1,965 research outputs found

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    DIFFERENTIAL EVOLUTION FOR OPTIMIZATION OF PID GAIN IN ELECTRICAL DISCHARGE MACHINING CONTROL SYSTEM

    Get PDF
    ABSTRACT PID controller of servo control system maintains the gap between Electrode and workpiece in Electrical Dis- charge Machining (EDM). Capability of the controller is significant since machining process is a stochastic phenomenon and physical behaviour of the discharge is unpredictable. Therefore, a Proportional Integral Derivative (PID) controller using Differential Evolution (DE) algorithm is designed and applied to an EDM servo actuator system in order to find suitable gain parameters. Simulation results verify the capabilities and effectiveness of the DE algorithm to search the best configuration of PID gain to maintain the electrode position. Keywords: servo control system; electrical discharge machining; proportional integral derivative; con- troller tuning; differential evolution

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    Design of Intelligent PID Controller for AVR System Using an Adaptive Neuro Fuzzy Inference System

    Get PDF
    This paper presents a hybrid approach involving signal to noise ratio (SNR) and particle swarm optimization (PSO) for design the optimal and intelligent proportional-integral-derivative (PID) controller of an automatic voltage regulator (AVR) system with uses an adaptive neuro fuzzy inference system (ANFIS). In this paper determined optimal parameters of PID controller with SNR-PSO approach for some events and use these optimal parameters of PID controller for design the intelligent PID controller for AVR system with ANFIS.  Trial and error method can be used to find a suitable design of anfis based an intelligent controller. However, there are many options including fuzzy rules, Membership Functions (MFs) and scaling factors to achieve a desired performance. An optimization algorithm facilitates this process and finds an optimal design to provide a desired performance. This paper presents a novel application of the SNRPSO approach to design an intelligent controller for AVR. SNR-PSO is a method that combines the features of PSO and SNR in order to improve the optimize operation. In order to emphasize the advantages of the proposed SNR-PSO PID controller, we also compared with the CRPSO PID controller. The proposed method was indeed more efficient and robust in improving the step response of an AVR system and numerical simulations are provided to verify the effectiveness and feasibility of PID controller of AVR based on SNRPSO algorithm.DOI:http://dx.doi.org/10.11591/ijece.v4i5.652

    Force control of a tri-layer conducting polymer actuator using optimized fuzzy logic control

    Get PDF
    Conducting polymers actuators (CPAs) are potential candidates for replacing conventional actuators in various fields, such as robotics and biomedical engineering, due to their advantageous properties, which includes their low cost, light weight, low actuation voltage and biocompatibility. As these actuators are very suitable for use in micro-nano manipulation and in injection devices in which the magnitude of the force applied to the target is of crucial importance, the force generated by CPAs needs to be accurately controlled. In this paper, a fuzzy logic (FL) controller with a Mamdani inference system is designed to control the blocking force of a trilayer CPA with polypyrrole electrodes, which operates in air. The particle swarm optimization (PSO) method is employed to optimize the controller\u27s membership function parameters and therefore enhance the performance of the FL controller. An adaptive neuro-fuzzy inference system model, which can capture the nonlinear dynamics of the actuator, is utilized in the optimization process. The optimized Mamdani FL controller is then implemented on the CPA experimentally, and its performance is compared with a non-optimized fuzzy controller as well as with those obtained from a conventional PID controller. The results presented indicate that the blocking force at the tip of the CPA can be effectively controlled by the optimized FL controller, which shows excellent transient and steady state characteristics but increases the control voltage compared to the non-optimized fuzzy controllers

    Quadrotor team modeling and control for DLO transportation

    Get PDF
    94 p.Esta Tesis realiza una propuesta de un modelado dinámico para el transporte de sólidos lineales deformables (SLD) mediante un equipo de cuadricópteros. En este modelo intervienen tres factores: - Modelado dinámico del sólido lineal a transportar. - Modelo dinámico del cuadricóptero para que tenga en cuenta la dinámica pasiva y los efectos del SLD. - Estrategia de control para un transporte e ciente y robusto. Diferenciamos dos tareas principales: (a) lograr una con guración cuasiestacionaria de una distribución de carga equivalente a transportar entre todos los robots. (b) Ejecutar el transporte en un plano horizontal de todo el sistema. El transporte se realiza mediante una con guración de seguir al líder en columna, pero los cuadricópteros individualmente tienen que ser su cientemente robustos para afrontar todas las no-linealidades provocadas por la dinámica del SLD y perturbaciones externas, como el viento. Los controladores del cuadricóptero se han diseñado para asegurar la estabilidad del sistema y una rápida convergencia del sistema. Se han comparado y testeado estrategias de control en tiempo real y no-real para comprobar la bondad y capacidad de ajuste a las condiciones dinámicas cambiantes del sistema. También se ha estudiado la escalabilidad del sistema
    corecore