8,173 research outputs found

    Understanding requirements engineering process: a challenge for practice and education

    Get PDF
    Reviews of the state of the professional practice in Requirements Engineering (RE) stress that the RE process is both complex and hard to describe, and suggest there is a significant difference between competent and "approved" practice. "Approved" practice is reflected by (in all likelihood, in fact, has its genesis in) RE education, so that the knowledge and skills taught to students do not match the knowledge and skills required and applied by competent practitioners. A new understanding of the RE process has emerged from our recent study. RE is revealed as inherently creative, involving cycles of building and major reconstruction of the models developed, significantly different from the systematic and smoothly incremental process generally described in the literature. The process is better characterised as highly creative, opportunistic and insight driven. This mismatch between approved and actual practice provides a challenge to RE education - RE requires insight and creativity as well as technical knowledge. Traditional learning models applied to RE focus, however, on notation and prescribed processes acquired through repetition. We argue that traditional learning models fail to support the learning required for RE and propose both a new model based on cognitive flexibility and a framework for RE education to support this model

    Learning requirements engineering within an engineering ethos

    Get PDF
    An interest in educating software developers within an engineering ethos may not align well with the characteristics of the discipline, nor address the underlying concerns of software practitioners. Education for software development needs to focus on creativity, adaptability and the ability to transfer knowledge. A change in the way learning is undertaken in a core Software Engineering unit within a university's engineering program demonstrates one attempt to provide students with a solid foundation in subject matter while at the same time exposing them to these real-world characteristics. It provides students with a process to deal with problems within a metacognitive-rich framework that makes complexity apparent and lets students deal with it adaptively. The results indicate that, while the approach is appropriate, student-learning characteristics need to be investigated further, so that the two aspects of learning may be aligned more closely

    Developing digital literacy in construction management education: a design thinking led approach

    Get PDF
    Alongside the digital innovations in AEC (Architectural, Engineering and Construction) practice, are calls for a new type of digital literacy, including a new information-based literacy informed by creativity, critical analysis and the theoretical and practical knowledge of the construction profession. This paper explores the role of design thinking and the promotion of abductive problem situations when developing digital literacies in construction education. The impacts of advanced digital modelling technologies on construction management practices and education are investigated before an examination of design thinking, the role of abductive reasoning and the rise of normative models of design thinking workflows. The paper then explores the role that design thinking can play in the development of new digital literacies in contemporary construction studies. A three-part framework for the implementation of a design thinking approach to construction is presented. The paper closes with a discussion of the importance of models of design thinking for learning and knowledge production, emphasising how construction management education can benefit from them

    Conceptual design and multidisciplinary optimisation of power device for solar powered aircraft

    Get PDF
    Solar-powered aircraft is propelled by a photovoltaic cell that converts solar energy into electrical energy. The extra energy is stored in a rechargeable battery for later use when solar energy is not available. The performance of solar-powered aircraft is limited to solar radiation availability, low efficiency of the photovoltaic cell, and low energy density of the rechargeable battery. The research aims to improve the power device sizing, reduce the aircraft's mass, and improve the flight duration for sustainable flight operations for solar-powered aircraft (CLOUD 1). This was achieved using a multidisciplinary optimisation tool, a commercial package ModeFrontier software. Photovoltaic Geographic information system (PVGIS) software was used to obtain a solar radiation model for Malaysia. The model was used to develop both the energy balance and mission path for Malaysia to facilitate the availability and utilisation of solar energy for successful flight operations. Airfoil analysis was conducted. WE.3.55.9.3 airfoil was the best-chosen airfoil used for the wing design, while the empennage design, NACA 0008, was the most suitable. Hence, the latter was used for horizontal and vertical tail design with XFLR5 v6 software's aid. A novel methodology for the power device sizing was developed on MS Excel with 435.48Wh, 540.96Wh, 32, and 70 as the total required electrical energy, available solar energy, number of solar cells required, and the number of batteries required, respectively. The optimisation strategy embraced ModeFrontier software with the goal set to; minimise total electrical energy required, minimise the total mass, and maximise the available solar energy. The optimisation results show that available solar energy was 283.56Wh, the total electrical power required was 228.32Wh, the number of solar cells was 16, and the number of batteries was 36. The total mass of the aircraft was 2.05 Kg, respectively. The optimisation results achieved 53%, 51%, and 26% reductions in the number of solar cells, the number of batteries, and the aircraft's mass. Also, the flight duration was improved by 33%. The optimal configuration was used to design the solar-powered aircraft (CLOUD I)

    Enhancing project-related behavioral competence in education

    Full text link
    The workforce has increasingly been demanding an educational model that produces students experienced in real project management (PM) practices. This includes producing technically competent students--one who can manage real-world project constraints of cost and schedule but also possess critical project related behavioral competence. Such soft skills are essential if a project is to run smoothly and eventually succeed. In this paper, we describe an educational framework grounded in outcomes based education to enhance project-related behavioral competence. Instructors can leverage this framework to augment their existing courses and develop the critical career skill sets of graduating students

    Teaching telecommunication standards: bridging the gap between theory and practice

    Get PDF
    ©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Telecommunication standards have become a reliable mechanism to strengthen collaboration between industry and research institutions to accelerate the evolution of communications systems. Standards are needed to enable cooperation while promoting competition. Within the framework of a standard, the companies involved in the standardization process contribute and agree on appropriate technical specifications to ensure diversity and compatibility, and facilitate worldwide commercial deployment and evolution. Those parts of the system that can create competitive advantages are intentionally left open in the specifications. Such specifications are extensive, complex, and minimalistic. This makes telecommunication standards education a difficult endeavor, but it is much demanded by industry and governments to spur economic growth. This article describes a methodology for teaching wireless communications standards. We define our methodology around six learning stages that assimilate the standardization process and identify key learning objectives for each. Enabled by software-defined radio technology, we describe a practical learning environment that facilitates developing many of the needed technical and soft skills without the inherent difficulty and cost associated with radio frequency components and regulation. Using only open source software and commercial of-the-shelf computers, this environment is portable and can easily be recreated at other educational institutions and adapted to their educational needs and constraints. We discuss our and our students' experiences when employing the proposed methodology to 4G LTE standard education at Barcelona Tech.Peer ReviewedPostprint (author's final draft

    A course on digital electronics based on solving design-oriented exercises by means of a PBL strategy

    Get PDF
    Recently, new syllabuses are being implemented accordingly to the European Higher Education Area (EHEA) in Spain. This paper describes the methodology and assessment strategy applied in the subject ‘‘Digital Circuits and Systems’’ (CSD) in the third semester course in the Telecommunications Engineering degree at the Castelldefels School of Telecommunications and Aerospace Engineering (EETAC) of the Universitat Polite`cnica de Catalunya (UPC). The course’s main learning objective is that students be able to analyse and design simple combinational and sequential circuits by means of hardware description languages for programmable devices and program applications using microcontrollers and C language. Small groups of two or three students work in cooperation using PBL techniques to solve design-oriented assignments, while instructors act more as mediators than lecturers in order to facilitate project development and knowledge acquisition. The experience we describe corresponds to the spring term of 2011, a period in which this methodology was applied to 46 students. This work compares statistically the influence of the students’ background on their academic performance in our subject. A significant correlation has been detected between test marks and the final grade, based on continuous assessment. Students’ opinions have been obtained by means of a survey at the end of the course. Although the high workload and involvement, because this methodology requires constancy and commitment from the students, most of them have positive opinions on the development of the subject, due to the fact that they realise that they have put into practice several competences or cross-curricular skills, while acquiring the course content, and furthermore, most of them have passed the course, even with higher grades than the ones from other subjects in the same semester.Peer ReviewedPostprint (published version

    Problem based learning in architectural education

    Get PDF
    There is limited published research and discussion on pedagogical approaches in architectural education. Problem (or Project) Based Learning is used successfully in other professional disciplines, and, consequently, there have been attempts to utilise the same pedagogical approach in architectural education. This paper critically reviews PBL implementations at the Faculty of Architecture, Technical University of Delft (TUDelft), Netherlands and the De-partment of Architecture, University of Newcastle, New South Wales, Australia and draws general conclusions about the implementation of PBL in architecture and particular recommendations with respect to the teaching of architectural computing

    A Software Radio Challenge Accelerating Education and Innovation in Wireless Communications

    Full text link
    This Innovative Practice Full Paper presents our methodology and tools for introducing competition in the electrical engineering curriculum to accelerate education and innovation in wireless communications. Software radio or software-defined radio (SDR) enables wireless technology, systems and standards education where the student acts as the radio developer or engineer. This is still a huge endeavor because of the complexity of current wireless systems and the diverse student backgrounds. We suggest creating a competition among student teams to potentiate creativity while leveraging the SDR development methodology and open-source tools to facilitate cooperation. The proposed student challenge follows the European UEFA Champions League format, which includes a qualification phase followed by the elimination round or playoffs. The students are tasked to build an SDR transmitter and receiver following the guidelines of the long-term evolution standard. The metric is system performance. After completing this course, the students will be able to (1) analyze alternative radio design options and argue about their benefits and drawbacks and (2) contribute to the evolution of wireless standards. We discuss our experiences and lessons learned with particular focus on the suitability of the proposed teaching and evaluation methodology and conclude that competition in the electrical engineering classroom can spur innovation.Comment: Frontiers in Education 2018 (FIE 2018

    Problem-based learning: enhancing students learning of building information modelling

    Get PDF
    Building Information Modelling (BIM) is an innovative collaborative process underpinned by digital technologies introduced to improve project performance in the Architecture, Engineering and Construction (AEC) industry. Growth in industry demands has necessitated BIM inclusion into the Higher Education (HE) curricula as both a pedagogic and practical objective to prepare and develop aspiring Built Environment (BE) professionals with the required competence for contemporary practice. However, comprehension of BIM concepts and developing the skill set required for its application can be overwhelming for students and crucial to mitigating this challenge is the adoption of appropriate learner-centred strategies. Problem-based Learning (PBL) is becoming a widespread strategy to address such concern. This paper evaluates the impact of PBL strategy on students accelerated learning of BIM based on a case study of an undergraduate BIM module. Findings from the study show PBL benefits on students’ knowledge acquisition (cognitive and affective) of BIM concept and development of transferable skills (academic and disciplinary) equipping them with capabilities to become BIM competent and workplace ready for the AEC industry
    • …
    corecore