

MURDOCH RESEARCH REPOSITORY
http://researchrepository.murdoch.edu.au

Learning requirements engineering within an engineering ethos

Author(s): Armarego, Jocelyn

Year: 2004

Source: AWRE’04 (9th Australian Workshop on Requirements
Engineering), Adelaide, 6-7 Dec. 2004, pp. 11.1-11.11.

Official URL: http://awre2004.cis.unisa.edu.au/

This is the author’s final version of the work, as accepted for publication following
peer review but without the publishers’ layout or pagination.

It is posted here for your personal use. No further distribution is permitted.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Repository

https://core.ac.uk/display/11231248?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchrepository.murdoch.edu.au/�
http://awre2004.cis.unisa.edu.au/�

Learning Requirements Engineering within an Engineering Ethos

Jocelyn Armarego
School of Engineering Science, Murdoch University Western Australia

jocelyn@eng.murdoch.edu.au

Abstract

An interest in educating software developers within

an engineering ethos may not align well with the
characteristics of the discipline, nor address the
underlying concerns of software practitioners.
Education for software development needs to focus on
creativity, adaptability and the ability to transfer
knowledge. A change in the way learning is undertaken
in a core Software Engineering unit within a
university’s engineering program demonstrates one
attempt to provide students with a solid foundation in
subject matter while at the same time exposing them to
these real-world characteristics. It provides students
with a process to deal with problems within a
metacognitive-rich framework that makes complexity
apparent and lets students deal with it adaptively. The
results indicate that, while the approach is
appropriate, student-learning characteristics need to
be investigated further, so that the two aspects of
learning may be aligned more closely.

1. Introduction

There is an increase in interest in educating software
developers by means of an engineering approach. – the
growth in undergraduate engineering programs for
software attests to this.

However, studies of practitioner perspective, and of
the software development process itself suggest this
approach is flawed – it does not focus on the
underlying characteristics of software development, nor
adequately address the needs of practitioners.

Education for software developers needs to
encompass more than the ability to apply knowledge
gained, flexibility and creativity in the application of
knowledge is also required. A competent practitioner
not only knows the procedural steps for problem

solving but also understands when to deploy them and
why they work.

This paper notes the concerns raised in practitioner
studies and proposes a change in the way software
development may be learnt in an engineering
environment in order to address these concerns.

2. Educating Software Engineers

Over 35 years ago, those involved in the
development of software agreed that one mechanism
for dealing with the intrinsic difficulties (eg
complexity, visibility, and changeability [1]) of
developing software was to embed its production
within an applied science environment. Royce [2] was
the first to note explicitly that an engineering approach
was required, in the expectation that adhering to a
defined, repeatable process would enhance software
quality. The underlying assumption of this approach is
that the world works rationally and that therefore
“good” software development is achieved by applying
scientific investigative techniques [3].

This focus on engineering is mirrored in the
education of software developers. Where Engineers
Australia (Institution of Engineers, Australia)
accredited two undergraduate programs for the
engineering of software in the mid-1990s (Melbourne,
Murdoch), by 2002 this figure approached 20. A
similar trend is being seen in the US, with an
exponential growth in offerings of undergraduate
software engineering degrees.

Increasingly, therefore, approaches to educating
software developers model scientific and engineering
methodologies, with their focus on process and
repeatability. In general this education is based on a
normative professional education curriculum, in which
students first study basic science, then the relevant
applied science [4], so that learning may be viewed as a
progression to expertise through task analysis, strategy
selection, try-out and repetition [5].

3. The nature of software

Recent work argues that such an approach to
learning software development should be regarded as
flawed. Rather than being situated in a rational world,
software is a collaborative invention: its development
an exploratory and self-correcting dialogue [6].

In this alternative view the process of defining and
designing a system is seen as one of insight-driven
knowledge discovery [7] facilitated by opportunistic
behaviour [8, 9]. Participants in the process must
remain sensitive to progressive modifications [10]
which lead not to a problem-solution, but to an
‘evolved fit’ acceptable to all stakeholders within the
problem space.

The quintessential creativity of this process [11-14]
is hampered by strict adherence to engineering and
science methodologies. These:
• restrict essential characteristics such as

opportunism [7]
• assist in adding accidental complexity through

their attempts to control the RE's professional
practice. (Sutcliffe and Maiden [15] suggest strict
adherence to methods and procedures may restrict
natural problem-solving) and

• impose a plan at odds to inherent cognitive
planning mechanisms and hence interfering with
the management of knowledge (Visser and Hoc
[16] suggest that, in practice, a plan is followed
only as long as it is cognitively cost-effective).

More broadly, software technology is seen as a
rapidly shifting landscape: new methods, tools,
platforms, user expectations, and software markets
underscores the need for SE education that provides
professionals with the ability to adapt quickly [17].

Attempts to address these issues have been made in
the area of software development education, where the
traditional lecture + laboratory work + assessment tasks
are augmented by either a capstone project which
simulates a start-to-finish development environment or
an industry-based placement, typically towards the
completion of the qualification. These are seen to
provide opportunities for both authentic and
experiential learning, with emphasis not so much on
acquiring knowledge as on increasing students' ability
to perform tasks. While accepted as valuable, this
approach is flawed in several respects:
• the opportunity (project or placement) is presented

as an aid to content learning rather than a
substitute

• it focuses on know-how which will allow students
to gain competence to practice within given

frameworks (but not necessarily outside of them,
therefore limiting adaptability)

• students are expected to transfer skills acquired to
the world of work, but without them necessarily
being rooted in cognitive content and professional
judgement

(based on [18]).

As Waks [4] explains, in this normative model of

professional education science provides “ a rational
foundation for practice” [original emphasis], with
practical work at the last stage of the curriculum, where
students are expected to apply science learned earlier in
the curriculum to real-life problems. He continues that
the crisis of the professions arises because real-life
problems do not present themselves neatly as cases to
which scientific generalisations apply.

Therefore, although projects and work placements
provide experiential learning opportunities, learning
from experience is not automatic: it requires transfer
(the ability to apply something learned in one situation
to another setting [19]) to be enabled. This transfer is
enhanced where there is a focus on metacognitive
strategies and reflection. It is this facet that is often
missing from capstone projects and placements.

4. Practitioner perspectives of SE
education

In his Point/Counterpoint discussion, Bach stated

that one reason software engineering is not more
seriously studied is the common industry belief that
most of the books and classes that teach it are
impractical [20]. An overview of the studies
undertaken to gain a practitioner perspective indicates
that such an indictment is not too far from the mark.

Industry requires professionals who integrate into
the organisational structure, and, rather than cope
specifically with today's perceived problems, have
models, skills and analytical techniques that allow them
to evaluate and apply appropriate emerging
technologies. Professional practitioners with such skills
become agents of change [17].

Practitioner-based studies (eg [21-23] and in the
Australian context [24-27]) assist us in building a
profile of a practicing Software Engineer. They show
us that, to paraphrase Fielden [28], in addition to
traditional technical skills, software development
professionals of the 21st century need to

• understand the learning process as a meta-skill
and to develop flexibility in thinking

• have a deep understanding of self and others
in complex human activity systems

• be adept in questioning underlying cultural,
political, and intellectual assumptions

• be tolerant, compassionate, and at ease with
multiple realities in complex systems

• value people as agents of change and
technology as the tool

• value subjective involvement in technological
areas

• allow time to explore new ideas and to reflect
on possible processes and outcomes

• develop balanced approaches both structurally
and creatively to managing change.

Model IT-focussed curricula address profession-
specific knowledge and skills required to undertake
professional graduate employment within the
discipline. Initial competence (ie cognitive attributes à
la Bloom taxonomy [29]), is also developed though
perhaps not to an appropriate level: the curricula
indicate that a graduate within the broad IT disciplines
should emerge from formal education with a
competency of application (or on occasion at a the
lesser level of comprehension) [30-32].

5. Addressing practitioner needs

Macauley and Mylopoulos [33] acknowledge that a
standard university lecture cannot achieve what
industry requires. For them efficient software
development activities “require a certain level of
knowledge and maturity which can only be gained
through experience in dealing with practical
problems”. Others also note the inadequacy of formal
education in training competent software professionals
[23, 34].

The nature of software development, and in
particular the RE component of it (opportunistic,
exploratory, creative, emergent [7, 13, 35, 36]) implies
a need to

• incorporate creativity-enhancing activities
within the curriculum

• foster adaptability in students by providing for
divergent as well as convergent thinking

• focus on metacognitive strategies and reflection
as an aid to transfer of the skills and knowledge
learnt.

Glass [37] suggests that discipline and creativity are
the odd couple of software development – the
discipline imposed by methodology, for example,
forms a frame for the opportunistic creativity of design.
Cropley and Cropley [38], however, suggest that the
process of creativity and innovation in engineering is
poorly understood and not adequately fostered in

under- graduate teaching. This deficiency results in an
engineering culture that is frequently resistant to the
factors that promote creativity and innovation.

A focus on flexibility and productive thinking is
also necessary, so that students learn to use past
experience on a general level, while still being able to
deal with each new problem situation in its own terms.
Gott et al [39] posit that this adaptive/generative
capability suggests the performer not only knows the
procedural steps for problem solving but understands
when to deploy them and why they work, in effect is
wise in the use of them.

The implication of this is the explicit development
of metacognitive strategies, and the ability to reflect in
as well as on action [40]. The recurring findings from
Scott’s work on applying a Professional Capability
Framework (eg [41]) is the high ranking of Intellectual
Capability (defined by two components, Way of
Thinking (incorporating cognitive intelligence and
creativity) and Diagnostic Maps (developed through
reflection on experience)).

Turner [24] suggests tradition and inertia act as
some of the formidable barriers to substantive revisions
to curricula in line with the findings of practitioner-
based studies. Yet providing a learning environment
that enhances, for example, the opportunity for creative
thinking has the potential for long-term benefits to SE
students: there is evidence that students who have been
taught to explore different ways to define problems
(perhaps best exemplified in Requirements
Engineering) engage in more creative problem solving
over the longer term [42].

One avenue for incorporating the needs for
flexibility, creativity and reflection in Software
Engineering education is to address the pedagogical
aspects rather than the content. The educational
dilemma becomes one of providing an educational base
that enables software developers to both create and
engineer the systems they build: to be adaptable to the
changing environment that is inevitable in their chosen
discipline. One approach to addressing this dilemma is
described in the following sections.

6. Educating Requirements Engineers

Education for Requirements Engineers based on

traditional learning models tends to emphasise
technical knowledge, and is based largely on notations
and prescribed processes. Although [43] suggest this is
a requirement of the software domain, it is at odds with
the inherent characteristics associated with real
problems, especially in requirements where [35]:

• complexity is added to rather than reduced
with increased understanding of the initial
problem

• metacognitive strategies are fundamental to
the process

• problem-solving needs a rich background of
knowledge and intuition to operate effectively

• a breadth of experience is necessary so that
similarities and differences with past strategies
are used to deal with new situations.

The School provides a number of degree programs
focussing of the development of software.
Requirements Engineering (ENG260) is the first of the
core SE units, currently offered in semester 1 of the
second year of study. During their first year students
have been immersed in a scientific/engineering
paradigm where problem-solving through laboratory
procedure, repeatability of experimentation and rigour
in mathematics are key learning objectives. ENG260
provides a contrast to this learning environment that
some students find difficult to assimilate.

Although due process and procedure has its place,
the focus of the unit is on divergent thinking and the
development and evaluation of alternatives. In this unit
they are asked to ignore the problem-solving (coding)
of a situation presented (students come to the course
with some competence in programming), and to
explore and then formulate the problem itself.
However, experience in teaching RE has shown that
this is a challenge to students’ expectations of
learning:

• they expect there to exist a definitive solution
to the problems with which they are presented
(à la science/mathematics)

• they expect to define the problems only in
terms of the programming language with
which they are familiar (currently Java)

• they expect a fundamentally competitive class
environment to exist

• they expect their ‘wild ideas’ to be laughed at
and ultimately rejected, and therefore are
inhibited in expressing them.

The approach taken, based on Problem-based
Learning (PBL), is an attempt to provide students with
a solid foundation in subject matter while at the same
time exposing them to the real-world characteristics
noted above. It provides students with a process to deal
with problems within a metacognitive-rich framework
that makes complexity apparent and lets students deal
with it adaptively. The course material has been
reworked for a PBL environment, and taught in this
mode from February 2003.

6.1 Characteristics of PBL

As an ideology, Problem-based Learning is rooted
in the experiential learning tradition, but with a number
of different forms according to the nature of the field
and goals of the learning situation [44]. Through its
emphasis on problem and student-centredness, PBL is
seen to:

• acknowledge the base of student experience
• emphasise student responsibility for learning
• cross boundaries between disciplines
• intertwine theory with practice
• focus on the process of knowledge acquisition

rather than the products of that process
• change staff roles from instructor to facilitator
• focus on student self and peer assessment
• focus on communication and interpersonal

skills so that students understand that to relate
their knowledge, skills beyond their area of
technical expertise are required.

It has been argued [45] that problem-based learning
is an educational strategy that required three
components to be differentiated:

• an integrated curriculum organised around
real-world problems rather than disciplines
and with an emphasis on cognitive skills

• small groups, tutorial instruction and active
learning conditions to facilitate problem-based
learning

• outcomes such as the development of skills
and motivation together with the development
of an ability to be lifelong learners.

Focussing on the solution of authentic problems as a
context for learning also accords well with theories of
expertise - learning beyond the initial stages may best
be achieved through situational case studies with rich
contextual information [46]. Its supporters claim PBL
results in increased motivation for learning, better
integration of knowledge across disciplines and greater
commitment to continued professional learning [46].
As well as offering the flexibility to cater for a variety
of learning styles, the focus moves from dealing with
content and information in abstract ways to using
information in ways that reflect how learners might use
it in real life [47].

6.2 Enhancing creativity

Three components of Amabile’s general theory of
creativity:

• domain relevant skills - the more skills the better,
and the ability to imagine/play out situations

• creativity-relevant processes - including breaking
perceptual (the way you perceive a situation) and
cognitive (the way you analyse) set and breaking
out of performance ‘scripts’, suspending
judgement, knowledge of heuristics, adopting a
creativity inducing work style (eg tolerance for
ambiguity, high degree of autonomy, independence
of judgement). and

• intrinsic task motivation
are seem to influence positively creative potential.
These were applied to the learning environment
developed. A PBL process, as adapted by Koschmann
et al [48] (see Table 1), used to anchor the student’s
learning.
Activities identified by Edmonds and Candy [49] as
elements of creativity were embedded into the PBL
environment. This Creative PBL model (Figure 1) was
developed to focus on creativity and divergent
thinking, so that, instead of students aimed at finding
the single, best, “correct” answer to a standard problem
in the shortest time (convergent thinking) they aimed at
redefining or discovering problems and solving them
by means of branching out, making unexpected

Table 1 PBL Stages [48]

PBL Stage 1: problem analysis
the rich context is mined for important facts,
sub-problem(s) and alternate solution paths
generated
PBL Stage 2: self-directed learning
the learning agenda is determined by the
information needed to evaluate the alternatives
proposed
PBL Stage 3: problem re-examination
based on findings, solution paths are added,
deleted or revised
PBL Stage 4: abstraction
an articulation process to increase the utility of
the knowledge gained in specific contexts
PBL Stage 5: reflection
a debriefing of the experience to identify
improvement in the learning process.

associations, applying the known in unusual ways, or
seeing unexpected implications.

This approach also had the value of addressing
issues identified by Thomas et al [14]. They
suggest

Learners

PBL Stage
1

PBL Stage
2

PBL Stage
3

PBL Stage
4

PBL Stage
5

Exploration

Idea
Generation

Evaluation

Figure 1. The Creative-PBL process

there is a widening gap between the degree of
flexibility
and creativity needed to adapt to a changing world and
the capacity to do so. These difficulties are attributed
to:
• individuals or groups not engaging in effective and

efficient processes of innovative design. As
examples of structuring failure, people typically
fail to spend sufficient time in the early stages of
design: problem finding and problem formulation,
then often bring critical judgment into play too
early in the idea generation phase of problem
solving. As another example, empirical evidence
shows that people’s behaviour is path-dependent
and they are often unwilling to take what appears
to be a step that undoes a previous action even if
that step is actually necessary for a solution [50]

• evidence suggests individuals have a large amount
of relevant implicit knowledge they often will not
bring to bear on a problem. Providing appropriate
strategies, knowledge sources or representations
can significantly improve an individual’s
effectiveness in problem solving and innovation
[50]

• the appropriate level, type, and directionality of
motivation are not brought to bear [51].

7. How did we do?

7.1 Establishing a problem context

The PBL environment focuses on the secondment of
the class to a (virtual) organisation – collaboration
between a software house and the university. MurSoft
requires a team to work, on short-term placement, on a
project to develop gaming software to be used as an
educational resource within a tertiary institute. This
provides an authentic context for learning: students will
have an opportunity, within their final year of study, to
undertake an internship with a software-based
organisation.

In order to ensure the team will integrate well, the
students are initially provided with a very small
problem to define. This problem introduces students to
the MurSoft environment, and also serves the purpose
of introducing the PBL process. Students are given
some little time to familiarise themselves with other
members of the class (since the rest of semester was to
be spent on collaborative tasks) and with the lecturer,
who takes on the role of academic consultant (not the
client, but a resource students have access to). All
interaction with the client is undertaken through web-
based material: memos, minutes of meetings, telephone
messages, ‘talking heads’, press releases etc provide
the problem triggers required. Triggers act as prompts
to students to undertake some task identified in the
PBL process.

Unit content is centred on online teaching material
and a recommended text, which act as a constraint:
students initially explore this material in order to
achieve the learning outcomes they have identified in a
problem component, rather than having unlimited
access to resources on the Internet and elsewhere. This
is a significant issue: RE is a relatively new discipline,
with varying approaches taken in its description. It is
important at this early concept-learning stage that
students are not confused or frustrated by the
presentation of too many alternate viewpoints, tools,
definitions for the same concept etc. This is likely to
occur if students are to explore freely during the self-
directed learning stage of the PBL process. On the
other hand, it is important that students become aware
that other views exist. Again, providing environment
constraints adds to the authentic approach: as
graduates, students will be expected to follow the
operating procedures standardised within the
employing organisation.

8. Evaluating the results

Both formal and informal assessment was undertaken
over the semester: data may be categorised as:
quantitative assessment:

• the major assessment of the unit was based on
group work (three components)

• the exam modelled previous exams, and was
based on questions that had been used before,
so in theory it was possible to compare how
well students performed in comparison to
previous cohorts

• two individual components (a Performance
Review and a Portfolio) and

qualitative assessment:
• in-semester year surveys - the year co-

ordinator asks for comments/problems
regarding all the units undertaken over the
semester. These surveys are conducted within
the Engineering discipline in week 4 and 11

• students completed an end of semester unit
assessment –this is University-based

• as noted above, one of the final components of
their formal assessment was to prepare for a
Performance Review. As well as some more
technically based issues (eg how easy would it
be to go to design from the specification
developed by your team) students were asked
for their impressions on their team
performance and asked to comment on
whether they thought they learnt less or more
this way.

8.1. Quantitative assessment

The results achieved by these students will not be
described here, except to note that, as shown in Figure
2 the PBL environment did not appear to unduly
disadvantage the students.

48.0851.00 55.86 56.53 55.53

0
10
20
30
40
50
60
70
80
90

100

Total

P
er

ce
nt

ag
es

1999 2000 2001 2002 2003

Figure 2a). Average raw exam mark ENG260

1999-2003

61.45 64.5357.88
56.68

60.477

0
10
20
30
40
50
60
70
80
90

100

Total

P
er

ce
nt

ag
es

1999 2000 2001 2002 2003

Figure 2b). Average final mark ENG260 – 1999-

2003

8.2. Qualitative assessment

The Engineering discipline within the School
informally surveys all students within each year group
to identify general problems that are both unit-specific,
and that relate to the mix of units undertaken. Students
are asked to identify good and bad points during Weeks
4 and 11 of semester (ie usually near the first point of
feedback and towards the end formal classes).

As the list of representative comments shows, some
elements considered ‘bad’ by the students (eg learning
by doing) are a highlight of the PBL process. This may
be a reflection of student approach to study or
preferred learning style, and deserves further
investigation.
As can be seen from Figure 4, the class was fairly
evenly divided on the point of learning more or less
from this approach: comments on a lack of mastery of
subjects: (less every time new content arrives);
of

Week 4

Good:
–“helps with thinking about all areas of a

problem(good for other units)”
–“interesting, practical, well presented”
–“it’s really good”
Bad:
–“very vague on assessment and what

specifically needs to be completed”
–“inability to work alone”
–“no lecture or tutorial”
–“don’t really like how it’s structured”
–“don’t know what is going on”

Week 11

Good:
–“learn what you like at your own pace”
–“more practical training & real time example”
–“probably useful”
–“easy to get help for unit”
Bad:
–“objectives sometimes unclear”
–“learning by doing”
–“only get the general idea and concept of

unit later in semester”
–“not very structured”
–“hard to determine what we are supposed to

be working towards”

focusing on components addressed by the project, on
delegating and relying on others for concepts indicate
less content learning. Towards the end of semester,
some of these students still felt lost and confused:

self teaching is not one of my fortés
stated one student, perhaps with a hint of despair.

Students felt they learnt more in the areas of
research, communications (confidence to speak up;
need to be heard & get ideas across) and team skills.
They added concepts easier to grasp; forced to learn
more for project relevant components; and, finally they
had to grapple with various perspectives from others.
In summary there were: ample resources & up to us to
take it.

Other feedback also shows that, although a great
deal of effort went into preparing the PBL
environment, more scaffolding is required. Students
need greater preparation in order to tackle a different
learning model (eg a better understanding of the PBL
process), and support structures (examples, guidelines)

so that they have a clear indication of the
appropriateness of their learning.

8.3. Addressing the issues

The attributes of a Problem-based Learning
classroom [44] provide a framework for future learning
[52]. While acquiring specific domain knowledge is
one of the unit objectives, adaptability and flexibility as
a basis for insight and true novelty of thinking is
equally important. The implication of this is effort
spent on abstraction and reflection, well supported
through the PBL process. Its supporters also argue that
PBL best provides an effective environment for
professionals who need to access diverse knowledge. In
addition, the positive influences of an appropriate
environment on the development of creative potential
add support the adoption of PBL for RE education. The
issues highlighted by Thomas et al are also addressed:
• the importance of problem analysis: in ENG260

this stage is a critical outcome. Problem-solving
habit is challenged by the need to generate
alternate solution paths, starting from the unknown
and progressing to a description of the problem
itself, and the knowledge needed to deal with it

• the value of alternative perspectives and prior
knowledge is fostered through participation in a
collaborative environment. Critical appraisal and
self appraisal skills are developed through the use
of reflection tools such as the 4SAT [53]

• although external motivation is difficult to
eliminate within an undergraduate degree, PBL is
seen to foster intrinsic motivation through the
authenticity of the tasks undertaken [52]. Emphasis
on elements that foster external motivation (such
as exams) is gradually being reduced as less
appropriate to this style of learning. This is an
important point.

9 Approaches to study

As Elton [54] states: “we want students to learn
with understanding and be assessed for it”. A post-hoc
Approaches to Study Inventory (using a 32-item
instrument confirmed by Richardson [55]’s work to
possess adequate internal consistency and test – retest
reliability) showed that students were very much sitting
on the fence between learning for meaning (mean 2.53,
standard deviation 0.43) and learning for reproduction
(mean 2.56, standard deviation 0.41). Figure 3 is a
graphic representation of these results. Figure 4
confirms this: it represents the student response to the
question of whether they felt they learnt more or less

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17S tudents

S
co

re

M eaning O rientation

R eproduction O rientation

Figure 3. Approaches to Study survey – 2003

student cohort taking ENG260

using this approach. This was one of several reflective
comments embedded in the final assessment described
above.

Learning this way
(n = 23)

48%

9%

43%

less

same

more

Figure 4. Student perception of learning in
ENG260 - 2003 cohort

While this result is of some concern, it should be

noted, however, that learning for understanding is less
reliably assessed than memory learning, and learning
that achieves some form of creativity will be quite
radically different for different students [54]. However,
this is an area that needs to be explored further.

10. The future

The PBL environment these students have
experienced may be considered a creative one: one of
the aims of its development has been to enhance
divergent thinking and the creative potential of
students. It would seem, however, that such an
environment may not match the learning characteristics

of the student cohort. Tracking the cohort through
subsequent units will go some way to confirming (or
not) the value of PBL in Software Engineering
education. This is critical in the context of a strategic
move away from traditional lecture/tutorial/lab-style
learning within the discipline area at this University.
Research into student approaches to study provides
some insight that will assist in further offerings of this
unit and of others within the engineering degree
programs.

However, to end on a positive note, some members
of this student cohort have progressed to subsequent
units. These (Advanced Software Design I and II) are

taught following a Design Studio model. Although it is
too early in semester to undertake any evaluation of
their learning, a comment overheard during a workshop
session is promising. One group of three students was
reporting (to each other) on their progress in
constructing an Object-Z specification. One student
remarked that he found he could just follow the
template. But, he said,

that seemed like cheating so I had to go back
to the notes and work out how to do it
properly

Of even greater interest, other members of his group
concurred.

10. References

[1] F. P. Brooks, "No silver bullet - essence and

accidents of software engineering," presented
at Proceedings of Information Processing 86:
the IFIP 10th World Conference, Amsterdam,
1986.

[2] W. W. Royce, "Managing the development of
large software systems: concepts and
techniques," presented at IEEE WESCON,
1970.

[3] S. L. Pfleeger, "Albert Einstein and empirical
software engineering," IEEE Computer, vol.
32, pp. 32-37, 1999.

[4] L. J. Waks, "Donald Schon's Philosophy of
Design and Design Education," International
Journal of Technology and Design Education,
vol. 11, pp. 37-51, 2001.

[5] W. Winn and D. Snyder, "Cognitive
perspectives in psychology," in Handbook of
Research for Educational Communications
and Technology, D. H. Jonassen, Ed. New
York: Simon & Schuster Macmillan, 1996,
pp. 112-142.

[6] J. Bach, "Reframing requirements analysis,"
IEEE Computer, vol. 32, pp. 120-122, 1999.

[7] R. Guindon, "The process of knowledge
discovery in system design," in Designing and
Using Human-Computer Interfaces and
Knowledge Based Systems, G. Salvendy and
M. J. Smith, Eds. Amsterdam: Elsevier, 1989,
pp. 727-734.

[8] R. Guindon, " Knowledge exploited by
experts during software systems design,"

International Journal of Man-Machine
Studies, vol. 33, pp. 279-304, 1990.

[9] W. Visser, "Designers' activities examined at
three levels: organisation strategies and
problem-solving processes," Knowledge-
Based Systems, vol. 5, pp. 92-104, 1992.

[10] J. P. v. Gigch, "Metamodelling and problem
solving," Journal of Applied Systems Studies,
vol. 1, pp. 327-336, 2000.

[11] M. Lubars, C. Potts, and C. Richer, "A review
of the state of the practice in requirements
modeling," presented at International
Symposium on Requirements Engineering,
San Diego, 1993.

[12] N. A. M. Maiden and A. G. Sutcliffe,
"Exploiting reusable specifications through
analogy," Communications of the ACM, vol.
34, pp. 55-64, 1992.

[13] N. Maiden and A. Gizikis, "Where do
requirements come from?," IEEE Software,
vol. 18, pp. 10-12, 2001.

[14] J. C. Thomas, A. Lee, and C. Danis,
"Enhancing creative design via software
tools," Communications of the ACM, vol. 45,
pp. 112-115, 2002.

[15] A. G. Sutcliffe and N. A. M. Maiden,
"Analysing the novice analyst: cognitive
models in software engineering,"
International Journal of Man-Machine
Studies, vol. 36, pp. 719-740, 1992.

[16] W. Visser and J. Hoc, "Expert software design
strategies," in Psychology of Programming, J.
M. Hoc, T. R. G. Green, S. R, and G. D. J,
Eds. San Diego (CA): Academic Press, 1990,
pp. 235-247.

[17] D. Garlan, D. P. Gluch, and J. E. Tomayko,
"Agents of Change: Educating Future Leaders

in Software Engineering," IEEE Computer,
vol. 30, pp. 59-65, 1997.

[18] M. Savin-Baden, Problem-based Learning in
Higher Education: untold stories.
Buckingham (UK): Society for Research into
Higher Education and Open University Press,
2000.

[19] G. Kearsley, "Explorations in Learning &
Instruction: the theory in practice database,"
George Washington University, Washington
(DC) 2000.

[20] J. Bach, "SE education: we're on our own,"
IEEE Software, vol. 14, pp. 26,28, 1997.

[21] E. M. Trauth, D. Farwell, and D. M. S. Lee,
"The IS expectation gap: industry expectation
versus academic preparation," MIS Quarterly,
vol. 17, pp. 293-307, 1993.

[22] D. M. S. Lee, "Organizational entry and
transition from academic study: examining a
critical step in the professional development
of young IS workers," in Strategies for
Managing IS/IT Personnel, M. Igbaria and C.
Shayo, Eds. Hershey (PA): Idea Group, 2004,
pp. 113-141.

[23] T. C. Lethbridge, "What knowledge is
important to a software professional?," IEEE
Computer, vol. 33, pp. 44-50, 2000.

[24] R. Turner and G. Lowry, "Education for a
technology-based profession: softening the
Information Systems curriculum," in Current
Issues in IT Education, T. McGill, Ed.
Hershey (PA): IRM Press, 2003, pp. 153-172.

[25] R. Snoke and A. Underwood, "Generic
attributes of IS graduates - a Queensland
study," presented at Proceedings of the 10th
Australasian Conference on Information
Systems, Wellington (NZ), 1999.

[26] G. Scott and W. Yates, "Using successful
graduates to improve the quality of
undergraduate engineering programs,"
European Journal of Engineering Education,
vol. 27, pp. 60-67, 2002.

[27] O. Minor, "Theory and Practice in
Requirements Engineering: an investigation of
curricula and industry needs." Koblenz
(Germany): University of Koblenz-Landau,
2004.

[28] K. Fielden, "Training Information Systems
professionals to balance at the edge of chaos
in a technical world," presented at
Proceedings of IFIP Working groups 8.2 and
8.6 joint Working Conference on Information

Systems: Current Issues and Future Changes,
Helsinki, 1998.

[29] B. S. Bloom, Taxonomy of Educational
Objectives: the classification of educational
goals Handbook 1: cognitive domain. New
York: David Mackay, 1956.

[30] A. Sobel, "CC-SE: Computing Curricula --
Software Engineering public draft II," Joint
Task Force on Computing Curricula, ACM
and IEEE Computer Society, 2003.

[31] G. Engel, "Computing Curricula 2001:
Computer Science - final report," Joint Task
Force on Computing Curricula, ACM and
IEEE Computer Society, 2001.

[32] J. T. Gorgone, G. B. Davis, J. S. Valacich, H.
Topi, D. L. Feinstein, and H. E. Longenecker,
"IS 2002: model curriculum for undergraduate
degree programs in Information Systems."
Park Ridge (IL): ACM, 2002.

[33] L. Macauley and J. Mylopoulos,
"Requirements Engineering: an educational
dilemma," Automated Software Engineering,
vol. 4, pp. 343-351, 1995.

[34] P. N. Robillard, "The role of knowledge in
software development," Communications of
the ACM, vol. 42, pp. 87-92, 1999.

[35] J. Bubenko, "Challenges in Requirements
Engineering: keynote address," presented at
RE'95: Second IEEE International Symposium
on Requirements Engineering, York (UK),
1995.

[36] L. Nguyen and P. A. Swatman,
"Complementary Use of ad hoc and post hoc
Design Rationale for Creating and Organising
Process Knowledge," presented at
Proceedings of the Hawaii International
Conference on System Sciences HICSS-33,
Maui (Hawaii), 2000.

[37] R. L. Glass, Software Creativity. Englewood
Cliffs (NJ): Prentice-Hall, 1995.

[38] D. H. Cropley and A. J. Cropley, "Teaching
Engineering Students to be Creative - Program
and Outcomes," presented at Australasian
Association o f Engineering Education: 10th
Annual Conference, 1998.

[39] S. P. Gott, E. P. Hall, R. A. Pokorny, E.
Dibble, and R. Glaser, "A naturalistic study of
transfer: adaptive expertise in technical
domains," in Transfer on Trial: intelligence,
cognition and instruction, D. K. Detterman
and R. J. Sternberg, Eds. Norwood (NJ):
Ablex, 1993, pp. 258-288.

[40] D. A. Schön, The Reflective Practitioner:
How Professionals Think in Action. New
York: Basic Books, 1983.

[41] G. Scott and D. Wilson, "Tracking and
profiling successful IT graduates: an
exploratory study," presented at Proceedings
of the 13th Australasian Conference on
Information Systems, 2002.

[42] J. M. Baer, "Long term effects of creativity
training with middle-school students," Journal
of Adolescence, vol. 8, pp. 183-193, 1988.

[43] D. Budgen, Software Design. Harlow (Essex):
Pearson Education Ltd, 2003.

[44] D. Boud, "Problem-based learning in
perspective," in Problem-based Learning in
Education for the Professions, D. Boud, Ed.
Sydney: Higher Education Research Society
of Australasia, 1985, pp. 13-18.

[45] H. J. Walton and M. B. Mathews, "Essentials
of problem-based learning," Medical
Education, vol. 23, pp. 542-548, 1989.

[46] H. L. Dreyfus and S. E. Dreyfus, Mind over
Machine. New York: Free Press, 1986.

[47] R. Oliver and C. McLoughlin, "Using web and
problem-based learning environments to
support the development of key skills,"
presented at Responding to Diversity:
Proceedings of ASCILITE '99, Brisbane,
1999.

[48] T. D. Koschmann, A. C. Myers, H. S.
Barrows, and P. J. Feltovich, "Using
technology to assist in realising effective
learning and instruction: a principled approach
to the use of computers in collaborative
learning," The Journal of the Learning
Sciences, vol. 3, pp. 227-264, 1994.

[49] E. Edmonds and L. Candy, "Creativity, art
practice and knowledge," Communications of
the ACM, vol. 45, pp. 91-95, 2002.

[50] J. C. Thomas, D. Lyon, and L. Miller, "Aids
for Problem Solving," IBM T. J. Watson
Research Report, New York RC-6468, 1977.

[51] T. M. Amabile, The Social Psychology of
Creativity. New York: Springer Verlag, 1983.

[52] B. G. Wilson and P. Cole, "Cognitive teaching
models," in Handbook of Research for
Educational Communications and
Technology, D. H. Jonassen, Ed. New York:
Simon & Schuster Macmillan, 1996, pp. 601-
621.

[53] C. Zimitat and H. Alexander, "The 4 Step
Assessment Task (4SAT)," Integrity,

Innovation and Integration, vol. 4, pp. 692-
697, 1999.

[54] L. Elton, "Matching teaching methods to
learning processes: dangers of doing the
wrong thing righter," presented at 2nd Annual
Conference of the Learning in Law Initiative,
2000.

[55] J. T. E. Richardson, "Reliability and
replicability of the Approaches to Studying
questionnaire," Studies in Higher Education,
vol. 15, pp. 155-168, 1990.

	awre04
	Fax Cover Shee2

