor. It is easy to see that the schedule S t  is a 1 + O(c)-approximation 
to S .  

Lemma 2.9 For the nzodiJied instance I' obtained from I by the shifting procedure 

2. There exists a (l+O(e))-approximate schedule for I' in which alljobs in J, arejnished by Rs+O(log(l/E)/Ej. 

Proof Sketch. We prove (2) first. Let J: be the set of jobs picked by the shifting procedure in speed class i ,  
1 5 i 5 K at R,. We note that all jobs in J: can be executed by machines of speed class i in time O(I,). 
This implies that p ( J l )  will be small relative to interval Ij.+O(log(llE)lE) because of the geometrically increasing 
property of interval sizes. Therefore time stretching any arbitrary but fixed optimal schedule allows us to create 
the required space to execute all the jobs in J: by then. 

Now we prove (1). We observe that the shifting procedure does the following. For each size class s that can 
be executed as large in I ,  the procedure picks the ng/e2 jobs in non-increasing weight order from J, where 7 ~ ;  

is the maximum number of jobs that can executed as large of size class s in I,. From Lemma 2.8 there exists a 
(1 + O(E))-approximate schedule in which the jobs executed as large in I ,  of size s are contained in the set we 
pick. The small jobs that are executed in I ,  can be treated as fractional jobs and this enables us to pick them in a 
greedy fashion in non-increasing order of wj/pj and we pick enough jobs to fill up the volume of I z .  The proof 
of the near optimality of greedily picking small jobs is similar to that of the parallel machine case in [ l ]  and we 
omit the details in this version. 

2.2 Overview of Dynamic Programming Framework 

We give a brief overview of the dynamic programming framework from [ l ]  and then point out the technical 
hurdles that we need to solve to use the framework to obtain the PTAS. 

The idea is to divide the time horizon into a sequence of blocks, say Bl, B2, . . ., each containing a constant 
number of intervals dates, and then do a dynamic programming over these blocks by treating each block as a unit. 
There is interaction between blocks since jobs from an earlier block can cross into the current block. However 
by the choice of the block size and Lemma 2.3, no job crosses an entire block. In other words jobs that start in 
Bi finishes no later than A frontier describes the potential ways that jobs in one block finish in the next. 
An incoming frontier for a block Bi specifies for each machine the time at which the crossing job from Bipl 
finishes on that machine. Let .F denote the possible set of frontiers between blocks. The dynamic programming 
table maintains entries of the form 0 (i, F, U )  : the minimum weighted completion time achievable by starting 
the set U of jobs before the end of block Bi while leaving a frontier of F E F for block Bi+1. Given all the table 
entries for some i, the values for i + 1 can be computed as follows. Let C( i ,  Fl, F2, V) be the minimum weighted 
completion time achievable by scheduling the set of jobs V in block Bi, with Fl as the incoming frontier from 
block Bi-I and F2 as the outgoing frontier to block We obtain the following equation. 

O ( i + l , F , U ) =  min ( O ( i , F 1 , v ) + C ( i + 1 , F ' , F , U - V ) )  
F r E F , V C U  



3 Implementing the Dynamic Programming Framework 

Broadly speaking, we need to solve three problems for using the dynamic programming framework described in 
the preceding section. First, we need a mechanism to compactly describing for any block Bi, the set of jobs that 
were released prior to Bi and have already been scheduled. Second, we need to ensure that the set of frontiers .F 
is polynomially bounded for any block Bi. Finally, given a set of jobs to be scheduled within a block, we should 
be able to find a (1 + E)-approximate schedule. A basic theme underlying our implementation of these steps is 
to relax the requirements of the three procedures in the dynamic programming. In the parallel machine case we 
could enumerate the set of jobs U that are release in Bi and will be scheduled in Bi itself by separating out the 
small and large jobs. Since there were only O(1) large job sizes in each Bi this was relatively easy. Now we 
have a ( K )  large job sizes. We would have to enumerate m"(K) possibilities. To get around this difficulty we 
use a global scheme that is inspired by the recent work on the multiple knapsack problem [4]. We will be able to 
figure out most of the important jobs using the above scheme in polynomial time and we show this approximate 
enumeration suffices. A similar situation arises in enumerating the frontiers. Here we use a different idea based 
on Lemma 2.7. Finally, another difficult part is the problem of scheduling jobs in a fixed number of intervals. 
The approach we adopt is some what akin to the approach taken by Hochbaum and Shmoys [9] to obtain a PTAS 
for the makespan problem on related machines. The basic idea is to do dynamic programming across the speed 
classes going from the slowest speed class to the fastest. The advantage of this approach is the following. Any 
fixed size class is large for only O(1) consecutive speed classes because of the geometrically increasing speeds. 
This implies that while we are doing the dynamic programming the number of size classes for which we have to 
maintain detailed information ( in terms of the exact number of jobs remaining etc) is only O(1) as opposed to 
R (K)  if we tried to solve the problem all at once. The many subtle details that we need to make all these ideas 
work are explained in the remainder of this section. 

In what follows, we assume each block consists of a = O(l /e2)  intervals, the precise constant is of not much 
importance. 

3.1 Compact Description of Remaining Jobs 

We start by observing that by Lemma 2.9 and our choice of block size, there exists a (1 + E)-approximate schedule 
such that all jobs released in a block Bi are always scheduled by the end of the block In fact we will be able 
to schedule all jobs released in Bi in Bi+1 irrespective of how many of them have been executed in Bi itself. We 
will restrict our attention to only such schedules. Thus in order to compactly describe the set of jobs that remain 
we need only describe a mechanism for compact representation of the set of jobs chosen to be scheduled within 
the block. However, due to the non-uniform nature of machine speeds, this process turns out to be more involved 
than the identical machine case. In particular, we rely on some ideas from the recent approximation scheme 
for the multiple knapsack problem [4]. We show that there exists a (1 + €)-approximate schedule that needs to 
enumerate over only polynomially many distinct possibilities for set of jobs chosen for scheduling within a block 
Bi.  Let w,,, be the maximum weight of any job released in the block Bi. Let X be the set of all jobs released 
in Bi whose weight is less than w,,,/m2. We ignore the set X from our consideration of candidate jobs to be 
scheduled in Bi and schedule X in the block Bi+l. Clearly, this increases the cost of the schedule by at most a 
(1 + o(1))-factor. As a result, we can assume that the weights of all jobs released in Bi belong to 2 log m distinct 
weight classes only. We will use the following elementary fact from [4]: 

Proposition 1 Let h = O(1og m). Then the number of h-tupks (kl, ka, ... , kh) such that ki 6 [0 ... h] and 
C ki 5 h is rnO('). 

We can now describe our scheme for enumerating the job subsets. For each interval I j  E Bi we separately 
enumerate the jobs that are released at I j  and will be scheduled in Bi. Since the number of intervals in each block 
is fixed for a fixed E,  we concentrate on a single interval. 



1. For interval Ij E Bi we first specify Wj the total weight of jobs that are released in Ij and will be scheduled 
in Bi. We specify this weight in multiples of wmaX/m2 by an integer l such that ! . wmaX/m2 does not ex- 
ceed the optimal allocation. The parameter [ takes only O(m2) distinct values, we have only polynomially 
many distinct choices to enumerate over. The set of jobs that are lost due to the downward rounding are 
scheduled in Bi+1 and thus it worsens the schedule only by a (1 + o(1))-factor. 

2. For a given Wj (specified by the integer e), we specify a partition of Wj into h = 2 log m classes one 
for each of the distinct size classes. Since an exact partition would require quasi-polynomially many 
possibilities, we need to do this step approximately. Let 6 = e3. We specify an approximation to an 
exact partition of the form (w: , W: , . . . , w:) by guessing an integer vector (kl , l~ , . . . , kh) such that ki (6 . 
Wj / h) 5 W" (k l  + 1) (6 . Wj/h). By Proposition I ,  the number of tuples enumerated above is bounded 
by mO(') for any fixed 6 > 0. The error introduced by this approximate under-guessing can be bounded by 
6Wj over all h size classes. Since all jobs released in Bi are always scheduled by the end of the block Bi+*, 
the cost of the schedule as a result of the under-guessing above increases by at most a factor of 1 + O(6). 

3. Finally, for each size class of jobs released in I j ,  we greedily pick the smallest number of jobs whose 
cumulative weight exceeds the weight guessed above. 

In summary we showed that by restricting the choice to important jobs based on weights we need to consider 
only a polynomial number of sets as candidates for jobs scheduled within a block. 

3.2 Frontiers 

A frontier describes the set of jobs that are crossing over from a block Bi to the next block By Lemma 2.4, 
we know that only a job that is scheduled as large can participate in a frontier, and by Lemma 2.5 we know 
that there are only 1/e4 distinct time instants in any interval by which a job scheduled as large starts or ends. 
Further the number of distinct job sizes that can execute as large in a block is O(1/e4). Hence a crossing job 
on a large machine can be specified by the size and the time instant it starts in the interval. Let q = O(l/e8) 
denote the total number of such distinct frontiers for any machine. In order to describe the over all frontier, 
we need to specify this information for each machine. Consequently, we can describe the frontier by a vector 
(mil, ml2, ..., ml,, mzl, ...., mKq) where mi j  denotes the number of machines in the speed class Ci that have a 
job finishing at the jth distinct instant in block Bi+1. Clearly, an exact enumeration would require considering 
quasi-polynomial number of possibilities. We now argue that in order to obtain a (1 + 6)-approximation it suffices 
to work with a polynomial-sized set 3 of frontiers. With any vector of the above form, we associate a vector 
(Ell, E12, ..., El,, 1217 ...., E K q )  in 3 where E i j  = mij if mi < 1/e3, and otherwise, (lij - 1) (e1lmi) < mij  < 
lij(el1mi). Clearly, there are only O(l/ellK) = mO(l) such vectors to be considered. However, the above 
approximation of an exact frontier description over-allocates machines for large machine classes, and thus would 
necessitate extra machines. The total number of extra machines needed by any large speed class is bounded by 
el1 q . mi which is at most e3 - mi. We allocate these extra machines by using Lemma 2.7 which allowed us to 
keep aside an c3 mi machines for each speed class of size at least 1/c3. 

3.3 Scheduling of Jobs Within a Block 

We now describe a (l+e)-approximate implementation of the procedure C(i ,  Fl, F2, 2). Recall that C(i ,  Fl, F2, 2) 
is the procedure that computes the best schedule for a set of jobs Z that are to be scheduled in block Bi with in- 
coming and outgoing frontiers specified by Fl and F2. 

In what follows, it will be useful to assume that F[ and F! denote the components of Fl and Fz that cor- 
respond to the jth speed class Mj. Our scheduling procedure is based on a dynamic programming across the 
classes; we move from the slowest class to the fastest class and treat each class as a unit. In [I]  a procedure was 



given to schedule on a single speed class. The basic idea was to enumerate large job placements and schedule 
the small jobs greedily in the space left by the large jobs. Enumerating the large job placements was relatively 
easy because there were only 0(1) sizes that were large in each block. We do not know how to efficiently enu- 
merating all large job placements with K speed classes in polynomial time, hence we resort to doing dynamic 
programming across classes. When considering a current class we would like to know the jobs that are already 
scheduled in the preceding blocks. The main difficulty in implementing the dynamic program is to maintain a 
compact description of this information. To achieve this we use the notion of template schedules. 

Template Schedules: A template schedule at a machine class Mj provides information about the jobs that 
remain to be scheduled along with some "coarse" information constraining how these jobs may be scheduled. It 
is this additional scheduling information that implicitly encodes information concerning weights of the remaining 
jobs. Specifically, a template schedule at a machine class Mj specifies scheduling information for all jobs that 
are eligible to be scheduled as large on a machine in M j ,  as well as global information concerning the volume of 
jobs that must be scheduled as small on machines in Mi-1 through MI.  We describe these two aspects next. 

Let L ( j )  denote the set of job sizes that can be scheduled as large at the jth machine class, and let ZL( j )  
denote the job set Z restricted to the sizes in L ( j ) .  At the jth speed class we consider all possible extensions of 
template schedules for the ( j  - 1)th machine class so as to incorporate scheduling information for the jobs in the 
set Q = ZL(g)  \ ZL(j- l) .  A template schedule specifies the following information for each size class in Q. 

The number of jobs that are executed as large and the number that are executed as small. 

For those executed as small, the number that will be executed in each interval of Bi. 

For those executed as large, the number that will be executed for each possible placement in each of the 
speed classes where that size can be executed as large. We note that this information includes speed classes 
greater than j, that is classes that have already been processed. 

Lemma 3.1 The template schedule information is polynomial size for each size class in the set Q. 

Proof Sketch. For any fixed size class the number of speed classes on which it can be scheduled as large is 
O ( l o g ( l / ~ ) / ~ )  since the speeds are increasing geometrically. Further the number of distinct start times of large 
jobs in each class is also fixed for fixed E, following Lemma 2.5. Hence specifying the numbers is polynomial. 

At each class M j  the number of job sizes in Q is 0 ( l / e 2 ) ,  hence the total information for all sizes in Q is still 
polynomial. Observe that template schedules do not maintain any explicit information about the weight of the 
jobs that remain. However, this information is implicit and can be recovered as follows. Consider the scheduling 
at a machine class M j  that receives the template schedules for all job sizes that can be scheduled as large on a 
machine in Mi. Fix one such size class, say pk, and let at denote the number of jobs of size pk that are required 
to start at the tth starting time in block Bi on a machine in Mj. Since a template schedule completely determines 
the finishing times of all jobs of size pl;, it is straightforward to determine the weights associated with each one 
of the at jobs (we resolve all ties in some fixed canonical manner). 

The idea of template schedule as described so far allows us to identify the jobs that are to be scheduled as 
large at any machine class. However, we need additional information to determine what jobs are available to be 
scheduled as small at any machine class. We do this by maintaining a vector of the form (Vl, ..., V,) such that 
1/1 specifies the total volume of the small jobs that must be scheduled in the lth interval of the block Bi in classes 
Mi - through M I .  

Lemma 3.2 The template schedule information for small jobs is of polynomial size. 



Proof Sketch. We claim that the precision needed for each V, is O(e5/m2). Assume without loss of generality 
that s~ = 1 and hence sl = O(m). Consider the smallest large job in the block and let s be its size. From 
our assumption that s~ = 1, s is at least e3 times the smallest interval in Bi. We claim that the volume can be 
maintained in multiples of c2 times s. This is because the size of each job in the block can be approximated to 
within a (1 + E )  factor by multiples of the above quantity. Coupled with the fact that the total volume that can be 
executed in the block is O(m2) the lemma follows. 

Dynamic Programming with Template Schedules We maintain a table T ( j ,  X ,  Y) where j ranges over ma- 
chine speed classes and X and Y are template schedules for Mj and Mj-l respectively. T ( j ,  X, Y) stores the 
best weighted completion time that is consistent with X and Y. Note that by knowing X and Y the job set that 
is to be scheduled in Mj is determined. Given X and Y computing T( j ,  X ,  Y) involves the following. 

Checking for consistency between X and Y. 

Checking the feasibility of scheduling the jobs in Mj implied by X and Y. 

Note that the template schedules implicitly determine the best weighted completion times. We briefly describe 
the feasibility con~putation below. 

Scheduling Jobs within a Machine Class: For any machine class Mj, once we know the position of jobs to 
be scheduled as large, as well as the volume of jobs to be scheduled as small in each one of the a intervals, it 
is relatively easy to determine whether or not there exists a feasible schedule (with 1 + e loss) that is consistent 
with this specification and the in-coming and out-going frontiers F[ and F!. 

We conclude with the main result of this paper. 

Theorem 1 There is a PTAS for the problem QlrjI Cj wjCj. 
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