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Abstract 

 Conducting polymers actuators (CPAs) are potential candidates for replacing conventional actuators in various fields 

such as robotics and biomedical engineering due to their advantageous properties including low cost, light weight, 

low actuation voltage and biocompatibility. As these actuators are very suitable for use in micro-nano manipulation 

and injection devices, where the magnitude of the force applied to the target is of crucial importance, the force 

generated by CPAs needs to be accurately controlled. In this paper, a fuzzy logic (FL) controller with Mamdani 

inference system is designed to control the blocking force of a trilayer CPA with polypyrrole electrodes, which 

operates in air. A Particle Swarm Optimization (PSO) method is employed to optimize the controller’s membership 

function parameters, and therefore to enhance the performance of the FL controller. An Adaptive Neuro-Fuzzy 

Inference System model which can capture the nonlinear dynamics of the actuator is utilized in the optimization 

process. The optimized Mamdani FL controller is then implemented on the CPA experimentally and their 

performance are compared with a non-optimized fuzzy controller as well as with those obtained from a conventional 

PID controller. The results presented indicate that the blocking force at the tip of the CPA can be effectively 

controlled by the optimized FL controller which shows excellent transient and steady state characteristics, and 

decreases the control voltage considerably compared to the PID and non-optimized fuzzy controllers.  

 

 



 

 

1. Introduction 

Conducting polymer actuators (CPAs) are promising replacements for conventional actuators such as 

electric motors, hydraulic and pneumatic actuators due to their unique properties such as light weight, 

biocompatibility, compactness and low power consumption [1-8]. Especially the ones that can operate in 

air can be used in various cutting-edge applications in biotechnology, robotics and mechatronics [9-12]. 

In order for CPAs to be fully utilized in the applications, their tip displacement and/or blocking force 

response should be precisely controlled using either open-loop or feedback control methods. Different 

control methods have been proposed to obtain a desired tip displacement response from CPAs some of 

which are a conventional PID controller [4], a robust adaptive controller to overcome time varying 

actuation behavior of CPAs due to solvent evaporation during the long-time operation in air [13], a 

repetitive controller to precisely track the repeating trajectories [14], an adaptive sliding mode controller 

to obtain robust performance in the presence of parametric uncertainties and unmodeled disturbances 

[15].  

In addition to controlling the tip displacement of trilayer bender type CPAs, their blocking force must be 

controlled in applications such as micro-nano manipulation and cell-injection devices since the target may 

be damaged due to an excessive force applied by the actuator. Although there are many work in the 

literature focused on controlling the tip displacement of CPAs, there is no reported work on the control of 

blocking force for this class of actuators. This may be due to the fact that the models for the force output 

of electroactive polymers are either quasi-static models which cannot be used in controller design [16, 17] 

or not suitable for the trilayer bender type CPAs operating in air [18]. As a dynamic force model for 

trilayer CPAs does not exist, one possible way is to design linear controllers by using a model obtained by 

linear system identification. However, using linear models in designing controllers for either CPAs or 



other ionic polymer actuators  may result in poor performance due to their nonlinear and uncertain 

dynamics.  

 

Fuzzy logic (FL) controllers can be used to control polymer actuators as there are difficulties in deriving 

their precise mathematical models [19,20]. A disadvantage of the FL control is that designing an effective 

rule base requires experience, intuition and trial-and-error methods which make it difficult to optimize 

performances especially when the dimensions of the rule base become larger [20]. In order to overcome 

the problem of manual tuning of the membership functions and parameters of FL controllers, heuristic 

algorithms can be utilized [21,22]. However, this also requires a model of the system for optimization 

process. Neuro-fuzzy methods can be used to obtain data driven models that capture nonlinearities in 

system dynamics. They can be used for either controller design or optimization of an existing controller. 

Adaptive neuro-fuzzy inference system (ANFIS) method was also used as a controller for the tip 

displacement of both ionic polymer metal composite (IPMC) actuators [20] and trilayer bender type CPAs 

[19]. Recently, a data driven ANFIS model was used to design a predictive controller for a high-speed 

electric multiple unit due to its feature for capturing nonlinearities very effectively [23].  

 

In this paper, we propose a FL controller in order to obtain a desired force response at the tip point of a 

trilayer CPA operating in air. The FL controller has a Mamdani type inference system with 49 rules. One 

of the main advantages of the Mamdani type FL controller is that it does not require a model of the 

actuator. However, its major drawback is that the parameters of the controller i.e. the membership 

functions are constructed based on a trial and error method which makes it a very time consuming 

procedure. To overcome this problem, the Particle Swarm Optimization (PSO) algorithm is used to fine 

tune and optimize the parameters of the antecedent and consequent membership functions used in the 

controller. Optimization is done offline using a nonlinear force model of the actuator which is obtained by 

using ANFIS) method. Both FL controller and its optimized version are applied to the actuator to 

demonstrate the efficacy of the force control method implemented in this study. In order to make a 



comparison, a PID controller is designed whose parameters are also fine-tuned by using the PSO 

algorithm and implemented on the actuator experimentally.  

 

The rest of the paper is organized as follows. In Section 2, the tri-layer CPA is introduced and its 

operation mechanism is described. A background on FL Control is given and controller design procedure 

is explained in Section 3. In Section 4, the PSO method and its implementation for the FL controller is 

discussed in details. In Section 5, experimental results are provided. Summary and concluding remarks 

are presented in the last section. 

 

2.  Conducting Polymer Actuator and its Dynamics 

2.1. CPA Actuator 

The trilayer conjugated polymer actuator used in this study which is shown in Fig. 1a has the dimensions 

of 14 mm × 5 mm × 0.17 mm.  It consists of three main layers as shown in Fig. 1b. On the outer surfaces, 

there are two PPy layers, each of which has a thickness of 30 µm. They are the electroactive components 

of the actuator. Between them, there is an amorphous, porous nonconductive layer with a thickness of 110 

µm that is made of Polyvinylidene Difluoride (PVDF). Its main duty is to hold the liquid electrolyte that 

supplies ions which are responsible for the actuation. The PVDF layer is coated with 0.2 µm thick gold 

particles on both sides to provide a conductive surface on which the PPy electrodes can be 

electrochemically deposited [24]. The electrolyte consists of lithium triflouromethanesulfonimide 

+ -(Li TFSI )  and the solvent propylene carbonate (PC).  

 



 
(a) (b) 

Figure 1. Conducting Polymer actuator: (a) optical image and (b) schematic view of the PPy actuator. 

 

The operation principle of CPAs is related to the electronic structure of them, which allows electrons to 

be removed via electrochemical oxidation [19]. When an adequate voltage is passed through the PPy 

layers on the actuator, the PPy layer on the anode side is oxidized, while that on the cathode side is 

reduced, as illustrated below; 

 

                                               
Oxidation- + - -

Reduction
PPy+TFSI PPy TFSI +e→←    (1) 

                                                 

Figure 2. Actuation mechanism of the trilayer CPAs. 

 

To maintain charge neutrality within the PPy layers, TFSI
-
 anions will be absorbed by the positively 

charged PPy electrode. Hence this layer expands. While the anions (TFSI
-
) are expelled from the 

negatively charged electrode, the reduction of the PPy generates a volume contraction [24]. As a result, 



the expansion-contraction triggered by the redox process causes the cantilevered structure to bend 

towards the negative electrode as illustrated in Fig. 2. 

  

3. Fuzzy Logic Control Design for Trilayer CPAs 

FL controller provides an algorithm which can convert the linguistic rules in terms of “if-then” 

expressions based on expert knowledge into an automatic control strategy. A FL controller typically 

includes four major units: the fuzzifier, which converts crisp input data into a fuzzy term set; the fuzzy 

rule base, which contains fuzzy rules describing how the fuzzy system acts; the fuzzy inference engine, 

which is responsible for approximate reasoning by associating input variables with fuzzy rules; and the 

defuzzifier, which turns fuzzy output of the FL controller to a crisp value for the actual system input over 

the target [25]. When designing a FL controller, the selection of fuzzy sets of linguistic variables, the 

shapes of membership functions, the fuzzy rule base, the inference mechanism, and the defuzzification 

method are considered as design parameters all of which have influence on control performance. 

Therefore, it is the designer’s duty to choose these factors with care by observing the system’s behavior 

and using trial and error method, to achieve the optimum design for FL controller.  

 

A FL controller is preferred especially when the processes are too complex for analysis by quantitative 

techniques, or when the available sources of information are interpreted imprecisely, or indeterminately 

[26]. Modeling of CPAs has not reached the accuracy desired. As a result, proposed models cannot 

represent all nonlinearities and uncertainties in the behavior of these actuators. FL controllers’ non-

model-based design feature makes them a promising control method for precise positioning of CPAs 

compared with model based controllers [19]. Moreover, using Neuro-Fuzzy based models which can 

consider the nonlinearities of the systems can further improve the performance of the Fuzzy controllers if 

they are incorporated into the design process. Therefore, we first propose a Mamdani Fuzzy Logic 

inference system to control the blocking force of the CPA. 



 

The design procedure for a fuzzy logic controller is based on heuristic information obtained from the 

dynamic behavior of the system which is the trilayer bender type CPA in this work [26,27,28]. Choosing 

the inference system determines the format of the fuzzy rules. Mamdani reasoning system for which the 

fuzzy rules are defined as  

                                 :             ( 1,2,..., )i i i iR IF x is A AND y is B THEN z is C for i k=   (2) 

where k  is the number of rules, xand y are the input variables, z  is the output variable, 
iA ,

iB and 
iC  are 

the linguistic values of x , y and z , respectively. The rest of the design is comprised of four steps which 

are given as follows.  

 

Step 1:  After picking the reasoning system, the initial step to develop a fuzzy controller is to choose 

input and output variables. The input variables are error, (t)e  and its time derivative, ( )d e t . The output 

of the fuzzy controller is the actuation voltage ( )u t . The error, (t)e  is defined as the difference between 

the desired tip displacement of the actuator, 
dy  and its measured displacement,

ay  

  

 

Step 2: Appropriate membership functions should be chosen to fuzzify the crisp values of each input and 

output variable. Selection of number and type of the membership functions is based on trial and error. 

Seven triangular membership functions are considered for each input and output variable. The triangular 

membership function is  

  

                                
i

i i
A

i i i i

x a c x
(x) max min , ,0

b a c b
µ

  − −
=    − −  

                                                                  3 



where parameters 
ia  and 

ic  locate the feet of triangular fuzzy set
iA ; 

ib  is the peak of the triangle and x  

is the crisp value. Fuzzy sets are labeled with linguistic terms as negative big ( )NB , negative medium 

( )NM   negative small ( )NS , zero ( )ZZ , positive small ( )PS , positive medium ( )PM , positive big 

( )PB . 

Step 3:  The rule base of the fuzzy controller, which consists of 49 rules, are determined and summarized 

in Table 1. 

   Table 1. Rule base of Mamdani fuzzy controller for CPA. 

 

 

 

 

 

 

 

 

                              

 

 

 

 

Step 4: Defuzzification of the output value calculated during the fuzzy reasoning is performed in this step 

to obtain their crisp values. We use a centroid defuzzification technique given by 

 
*

( )

( )

i

i

z z dz
z

z dz

µ

µ
= ∫
∫

  4 

where *z  is the defuzzified output, 
iµ  is the aggregated membership degree and z  is the output value. 

Output surface of Mamdani fuzzy controller is illustrated in Fig. 3. 

U de 
NB NM NS ZZ PS PM PB 

e 

NB NB NB NB NM NS NS ZZ 

NM NB NB NM NM NS ZZ PS 

NS NM NM NS NS ZZ PS PM 

ZZ NM NM NS ZZ PS PM PM 

PS NM NS ZZ PS PM PM PB 

PM NS ZZ PS PM PM PM PB 

PB ZZ PS PM PM PM PB PB 



 

Figure 3. Output surface of Mamdani fuzzy logic controller. 

 

4. Fuzzy membership function tuning with Particle Swarm Optimization (PSO): 

4.1. PSO Background 

PSO is an evolutionary computation method introduced by Kennedy and Eberhart which is inspired by 

simulating the unpredictable choreography of a bird flock [29]. The logic behind the PSO is that each 

member of the swarm, called a particle, follows the best performing particle (leader) while searching the 

best experience each particle has. To implement the PSO algorithm for optimization problems, the 

following procedure should be considered [29]: 

1) Initialize a swarm of particles with randomly assigned positions and velocities. Select the 

dimension d of each particle based on the number of parameters to be optimized. 

2) Evaluate the desired optimization fitness function for each particle in d variables. 

3) Compare the fitness value of the particle with particle’s best experience, pbest . If the present 

value is better than pbest  then take the current value as pbest  and assume its location as the 

pbest  location. 



4) Compare the fitness results with swarm’s overall previous best, gbest . Replace  gbest  with 

particle’s array index and value if it’s better than gbest . 

5) Change the velocity and position of the particle respectively using the following equations : 

 1 1 2 2( 1) *V ( ) * ( (t)) * ( ( ))id id id id gd idV t w t c r p x c r p x t+ = + − + −   (5) 

 ( 1) ( ) ( 1)id id idx t x t v t+ = + +   (6) 

where ( 1)idv t +  and ( )idv t  are the updated and current particles velocities, ( 1)idx t +  and ( )idx t  are 

the updated and current position of particles, respectively.
1c  and 

2c  are positive constants while 
1r  

and 
2r  normalized random numbers between 0 and 1.

idp  and gdp  represent  pbest  and gbest , 

respectively in each iteration. 

6) Go back to step 2 until the criterion is met. Termination is usually based upon a sufficiently good 

fitness or a maximum number of iterations 

4.2. ANFIS model: 

In order to optimize the FL controller for the CPA, one needs to use a pre-identified mathematical model. 

A better performance in FL controllers would be expected when they are optimized by using a nonlinear 

model which captures the dynamic behavior of the actuator better. Since a nonlinear force model does not 

exist for CPAs, we obtain a data driven nonlinear model obtained via ANFIS method.  

ANFIS is a combination of fuzzy inference system’ (FIS) interpretability and neural networks’ 

adaptability which overcomes limitations of design process of FIS by tuning it with input-output data 

[26]. FIS takes the linguistic expressions and trains them by empirical data using learning algorithm of 

neural networks [30]. Intelligent architecture of ANFIS consists of a Takagi-Sugeno (T-S) type fuzzy 

inference system implemented in the framework of an adaptive neural network. Here, T-S type FIS is 

considered with two inputs 1 2( 1), ( 1)x xu k y k= =− −  and one output ( )y k . Applying the pre-designed 



FL controller to the CPA, the required data is collected for training the ANFIS model. The dynamic 

model of the CPA is then expressed in terms of the fuzzy inference rules, iR  [23]: 

 
1 2

1 2

: if ( 1) is and ( 1) is then

( ) ( 1) ( 1) ; ( 1, 2,..., )

i i

i

i i

i i

R y k A u k A

y k y k u k i nθ θ ξ

− −

= − + − + =
  (7) 

 

where n denotes the number of fuzzy rules and { }1 2
,i iA A  denotes the fuzzy linguistic values. Consequent 

parts of T-S type fuzzy rules (7) are linear equations in two input variables, { }1 2,
i iθ θ   and a constant, iξ  

which are determined by ANFIS while it is being trained.  ANFIS consists of five layers as shown in Fig. 

3.  

 

Figure 3. ANFIS Structure 

 

In each layer, there are nodes with particular features. Circles represent fixed nodes, while squares 

indicate adaptive nodes. A brief explanation for the layers of ANFIS is given as follows [23,30]: 



Layer 1: All nodes in this layer are adaptive and generate a membership degree for each input variable. 

The membership functions i
jA

µ  of fuzzy set 
i

jA  are defined by the Gaussian membership functions: 

 
( )2

2
exp ; ( 1,2,..., ; 1,2)

2
i
j

j ij

A
ij

x c
i n jµ

σ

 −
 = − = =
 
 

  (8) 

where ( 1,2)jx j =  is the input variable and the set { },ij ijc σ  represents the center and width of the 

Gaussian membership functions. 

Layer 2: All nodes in this layer are fixed nodes, each represents a fuzzy rule. Nodes multiply the 

incoming signals from antecedent fuzzification layer and calculate the firing strength of rules iω   using 

the node function below: 

 
1 2
i ii A A

ω µ µ=       (9) 

Layer 3: Fixed nodes in the third layer are responsible for computing the normalized firing strength of 

fuzzy rules calculated in the previous layer. Normalized firing strength iω  is the ratio of firing strength of 

each rule to the sum of the firing strength of all rules; 

 

1Σ

i
i

n

i i

ω
ω

ω=
=   (10) 

Layer 4: Adaptive nodes in this layer take the normalized firing strength value of each fuzzy rule and 

multiply it by consequent part of each fuzzy rule. The node function of this layer is 

 
1 2. ( ) ( 1) ( 1)i i

i ii iy k y k u kω ω θ θ ξ = − + − +    (11) 

Layer 5: In the last layer, there is a single fixed node which is responsible for computing the overall 

output:  



 
1

1 2

1

( ) ( )

( 1) ( 1)

n

i i

i

n
i i

i i

i

y k y k

y k u k

ω

ω θ θ ξ

=

=

=

 = − + − + 

∑

∑
  (12)  

ANFIS structure used in this study has been created in MATLAB and it runs a hybrid learning algorithm 

which comprised of least square approximation and back propagation methods to accomplish training 

process. The details of the algorithm can be found in [30]. For the nonlinear identification of the 

actuator’s behavior, we used a PBRS signal with 3 mN amplitude and 0.5 Hz frequency as a reference 

signal in the closed-loop form. The sampling frequency for the data acquisition was selected as 100 Hz 

for 100 seconds. First 5000 samples of the data collected were used for training and the last 5000 were 

used for validation. The fuzzy model was then developed in ANFIS using 50 training epochs and different 

combinations of membership functions in terms of type and number which resulted in a system with  

three fuzzy sets for each input with Gaussian bell membership functions which is given in Fig. 4. 

 

Figure 4. ANFIS model membership functions for inputs 



4.3. Fuzzy membership function tuning with PSO: 

FL controller design is based on the expert knowledge and heuristic information. Constructing the rule 

base of the controller relying on heuristic information is easier than selecting suitable parameters for 

fuzzy membership functions. These parameters define the geometrical specification of fuzzy membership 

functions which are the place of each foot and peak for a triangular kind. Obtaining such parameters by 

experimentation and trial-error approach is a tedious task. Therefore, it is possible to use heuristic 

algorithms such as PSO, genetic algorithm, and cuckoo method as an optimization method to search for 

the parameters of fuzzy membership functions and tune them to achieve the best controller performance 

[21, 22]. Application of PSO to optimize the fuzzy controller is shown schematically in Fig. 5. The model 

used here for optimization procedure is the one obtained by ANFIS. 

 

Figure 5.  The proposed PSO membership function tuning method. 

 

Each particle used in the PSO represents the parameters of input and output membership functions. Since 

the goal of the PSO is to minimize the tracking error, Integral of Time Absolute Error (ITAE) 

performance index was chosen as the objective function. ITAE performance index can be calculated as 

 
0

(t)ITAE t e dt
∞

=∫   (13) 



As there are two inputs and one output variables in the proposed FL controller, each with seven triangular 

membership functions, 63 dimensions are required for every particle to tune the input and output 

membership functions. However, as a feet position also corresponds to the peak position of the following 

membership function, the parameter numbers to be optimized reduce to 15. The PSO parameters used in 

this study are shown in the Table 2. The membership functions before and after optimization are given 

Fig 6 and Fig. 7, respectively.  

 

Table 2. PSO parameters for tuning membership functions of FL controller 

Parameter Value 

1C  1 

2
C  3 

Inertia w  factor 0.5 

Number of particle 20 

Number of  searching iterations 50 

 

 

Figure 6.  Fuzzy sets of the input and output variables for non-optimized fuzzy controller 



 

Figure 7. Fuzzy sets of the input and output variables for optimized fuzzy controller 

 

5. Experimental setup and results: 

The experimental setup to implement the designed Fuzzy Logic controllers for controlling the force 

output of the CPA is illustrated in Fig. 8. The force generated at the tip of the cantilevered PPy actuator 

was measured via a Millinewton (IPR EPFL, Switzerland) force sensor. Employing xPC Target platform, 

an analog signal supplied by the force sensor was acquired and transferred to MATLAB/Simulink 

environment by National Instruments NI 6251 data acquisition card. The target PC, through which the 

experiments were performed, has a 1 GB RAM and Intel P4 processor. It runs in MS-DOS environment 

where the controller algorithms are compiled as C codes. As a result, the control algorithm works fast 

enough for real time implementation. 



 

Figure 8. Experimental setup 

 

In micro/nano gripping and cell injection applications where CPAs are very suitable to provide the 

required manipulation, it is important to keep the desired force at the tip of the actuator in a desired set 

point. In evaluating the designed controller performance for such problems, it is suitable to use a step 

reference as a test input for the closed loop control system. Hence, we used step reference inputs with two 

different amplitudes which are 1 mN and 3 mN. To make a fair comparison, a PID controller was fine-

tuned via the PSO method using an identified transfer function model. The gains of the PID controller are 

obtained as 0.47, 0.66, 0.005P I DK K K= = = . 

We first implemented the non-optimized and optimized FL controllers and then a PID controller was also 

implemented. The actuator’s force output and the calculated control voltage upon the implementation of 

Mamdani type fuzzy controller is given in Fig. 9. The Mamdani fuzzy controller performed quite well in 

terms of both transient and steady-state characteristics. Moreover, the maximum control voltage of the 



Mamdani type fuzzy controller is approximately 0.25 V which is well-below the safe operation limit of 

the CPA.  

 

Figure 9. Force response of the actuator to a step of 1 mN under FL controller 

 

The optimized controller was then implemented experimentally. Its response is illustrated in Fig. 10. An 

improvement is visible in its transient response under the optimized FL controller. Finally, the PID 

controller based on an identified model of the CPA was implemented for 1 mN step input for comparison. 

The response of the actuator under the PID controller is shown in Fig. 11.  

 



 

Figure 10.  Force response of the actuator to a step of 1 mN under optimized FL controller

 

Figure 11. Force response of the actuator to a step of 1 mN under PID controller 



As shown in Figures 10-12, all controllers are successful in controlling the force output of the actuator 

and reaching the desired final value. However, their performance in terms of step response characteristics 

are different. Step response characteristics of the actuator under all controllers are summarized in Table 3. 

Table 3. Performance of the controllers to 1-mN step response 

Control Method Rise Time 

[s] 

Settling Time 

[s] 

Overshoot 

[%] 

Fuzzy Logic 0.79 1.03 0 

Optimized Fuzzy Logic 0.23 0.33 0 

PID 0.53 4.10 9 

 

Table 4 shows the rise time, settling time and overshoot of the actuator’s response to a 1 mN step 

reference. FL controller performs better than PID controller since there is no overshoot in its response, 

besides it achieves a 4 fold improvement in settling time. The optimized FL controller has no overshoot, 

and has the shortest rise time and settling time among the other controllers. A performance improvement 

of 2-3 times for rise time and 3-12 times for settling time compared to FL and PID controllers, when the 

FL controller is optimized.  When we check the required control voltage to reach and stay at the desired 

set point, it is seen that the voltage consumption of the non-optimized FL controller is the lowest. 

Optimizing the FL controller results in improvement in the transient performance of the actuator but 

increases the required control voltage. However, all three controllers’ voltage requirements were well 

below the limit to prevent the damage to the actuator.  

A 3-mN step reference was also applied to the actuator to examine its performance under a more 

aggressive reference signal. The force generated at the tip of the actuator and the calculated control 

voltage by the fuzzy logic, optimized fuzzy logic and PID controllers are illustrated in the Figures 12-14 

respectively. 



 

Figure 12. Force response of the actuator to 3 mN step reference under FL controller 

 

Figure 13. Force response of the actuator to 3 mN step reference under optimized FL controller 



 

Figure 14. Force response of the actuator to 3 mN step reference under PID controller 

 

The sudden jump in the step reference yields an initial high amplitude voltage spike in the control input 

which makes the actuator to rapidly produce a force output to reach to the desired set point. This high 

voltage may harm the actuator unless carefully treated. After this initial spike, the control voltage reduces 

to a constant value which keeps the force output of the actuator at the steady state position. It is seen from 

Figure 14 that the maximum control voltage of the PID controller is increased when 3 mN step input is 

applied to the actuator. The control voltage becomes nearly 1.25 V which is very close to the maximum 

safe voltage that can be applied to the actuator. Hence, the set point was kept below 3 mN to avoid 

damaging the actuator. The step response performances of all controllers are compared for a 3 mN step 

input in Table 4.  

 

 



 

Table 4. Performance of the controllers to 3-mN step response 

Control Method Rise Time 

[s] 

Settling Time 

[s] 

Overshoot 

[%] 

Fuzzy Logic 1.03 1.57 0 

Optimized Fuzzy Logic 0.51 0.72 0 

PID 0.57 4.70 7 

 

Table 4 shows that the FL controller improved settling time by decreasing it to one third of the PID 

controller’s settling time. Moreover, no overshoot is observed in the actuator’s performance with the FL 

controller while the PID controller’s response has 7% overshoot which is not negligible. The optimized 

FL controller has the fastest rise time and settling time without any overshoot which again makes it the 

most promising control technique compared to the other two control techniques.  

Repeatability: 

In order to prove the repeatability of the experiments and robustness of the designed controllers, we 

applied them on a second CPA sample whose geometrical specifications were the same as the first one. 

Again two step signals with varying amplitudes of 1 mN and 3 mN were used as the command inputs. 

The second actuator’s step response characteristics are listed in Tables 5-6. For the sake of brevity, the 

responses of the second sample are not presented here.  

 Table 5. 1-mN step response performance of the controllers on the second actuator  

Control Method Rise Time 

[s] 

Settling Time 

[s] 

Overshoot 

[%] 

Fuzzy Logic 0.96 1.20 0 

Optimized Fuzzy Logic 0.23 0.34 0 

PID 0.59 5.05 10 

 

 



 

 

 

Table 6. 1-mN step response performance of the controllers on the second actuator 

Control Method Rise Time 

[s] 

Settling Time 

[s] 

Overshoot 

[%] 

Fuzzy Logic 1.48 2.48 0 

Optimized Fuzzy Logic 0.96 1.25 0 

PID 0.59 8.70 7.5 

 

A noticeable trend was obtained in the results of the second sample’s performance with the proposed 

controllers. As in the first sample, the second actuator exhibits no overshoot under the FL controller and 

its optimized version. By comparing the step response results of this actuator with those of the first CPA 

sample, it can be understood that the second actuator is constantly slower in rise time and settling time. 

All the controllers show a repeatable performance and the optimized FL controller showed a significant 

performance improvement in the blocking force response of the CPA. 

Robustness to Actuator Drift 

To examine the designed controllers’ performance in dealing with the drift problem associated with this 

class of actuators, a 1 mN step response test is performed for 600 s which is 10 times longer than the 

previously conducted experiments in this study. The results of the tests are shown in Figure 15. All 

controllers are successful in compensating for the actuator’s drift which is due to feedback control rather 

than the control methodologies implemented. 

 



 

Figure 15. Actuator’s long time response to a 1 mN step under different control schemes  

 

6. Conclusion 

In this study, Mamdani fuzzy inference system was employed to design a FL controller to control the 

force output of a trilayer CPA with PPy electrodes. To the best of our knowledge, this is the first time to 

report on the blocking force control of the conducting polymer actuators. The membership functions of 

the pre-designed FL controller were optimized by using the PSO algorithm. The results show that 

noticeable enhancements have been obtained in the step response characteristics of the optimized FL 

controller. The designed controllers were also implemented on another same sized CPA to show the 

repeatability of the results. The PID controller which was tuned based on an identified model of the first 

sample showed relatively poor performance characteristics compared to the optimized FL controller on 

the second sample. A longer duration operation test proved that all the controllers proposed in this study 

were capable of compensating for actuator drift because of utilizing feedback control. 

 



More effort is still needed to control the force output of the CPAs more precisely. To achieve this, more 

accurate force models should be established. Currently, there is no such a dynamic model to accurately 

describe the blocking force of this class of smart actuators, as the complete mechanism behind the 

actuation dynamics of the CPAs has not been fully understood yet. We have shown that nonlinear 

identification and fuzzy modelling of the actuator’s behavior with ANFIS is very effective  in designing 

and optimizing fuzzy controllers for the force control of the CPAst.  As future work, the force control of a 

gripper articulated with CPAs will be investigated.   
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