10,337 research outputs found

    Research issues in real-time database systems

    Get PDF
    Cataloged from PDF version of article.Today's real-time systems are characterized by managing large volumes of data. Efficient database management algorithms for accessing and manipulating data are required to satisfy timing constraints of supported applications. Real-time database systems involve a new research area investigating possible ways of applying database systems technology to real-time systems. Management of real-time information through a database system requires the integration of concepts from both real-time systems and database systems. Some new criteria need to be developed to involve timing constraints of real-time applications in many database systems design issues, such as transaction/query processing, data buffering, CPU, and IO scheduling. In this paper, a basic understanding of the issues in real-time database systems is provided and the research efforts in this area are introduced. Different approaches to various problems of real-time database systems are briefly described, and possible future research directions are discussed

    Real-Time Concurrency Control Protocol Based on Accessing Temporal Data

    Get PDF

    An Evaluation of Network Access Protocols for Distributed Real-time Database Systems

    Get PDF
    Cataloged from PDF version of article.The results of a considerable number of works addressing various features of real-time database systems (RTDBSs) have recently appeared in the literature. An issue that has not received much attention yet is the performance of the communication network configuration in a distributed RTDBS. In this article, we examine the impact of underlying network architecture on the performance of a distributed RTDBS. In particular, we evaluate the real-time performance of distributed transactions in terms of the fraction of satisfied deadlines under various network access strategies. We also critically examine the common assumption of constant network delay for each communication message exchanged in a distributed RTDBS. (C) 1997 by Elsevier Science Inc

    Systematic composition of distributed objects: Processes and sessions

    Get PDF
    We consider a system with the infrastructure for the creation and interconnection of large numbers of distributed persistent objects. This system is exemplified by the Internet: potentially, every appliance and document on the Internet has both persistent state and the ability to interact with large numbers of other appliances and documents on the Internet. This paper elucidates the characteristics of such a system, and proposes the compositional requirements of its corresponding infrastructure. We explore the problems of specifying, composing, reasoning about and implementing applications in such a system. A specific concern of our research is developing the infrastructure to support structuring distributed applications by using sequential, choice and parallel composition, in the anarchic environment where application compositions may be unforeseeable and interactions may be unknown prior to actually occurring. The structuring concepts discussed are relevant to a wide range of distributed applications; our implementation is illustrated with collaborative Java processes interacting over the Internet, but the methodology provided can be applied independent of specific platforms

    Software engineering and middleware: a roadmap (Invited talk)

    Get PDF
    The construction of a large class of distributed systems can be simplified by leveraging middleware, which is layered between network operating systems and application components. Middleware resolves heterogeneity and facilitates communication and coordination of distributed components. Existing middleware products enable software engineers to build systems that are distributed across a local-area network. State-of-the-art middleware research aims to push this boundary towards Internet-scale distribution, adaptive and reconfigurable middleware and middleware for dependable and wireless systems. The challenge for software engineering research is to devise notations, techniques, methods and tools for distributed system construction that systematically build and exploit the capabilities that middleware deliver

    Comparing two-phase locking and optimistic concurrency control protocols in multiprocessor real-time databases

    Get PDF
    Previous studies (Haritsa et al., 1990) have shown that optimistic concurrency control (OCC) generally performs better than lock-based protocols in disk-based real-time database systems (RTDBS). We compare the two concurrency control protocols in both disk-based and memory-resident multiprocessor RTDBS. Based on their performance characteristics, a new lock-based protocol, called two phase locking-lock write all (2PL-LW), is proposed. The results of our performance evaluation experiments show that different characteristics of the two environments indeed have great impact on the protocols' performance. We identify such system characteristics and show that our new lock-based protocols, 2PL-LW, is better than OCC in meeting transaction deadlines in both disk-based and memory-resident RTDBS.published_or_final_versio

    A study of two transaction-processing architectures for distributed real-time database systems

    Get PDF
    Cataloged from PDF version of article.A real-time data base system (RTDBS) is designed to provide timely response to the transactions of data-intensive applications. Processing a transaction in a distributed RTDBS environment presents the design choice of how to provide access to remote data referenced by the transaction. Satisfaction of the timing constraints of transactions should be the primary factor to be considered in scheduling accesses to remote data. In this article, we describe and analyze two different alternative approaches to this fundamental design decision. With the first alternative, transaction operations are executed at the sites where required data pages reside. The other alternative is based on transmitting data pages wherever they are needed. Although the latter approach is characterized by large message volumes carrying data pages, it is shown in our experiments to perform better than the other approach under most of the work loads and system configurations tested. The performance metric used in the evaluations is the fraction of transactions that satisfy their timing constraints. © 1995
    corecore