
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

January 2000

A PTAS for Minimizing Average Weighted Completion Time With A PTAS for Minimizing Average Weighted Completion Time With

Release Dates on Uniformly Related Machines Release Dates on Uniformly Related Machines

Chandra Chekuri
Bell Laboratories

Sanjeev Khanna
University of Pennsylvania, sanjeev@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Chandra Chekuri and Sanjeev Khanna, "A PTAS for Minimizing Average Weighted Completion Time With
Release Dates on Uniformly Related Machines", . January 2000.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-00-19.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/153
For more information, please contact repository@pobox.upenn.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76387886?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/153
mailto:repository@pobox.upenn.edu

A PTAS for Minimizing Average Weighted Completion Time With Release Dates A PTAS for Minimizing Average Weighted Completion Time With Release Dates
on Uniformly Related Machines on Uniformly Related Machines

Abstract Abstract
A classical scheduling problem is to find schedules that minimize average weighted completion time of
jobs with release dates. When multiple machines are available, the machine environments may range
from identical machines (the processing time required by a job is invariant across the machines) at one
end, to unrelated machines (the processing time required by a job on any machine is an arbitrary function
of the specific machine) at the other end of the spectrum. While the problem is strongly NP-hard even in
the case of a single machine, constant factor approximation algorithms have been known for even the
most general machine environment of unrelated machines. Recently, a polynomial-time approximation
scheme (PTAS) was discovered for the case of identical parallel machines [1]. In contrast, it is known that
this problem is MAX SNP-hard for unrelated machines [10]. An important open problem is to determine
the approximability of the intermediate case of uniformly related machines where each machine i has a
speed si and it takes p/si time to executing a job of processing size pIn this paper, we resolve this
problem by obtaining a PTAS for the problem. This improves the earlier known ratio of (2 + ∈) for the
problem.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-00-19.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/153

https://repository.upenn.edu/cis_reports/153

A PTAS for Minimizing Average Weighted Completion Time with
Release Dates on Uniformly Related Machines

Chandra Chekuri* Sanjeev ~ h a n n a i

Abstract

A classical scheduling problem is to find schedules that minimize average weighted completion time of
jobs with release dates. When multiple machines are available, the machine environments may range from
identical machines (the processing time required by a job is invariant across the machines) at one end, to
unrelated machines (the processing time required by a job on any machine is an arbitrary function of the
specific machine) at the other end of the spectrum. While the problem is strongly NP-hard even in the case
of a single machine, constant factor approximation algorithms have been known for even the most general
machine environment of unrelated machines. Recently, a polynomial-time approximation scheme (PTAS)
was discovered for the case of identical parallel machines [I]. In contrast, it is known that this problem is
MAX SNP-hard for unrelated machines [lo]. An important open problem is to determine the approximability
of the intermediate case of uniformly related machines where each machine i has a speed si and it takes p / s i
time to executing a job of processing size p. In this paper, we resolve this problem by obtaining a PTAS for
the problem. This improves the earlier known ratio of (2 + 6) for this problem.

1 Introduction

Scheduling to minimize average weighted completion time is one of the most well studied class of problems in
scheduling theory. In this paper we concentrate on the following variant. We are given a set of n jobs where
each job j has a processing time pj, a weight wj and a release date rj before which it cannot be scheduled.
The goal is to schedule the jobs on a set of m machines non-preemptively with the objective of minimizing the
quantity Cj wjCj where Cj is the completion time of j in the schedule. The specific machine environment we
consider in this paper is the uniformly related case in which each machine i has a speed si and it takes pj/si
time for machine i to execute job j. In the cr I p I -y scheduling notation' introduced by Graham et al. [7] this
problem is denoted as Qlrjl Cj wjCj. Using some non-trivial extensions to the ideas introduced in [I] we obtain
a polynomial time approximation scheme (PTAS) for this problem. Our ideas also extend to the preemptive case
QIrj, pmtn) Cj wjCj but we omit the details of that result in this version.

While a few restricted variants are polynomial time solvable cases (PI 1 C Cj , 1 (1 C wj Cj, R(I C Cj),
most variants of scheduling to minimize average completion time are strongly NP-hard including preemptive
cases [12]. In the last few years considerable progress has been made in understanding the approximability of
many of these NP-hard variants. Constant and logarithmic ratio approximations were found for many variants
on diverse machine environments (one, parallel, unrelated) and with a variety of constraints on the jobs (release

'Bell Labs, 600 Mountain Ave, Murray Hill, NJ 07974. E-mail: chekuriOresearch . bell-labs . corn.
+ ~ e ~ t . of CIS, University of Pennsylvania, Philadelphia, PA 19104. E-mail: sanj eev@cis . upenn. edu. Supported in part by an

Alfred P. Sloan Research Fellowship.
'In the a I p I y notation or specifies the machine environment, P specifies the constraints, and y specifies the objective function. In this

paper cu will take on the values of 1 for a single machine, P for parallel identical, Q for uniformly related, and R for unrelated machines
respectively, P will take on r, for release dates and pmtn if preemption is allowed. Finally y will be either xj Cj or xj wjCj for the
average and average weighted completion times respectively.

dates, precedence constraints, delays) [14, 8, 3, 5, 6, 131. See [8, 11 for more details on the history of these
developments. Several new and interesting techniques were introduced in the process. Hoogeven et al. [lo]
obtained MAX SNP-hardness for some variants especially those with precedence constraints and on unrelated
machines. These results led to some conjectures regarding the approximability of variants with release dates only.
In particular the problem 1 lrj 1 C wj Cj was conjectured to have a PTAS and Plrj I Cj wj Cj was conjectured not
to have a PTAS (the problem R1r.j I Cj WjCj was shown to be MAX SNP-hard in [lo]). Most of the ideas that led
to constant factor approximation algorithms did not seem to lead to the design of polynomial time approximation
schemes since they were based on either preemptive relaxations or linear programming relaxations that had
integrality gaps. Skutella and Woeginger [16] obtained a PTAS for the problem PI(Cj wjCj using some ideas
from Alon et al. [2]. The basic technique used is grouping of jobs based on similar values of wj/pj and finding
good schedules for each group separately. The schedules for the different groups could be combined together
on the same machine using Smith's rule since there are no release dates. These ideas do not extend to the case
when jobs have release dates in particular for the parallel machine variants. More recently substantial progress
was made in [I] where polynomial time approximation schemes were obtained for scheduling jobs with release
dates on single, identical parallel machines, and a constant number of unrelated machines both with and without
preemptions allowed.

The above mentioned results improved our understanding of the approximability of scheduling with release
dates by showing that problems admitting a PTAS (identical parallel and constant number of unrelated) were
sufficiently close to the case that is MAX SNP-hard (unrelated machines). An open problem that remained was
to determine the approximability of the related machine case, a strong generalization of the identical machine
problem, and an important special case of the unrelated machine problein. In this paper we obtain a PTAS for
this case, improving the earlier known ratio of (2 + E) [15].

Techniques: Scheduling on related machines generalizes the case of identical parallel machines in a natural
way. Not surprisingly, we use as our starting point a dynamic programming framework, presented in [I], that was
used to obtain PTASes for identical parallel machines and a constant number of unrelated machines. Informally
speaking, the framework requires three key problems to be solved: (i) how to maintain polynomial size descrip-
tion of jobs that remain to be scheduled at any given time, (ii) a polynomial size description of how machines
interact as one proceeds from one instant of time to the next, and (iii) a polynomial-time algorithm for (1 + E)-
approximating the special case where we have only a constant number of distinct release dates. Unfortunately,
the ideas used for solving these problems in the identical machines case are inadequate in the case of related
machines. The main contribution of this paper is the development of new ideas that enable us to extend the
framework and obtain a PTAS for our problem. In the identical machine case we could separate jobs into large
and small based on their size and the crucial element that allowed the earlier approxin~ation schemes was that at
any point in time there are only O(1) distinct large job sizes to consider. This allowed for explicit maintenance
of certain parameters associated with each large job size class (such as how many are left, how many to schedule
etc.) in time and space mO('). The small jobs are easy to handle using a greedy approach. At a high level the
main difference in the related machine case is in the possibility of having up to 0 (log m) geometrically spaced
speeds (we show how to reduce an arbitrary instance to such a restricted instance). Thus the fastest machine
could be m times faster than the slowest one. Because of the different speeds jobs cannot be classified as large
and small in an absolute manner. Thus at any time instant there could be up to R(1ogm) job sizes that could
potentially be executed as large. Much of the dynamic programming framework of [I] can be pushed to handle
this extra complexity but at the cost of increasing the running time to mo("grn). Each of the three key steps in
the dynamic programming framework has this dependence on the number of speeds. In this paper we show how
to relax the requirements in such a way as to still apply the broad framework but obtain a polynomial running
time. Doing this requires several new properties of near optimal schedules that we describe.

In this extended abstract we concentrate on getting the central ideas across and we omit formal proofs in the

interest of clarity and conciseness. We focus here only on the non-preemptive case. The details of the preemptive
case are similar and we omit them from this version. Finally, we do not make here any attempt to optimize the
various dependencies on E, and defer it to the final version.

2 Preliminaries

We first discuss some general techniques and lemmas that apply throughout our paper. We aim to transform any
input into one with simple structure. This will help in efficient enumeration and implementation of dynamic
programming techniques. Some of these transformations will be similar to those in [I] but we will point out the
new ideas necessary for the related machine case as we go along. After the preprocessing of the input we use
a dynamic programming framework to find a schedule with a special structure that is guaranteed to be within a
1 + O(E) factor of the optimum. We sequence several transformations of the input problem. Each transformation
potentially increases the objective function value by 1 + O(E), SO we can perform a constant number of them
while still staying within 1 + O (E) of the original optimum. Using notation consistent with [I] we say that a
transformation produces 1 + 0 (c) loss. To argue that a transformation does not produce more than a 1 + O(E)
loss we typically take an optimal schedule and show how a near optimal schedule exists with the properties
desired after the transformation. The basic techniques we use for this are quite simple and already described in
[I] . We go over two such ideas since we will be using them repeatedly. The first is ordering certain subset of
jobs by the ratio wj/pj (Smith's ratio). This is motivated by Smith's optimal algorithm for scheduling on a single
machine with with no release dates [17]. When we have many jobs that are released at the same time we will be
able to show that there are approximate schedules that use this order in selecting the jobs for execution, especially
when the jobs are small. The second transformation is time stretching. It is best understood by mapping time
t to (1 + e) t . Consider a single machine schedule where we map the completion time of each job according to
the above mapping. This will worsen the schedule value by only a (1 + E) factor. However, since the processing
times of the jobs remain the same this leaves extra "space" in the schedule which we exploit to schedule other
jobs. This allows us to obtain schedules with nicer structure while losing only a 1 + O(E) factor.

Notation: To simplify notation we will assume throughout the paper that 1 / ~ is integral. We use Cj and Sj to
denote the completion and start time respectively of job j , and OPT to denote the objective value of the optimal
schedule. The number of jobs and machines is denoted by n and m respectively. We denote the speed of a
machine i by si and assume w.1.o.g. that s l > sz > . . . > s,.

2.1 Input Transformations

We start with some transformations that are simple generalizations of those in [I]. In Subsections 2.1 .l, 2.1.2,
and 2.1.3 we introduce new ideas that are crucial for the related machines case.

Geometric Rounding: Our first simplification creates a well-structured set of possible processing times, re-
lease dates, and machine speeds.

Lemma 2.1 With (1 + E) loss, we can assume that all processing times, release dates, and machine speeds are
integer powers of 1 + E.

For an arbitrary integer x, we define R, := (1 + E)". As a result of Lemma 2.1 we can assume that all release
dates are of the form R, for some integer x. We partition the time interval (0, oo) into disjoint intervals of the
form Iz := [R,, R,+l). We will use I, to refer to both the interval and the size (R,+l - R,) of the interval.
We will often use the fact that I, = ER,, i. e., the length of an interval is E times its start time. Observe that the
notion of time is independent of the machine speeds.

Large and Small Jobs: As in [I] we classify jobs as small and large. Jobs are small if their processing time is
sufficiently small relative to the interval in which they run so as to be treated as a fractional job. Large jobs are
those that take up a substantial portion of the interval. Note that this definition is both a function of the job size
and the interval. A difficulty with related machines is that a job in an interval could be small or large depending
on the machine on which it is processed. Therefore we say that a job is large or small by qualifying with the
speed class we have in mind. To be more precise we say that a job p j is small with respect to an interval I, for
speed se if pj/se 5 E~I,, otherwise it is large. We will often simply see that a job p j is scheduled as small (large)
to indicate that it will be scheduled in some interval I, on some machine with speed sse so that pj/se 5 E ~ I ,

(pj/se > e3IX). The following lemma states that a job is not arbitrarily large relative to its start time.

Lemma 2.2 With 1 + E loss, we can enforce Sj > € p j / ~ ~ (~) for all jobs j where k(j) is the machine on which j
is processed.

Crossing Jobs: While most jobs run completely inside one interval, some jobs cross over multiple intervals,
creating complexity we would like to avoid. The next two lemmas simplify this problem: we can assume that no
job crosses too many intervals, and we can assume there are no small crossing jobs at all.

Lemma 2.3 Each job crosses at most s := [logl+,(l + intervals.

Lemma 2.4 With 1 + E loss we restrict attention to schedules in which no small job crosses an interval.

Lemma 2.5 With 1 + E loss we restrict attention to schedules in which each job that is scheduled as large starts
at one of 1/c4 equi-spaced instants within any interval.

Proof. By definition, there can be at most 1/c3 jobs that can be scheduled as large on any machine in any
interval. If we move the starting time of each such job to the next equi-spaced instant and stretch the interval by
a (1 + €)-factor, we obtain a feasible schedule of the form indicated in the lemma.

2.1.1 0 (log m) Speed Classes

Intuition suggests that machines much slower than the fastest machine can be ignored with little loss in the
schedule value. We formalize this intuition below. Let sl > sz > . . . s, be the speeds of the machines. We can
assume that m > 1/e3 for otherwise we can use the algorithm in [I] to obtain a PTAS.

Lemma 2.6 With (1 + E) loss we can ignore machines with speed less than sl/,s . A.
Proof Sketch. Consider an optimal schedule S and let k (j) be the machine on which job j is executed in
S. Let Ai = Ck(j)=i wjCj be the contribution of machine i to the schedule value. Let l be such that A! =

minl,i<l/,3 Ai. We obtain a new schedule as follows. We remove the jobs allocated to Me and execute them on
MI in aPdelayed fashion. By time stretching on MI it is clear that we can execute the jobs of Me with no more
than a 1/e2 factor delay. Since Ae 5 e3 . OPT this does not effect the schedule by more than a (1 + E) factor. We
schedule the jobs allocated on all the slow machines (the ones with speed smaller than sl/cs . 6) and assign them
to Me. We do this as follows. All the jobs that start in each of the slow machines in the interval I, are scheduled
in the interval I, on Me. It is easy to see that all the jobs will complete on Me within the same interval I, and
hence their completion times are affected by no more than a (1 + E) factor.

Following Lemma 2.1 and Lemma 2.6 we can assume that our instance has O (l o g m / ~) distinct speeds.
We group machines with the same speed in to classes and refer to them as a speed class. Let K be the exact
number of classes we have with the implicit understanding that K = O(1og m). For 1 5 i 5 K let mi and si
denote the number of machines and the common speed of the machines in the ith class where we assume that
sl > s 2 > . . . > SK. We will denote by Mj machines in the jth speed class.

2.1.2 Generating Extra Machines

The lemma below shows that any schedule can be transformed into a 1 + O(e)-approximate schedule where we
use only a (1 - €)-fraction of the machines from any sufficiently large machine class. We will assume from here
on that we are working with this reduced allocation of machines. The remaining extra machines would be useful
in a key step for implementing the dynamic programming.

Lemma 2.7 Given m machine instance of identical parallel machines where m > 1/c3 there is a 1 + O(e)-
approximate schedule on m (1 - e3) machines.

2.1.3 Shifting

Our next goal is to show that we can preprocess the input instance I in such a way that we can guarantee
a schedule in which every job will be completed within a constant number of intervals from its release. We
accomplish this by selectively retaining only a fraction of the jobs released in each interval and shifting the
rest to later intervals. This basic idea plays a crucial role in obtaining the PTAS for the parallel machine case
Plrjl Cj wjCJ [I]. Jobs released in an interval I, are classified into small or one of O(1) large size classes.
Small jobs were ordered in non-increasing order according to the ratio wj/pj and large jobs in each size class in
decreasing order of their weights. In each class the number of jobs retained is restricted by the volun~e that could
be processed in the interval I,. The rest are shifted to the next interval. Since the number of classes is O(1) the
total volume of jobs released at R, in the modified instance was O(1) times the volume of I,. By time shifting
one could show that there exists an approximate schedule in which all the jobs at I, could be finished within
0 (1) intervals after R,. This enabled locality in dynamic programming.

However, there is no simple generalization of the above ideas to the related machine case because the notion
of small and large jobs is now relative to the machine speed as well. The number of distinct job sizes that can be
executed as large in an interval could be R(1og m) and we cannot afford to have a volume of jobs released at I,
that is G(log m) times the processing capability of the machines in I,. We design a new procedure below that
essentially still retains the property concerning the volume. The proof that this procedure leads only an 1 + O(E)
loss is more involved. We describe the shifting procedure formally below.

Let J, be the set of jobs released at R,. For each speed class i from K down to 1 the following process is
done.

a Let T; and H; be the small and large jobs with respect to speed si released at R, that are still to be
processed.

a The number of distinct size classes in H: is 0(1/e2). In each size class we pick jobs in order of non-
increasing weights until the sum of processing times of jobs picked just exceeds misil,/e2 or we run out
of jobs.

a We pick jobs in T: in non-increasing wj/pj ratio until the processing time of the jobs picked just exceeds
misiI, or we run out of jobs.

a We remove the jobs picked from T$ and H: from J,.

Jobs that are not picked in any speed class are shifted to the next interval. We repeat this process with each
successive interval. Let I' be the modified instance obtained after the shifting process above and for each x let
JL be the set of jobs released at R, in I/.

Lemma 2.8 For any given rounded job size s let a: (S) and bg (S) denote the number of jobs of size s started in
I, as small and large respectively in an optimal schedule S. There exists a 1 + O(E)-approximate schedule S'
such that jbr each s and x either a: (S f) < $b:(~') or bg (St) = 0.

Proof. Consider an optimal schedule S . Suppose a: (S) > $ b i (S) for some size s and interval s. We create
a modified schedule S t as follows. We take all the jobs executed as large and execute them as small within the
same interval I,. Since the number of jobs executed as small is much larger that those executed as large it is
easily seen that this can be accomplished by stretching the interval by only a (1 + 6) factor and in the modified
schedule b:(S1) = 0. This can be done simultaneously for all s and x which do not satisfy the lemma and no
interval stretches by more than a 1 + E factor. It is easy to see that the schedule S t is a 1 + O(c)-approximation
to S .

Lemma 2.9 For the nzodiJied instance I' obtained from I by the shifting procedure

2. There exists a (l+O(e))-approximate schedule for I' in which alljobs in J, arejnished by Rs+O(log(l/E)/Ej.

Proof Sketch. We prove (2) first. Let J: be the set of jobs picked by the shifting procedure in speed class i ,
1 5 i 5 K at R,. We note that all jobs in J: can be executed by machines of speed class i in time O(I,).
This implies that p (J l) will be small relative to interval Ij.+O(log(llE)lE) because of the geometrically increasing
property of interval sizes. Therefore time stretching any arbitrary but fixed optimal schedule allows us to create
the required space to execute all the jobs in J: by then.

Now we prove (1). We observe that the shifting procedure does the following. For each size class s that can
be executed as large in I , the procedure picks the ng/e2 jobs in non-increasing weight order from J, where 7 ~ ;

is the maximum number of jobs that can executed as large of size class s in I,. From Lemma 2.8 there exists a
(1 + O(E))-approximate schedule in which the jobs executed as large in I , of size s are contained in the set we
pick. The small jobs that are executed in I , can be treated as fractional jobs and this enables us to pick them in a
greedy fashion in non-increasing order of wj/pj and we pick enough jobs to fill up the volume of I z . The proof
of the near optimality of greedily picking small jobs is similar to that of the parallel machine case in [l] and we
omit the details in this version.

2.2 Overview of Dynamic Programming Framework

We give a brief overview of the dynamic programming framework from [l] and then point out the technical
hurdles that we need to solve to use the framework to obtain the PTAS.

The idea is to divide the time horizon into a sequence of blocks, say Bl, B2, . . ., each containing a constant
number of intervals dates, and then do a dynamic programming over these blocks by treating each block as a unit.
There is interaction between blocks since jobs from an earlier block can cross into the current block. However
by the choice of the block size and Lemma 2.3, no job crosses an entire block. In other words jobs that start in
Bi finishes no later than A frontier describes the potential ways that jobs in one block finish in the next.
An incoming frontier for a block Bi specifies for each machine the time at which the crossing job from Bipl
finishes on that machine. Let .F denote the possible set of frontiers between blocks. The dynamic programming
table maintains entries of the form 0 (i, F, U) : the minimum weighted completion time achievable by starting
the set U of jobs before the end of block Bi while leaving a frontier of F E F for block Bi+1. Given all the table
entries for some i, the values for i + 1 can be computed as follows. Let C(i , Fl, F2, V) be the minimum weighted
completion time achievable by scheduling the set of jobs V in block Bi, with Fl as the incoming frontier from
block Bi-I and F2 as the outgoing frontier to block We obtain the following equation.

O (i + l , F , U) = min (O (i , F 1 , v) + C (i + 1 , F ' , F , U - V))
F r E F , V C U

3 Implementing the Dynamic Programming Framework

Broadly speaking, we need to solve three problems for using the dynamic programming framework described in
the preceding section. First, we need a mechanism to compactly describing for any block Bi, the set of jobs that
were released prior to Bi and have already been scheduled. Second, we need to ensure that the set of frontiers .F
is polynomially bounded for any block Bi. Finally, given a set of jobs to be scheduled within a block, we should
be able to find a (1 + E)-approximate schedule. A basic theme underlying our implementation of these steps is
to relax the requirements of the three procedures in the dynamic programming. In the parallel machine case we
could enumerate the set of jobs U that are release in Bi and will be scheduled in Bi itself by separating out the
small and large jobs. Since there were only O(1) large job sizes in each Bi this was relatively easy. Now we
have a (K) large job sizes. We would have to enumerate m"(K) possibilities. To get around this difficulty we
use a global scheme that is inspired by the recent work on the multiple knapsack problem [4]. We will be able to
figure out most of the important jobs using the above scheme in polynomial time and we show this approximate
enumeration suffices. A similar situation arises in enumerating the frontiers. Here we use a different idea based
on Lemma 2.7. Finally, another difficult part is the problem of scheduling jobs in a fixed number of intervals.
The approach we adopt is some what akin to the approach taken by Hochbaum and Shmoys [9] to obtain a PTAS
for the makespan problem on related machines. The basic idea is to do dynamic programming across the speed
classes going from the slowest speed class to the fastest. The advantage of this approach is the following. Any
fixed size class is large for only O(1) consecutive speed classes because of the geometrically increasing speeds.
This implies that while we are doing the dynamic programming the number of size classes for which we have to
maintain detailed information (in terms of the exact number of jobs remaining etc) is only O(1) as opposed to
R (K) if we tried to solve the problem all at once. The many subtle details that we need to make all these ideas
work are explained in the remainder of this section.

In what follows, we assume each block consists of a = O(l /e2) intervals, the precise constant is of not much
importance.

3.1 Compact Description of Remaining Jobs

We start by observing that by Lemma 2.9 and our choice of block size, there exists a (1 + E)-approximate schedule
such that all jobs released in a block Bi are always scheduled by the end of the block In fact we will be able
to schedule all jobs released in Bi in Bi+1 irrespective of how many of them have been executed in Bi itself. We
will restrict our attention to only such schedules. Thus in order to compactly describe the set of jobs that remain
we need only describe a mechanism for compact representation of the set of jobs chosen to be scheduled within
the block. However, due to the non-uniform nature of machine speeds, this process turns out to be more involved
than the identical machine case. In particular, we rely on some ideas from the recent approximation scheme
for the multiple knapsack problem [4]. We show that there exists a (1 + €)-approximate schedule that needs to
enumerate over only polynomially many distinct possibilities for set of jobs chosen for scheduling within a block
Bi. Let w,,, be the maximum weight of any job released in the block Bi. Let X be the set of all jobs released
in Bi whose weight is less than w,,,/m2. We ignore the set X from our consideration of candidate jobs to be
scheduled in Bi and schedule X in the block Bi+l. Clearly, this increases the cost of the schedule by at most a
(1 + o(1))-factor. As a result, we can assume that the weights of all jobs released in Bi belong to 2 log m distinct
weight classes only. We will use the following elementary fact from [4]:

Proposition 1 Let h = O(1og m). Then the number of h-tupks (kl, ka, ... , kh) such that ki 6 [0 ... h] and
C ki 5 h is rnO(').

We can now describe our scheme for enumerating the job subsets. For each interval I j E Bi we separately
enumerate the jobs that are released at I j and will be scheduled in Bi. Since the number of intervals in each block
is fixed for a fixed E, we concentrate on a single interval.

1. For interval Ij E Bi we first specify Wj the total weight of jobs that are released in Ij and will be scheduled
in Bi. We specify this weight in multiples of wmaX/m2 by an integer l such that ! . wmaX/m2 does not ex-
ceed the optimal allocation. The parameter [takes only O(m2) distinct values, we have only polynomially
many distinct choices to enumerate over. The set of jobs that are lost due to the downward rounding are
scheduled in Bi+1 and thus it worsens the schedule only by a (1 + o(1))-factor.

2. For a given Wj (specified by the integer e), we specify a partition of Wj into h = 2 log m classes one
for each of the distinct size classes. Since an exact partition would require quasi-polynomially many
possibilities, we need to do this step approximately. Let 6 = e3. We specify an approximation to an
exact partition of the form (w: , W: , . . . , w:) by guessing an integer vector (kl , l~ , . . . , kh) such that ki (6 .
Wj / h) 5 W" (k l + 1) (6 . Wj/h). By Proposition I , the number of tuples enumerated above is bounded
by mO(') for any fixed 6 > 0. The error introduced by this approximate under-guessing can be bounded by
6Wj over all h size classes. Since all jobs released in Bi are always scheduled by the end of the block Bi+*,
the cost of the schedule as a result of the under-guessing above increases by at most a factor of 1 + O(6).

3. Finally, for each size class of jobs released in I j , we greedily pick the smallest number of jobs whose
cumulative weight exceeds the weight guessed above.

In summary we showed that by restricting the choice to important jobs based on weights we need to consider
only a polynomial number of sets as candidates for jobs scheduled within a block.

3.2 Frontiers

A frontier describes the set of jobs that are crossing over from a block Bi to the next block By Lemma 2.4,
we know that only a job that is scheduled as large can participate in a frontier, and by Lemma 2.5 we know
that there are only 1/e4 distinct time instants in any interval by which a job scheduled as large starts or ends.
Further the number of distinct job sizes that can execute as large in a block is O(1/e4). Hence a crossing job
on a large machine can be specified by the size and the time instant it starts in the interval. Let q = O(l/e8)
denote the total number of such distinct frontiers for any machine. In order to describe the over all frontier,
we need to specify this information for each machine. Consequently, we can describe the frontier by a vector
(mil, ml2, ..., ml,, mzl,, mKq) where mi j denotes the number of machines in the speed class Ci that have a
job finishing at the jth distinct instant in block Bi+1. Clearly, an exact enumeration would require considering
quasi-polynomial number of possibilities. We now argue that in order to obtain a (1 + 6)-approximation it suffices
to work with a polynomial-sized set 3 of frontiers. With any vector of the above form, we associate a vector
(Ell, E12, ..., El,, 1217, E K q) in 3 where E i j = mij if mi < 1/e3, and otherwise, (lij - 1) (e1lmi) < mij <
lij(el1mi). Clearly, there are only O(l/ellK) = mO(l) such vectors to be considered. However, the above
approximation of an exact frontier description over-allocates machines for large machine classes, and thus would
necessitate extra machines. The total number of extra machines needed by any large speed class is bounded by
el1 q . mi which is at most e3 - mi. We allocate these extra machines by using Lemma 2.7 which allowed us to
keep aside an c3 mi machines for each speed class of size at least 1/c3.

3.3 Scheduling of Jobs Within a Block

We now describe a (l+e)-approximate implementation of the procedure C(i , Fl, F2, 2). Recall that C(i , Fl, F2, 2)
is the procedure that computes the best schedule for a set of jobs Z that are to be scheduled in block Bi with in-
coming and outgoing frontiers specified by Fl and F2.

In what follows, it will be useful to assume that F[and F! denote the components of Fl and Fz that cor-
respond to the jth speed class Mj. Our scheduling procedure is based on a dynamic programming across the
classes; we move from the slowest class to the fastest class and treat each class as a unit. In [I] a procedure was

given to schedule on a single speed class. The basic idea was to enumerate large job placements and schedule
the small jobs greedily in the space left by the large jobs. Enumerating the large job placements was relatively
easy because there were only 0(1) sizes that were large in each block. We do not know how to efficiently enu-
merating all large job placements with K speed classes in polynomial time, hence we resort to doing dynamic
programming across classes. When considering a current class we would like to know the jobs that are already
scheduled in the preceding blocks. The main difficulty in implementing the dynamic program is to maintain a
compact description of this information. To achieve this we use the notion of template schedules.

Template Schedules: A template schedule at a machine class Mj provides information about the jobs that
remain to be scheduled along with some "coarse" information constraining how these jobs may be scheduled. It
is this additional scheduling information that implicitly encodes information concerning weights of the remaining
jobs. Specifically, a template schedule at a machine class Mj specifies scheduling information for all jobs that
are eligible to be scheduled as large on a machine in M j , as well as global information concerning the volume of
jobs that must be scheduled as small on machines in Mi-1 through MI. We describe these two aspects next.

Let L (j) denote the set of job sizes that can be scheduled as large at the jth machine class, and let ZL(j)
denote the job set Z restricted to the sizes in L (j) . At the jth speed class we consider all possible extensions of
template schedules for the (j - 1)th machine class so as to incorporate scheduling information for the jobs in the
set Q = ZL(g) \ ZL(j- l) . A template schedule specifies the following information for each size class in Q.

The number of jobs that are executed as large and the number that are executed as small.

For those executed as small, the number that will be executed in each interval of Bi.

For those executed as large, the number that will be executed for each possible placement in each of the
speed classes where that size can be executed as large. We note that this information includes speed classes
greater than j, that is classes that have already been processed.

Lemma 3.1 The template schedule information is polynomial size for each size class in the set Q.

Proof Sketch. For any fixed size class the number of speed classes on which it can be scheduled as large is
O (l o g (l / ~) / ~) since the speeds are increasing geometrically. Further the number of distinct start times of large
jobs in each class is also fixed for fixed E, following Lemma 2.5. Hence specifying the numbers is polynomial.

At each class M j the number of job sizes in Q is 0 (l / e 2) , hence the total information for all sizes in Q is still
polynomial. Observe that template schedules do not maintain any explicit information about the weight of the
jobs that remain. However, this information is implicit and can be recovered as follows. Consider the scheduling
at a machine class M j that receives the template schedules for all job sizes that can be scheduled as large on a
machine in Mi. Fix one such size class, say pk, and let at denote the number of jobs of size pk that are required
to start at the tth starting time in block Bi on a machine in Mj. Since a template schedule completely determines
the finishing times of all jobs of size pl;, it is straightforward to determine the weights associated with each one
of the at jobs (we resolve all ties in some fixed canonical manner).

The idea of template schedule as described so far allows us to identify the jobs that are to be scheduled as
large at any machine class. However, we need additional information to determine what jobs are available to be
scheduled as small at any machine class. We do this by maintaining a vector of the form (Vl, ..., V,) such that
1/1 specifies the total volume of the small jobs that must be scheduled in the lth interval of the block Bi in classes
Mi - through M I .

Lemma 3.2 The template schedule information for small jobs is of polynomial size.

Proof Sketch. We claim that the precision needed for each V, is O(e5/m2). Assume without loss of generality
that s~ = 1 and hence sl = O(m). Consider the smallest large job in the block and let s be its size. From
our assumption that s~ = 1, s is at least e3 times the smallest interval in Bi. We claim that the volume can be
maintained in multiples of c2 times s. This is because the size of each job in the block can be approximated to
within a (1 + E) factor by multiples of the above quantity. Coupled with the fact that the total volume that can be
executed in the block is O(m2) the lemma follows.

Dynamic Programming with Template Schedules We maintain a table T (j , X , Y) where j ranges over ma-
chine speed classes and X and Y are template schedules for Mj and Mj-l respectively. T (j , X, Y) stores the
best weighted completion time that is consistent with X and Y. Note that by knowing X and Y the job set that
is to be scheduled in Mj is determined. Given X and Y computing T(j , X , Y) involves the following.

Checking for consistency between X and Y.

Checking the feasibility of scheduling the jobs in Mj implied by X and Y.

Note that the template schedules implicitly determine the best weighted completion times. We briefly describe
the feasibility con~putation below.

Scheduling Jobs within a Machine Class: For any machine class Mj, once we know the position of jobs to
be scheduled as large, as well as the volume of jobs to be scheduled as small in each one of the a intervals, it
is relatively easy to determine whether or not there exists a feasible schedule (with 1 + e loss) that is consistent
with this specification and the in-coming and out-going frontiers F[and F!.

We conclude with the main result of this paper.

Theorem 1 There is a PTAS for the problem QlrjI Cj wjCj.

References

[I] F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S. Khanna, I. Milis, M. Queyranne, M. Skutella,
C. Stein, and M. Sviridenko. Approximation Schemes for Minimizing Average Weighted Completion Time
with Release Dates. Proceedings of the 40th Symposium on the Foundations of'computer Science (FOCS),
October 1999.

[2] N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid. Approximation schemes for scheduling on parallel
machines. Journal of Scheduling, 1 :55-66, 1998.

[3] S. Chakrabarti, C. A. Phillips, A. S. Schulz, D. B. Shmoys, C. Stein, and J. Wein. Improved scheduling
algorithms for minsum criteria. In F. Meyer auf der Heide and B. Monien, editors, Automata, Lunguages and
Programming, number 1099 in Lecture Notes in Computer Science. Springer, Berlin, 1996. Proceedings of
the 23rd International Colloquium (ICALP196).

[4] C. Chekuri and S. Khanna. A PTAS for the Multiple Knapsack Problem. In Proceedings of the 11th Annual
ACM-SIAM Symposium on Discrete Algorithms, 2000.

[5] C. Chekuri, R. Motwani, B. Natarajan, and C. Stein. Approximation techniques for average completion time
scheduling. In Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 609-61 8, 1997.

[6] M. X. Goemans. Improved approximation algorithms for scheduling with release dates. In Proceedings of
the 8th ACM-SIAM Symposium on Discrete Algorithms, pages 591-598, 1997.

[7] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G Rinnooy Kan. Optimization and approximation in
deterministic sequencing and scheduling: a survey. Ann. Discrete Math., 5:287-326, 1979.

[8] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. Scheduling to minimize average completion time:
Offline and online algorithms. Adath. of Operations Research, 22:5 13-544, 1997.

[9] D. S. Hochbaum and D. B. Shmoys. A polynomial approximation scheme for scheduling on uniform
processors: using the dual approximation approach. SIAM Journal on Computing, 17539-551, 1988.

[lo] J. A. Hoogeveen, P. Schuurman, and G. J. Woeginger. Non-approximability results for scheduling problems
with minsum criteria. In R. E. Bixby, E. A. Boyd, and R. Z. Rios-Mercado, editors, Integer Programming
and Combinatorial Optimization, volume 1412 of Lecture Notes in Computer Science, pages 353-366.
Springer, 1998.

[l I] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. Sequencing and scheduling:
algorithms and complexity. In S. C. Graves et al. , editor, Handbooks in OR & MS, volume 4, pages
445-522. Elsevier Science Publishers, 1993.

[12] J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker. Complexity of machine scheduling problems. Annals
of Discrete Mathematics, 1 : 343-362, 1977.

[13] A. Munier, M. Queyranne, and A. S. Schulz. Approximation bounds for a general class of precedence
constrained parallel machine scheduling problems. In R. E. Bixby, E. A. Boyd, and R. Z. Rios-Mercado,
editors, Integer Programming and Combinatorial Optimization, volume 1412 of Lecture Notes in Computer
Science, pages 367-382. Springer, 1998.

[14] C. Phillips, C. Stein, and J. Wein. Minimizing average completion time in the presence of release dates.
Mathematical Programming B, 82: 199-223, 1998.

	A PTAS for Minimizing Average Weighted Completion Time With Release Dates on Uniformly Related Machines
	Recommended Citation

	A PTAS for Minimizing Average Weighted Completion Time With Release Dates on Uniformly Related Machines
	Abstract
	Comments

	tmp.1182367511.pdf.ulis1

