
Title Comparing two-phase locking and optimistic concurrency
control protocols in multiprocessor real-time databases

Author(s) Chiu, A; Kao, CM; Lam, KY

Citation
The 5th Joint Workshop on Parallel and Distributed Real-Time
Systems Proceedings, Geneva, Switzerland, 1-3 April 1997, p.
141-148

Issued Date 1997

URL http://hdl.handle.net/10722/45570

Rights

©1997 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

Comparing Two-Phase Locking and Optimistic Concurrency
Control Protocols in Multiprocessor Real-Time Databases

Anthony Chiu Ben Kao
Department of Computer Science

The University of Hong Kong
Pokfulam, Hong Kong
{ achiu,kao} @cs.hku.hk

Abstract

Previous studies (e.g., [5]) have shown that optimistic
concurrency control (OCC) generally performs better than
lock-based protocols in disk-based real-time database
systems (RTDBS). In this paper we compare the two
concurrency control protocols in both disk-based and
memory-resident multiprocessor RTDBS. Based on their
performance characteristics, a new lock-based protocol,
called Two Phase Locking - Lock Write All (2PL-LW), is
proposed. The results of our Performance evaluation
experiments show that different characteristics of the two
environments indeed have great impact on the protocols’
performance. We identify such system characteristics and
show that our new lock-based protocols, 2PL-LW, is better
than OCC in meeting transaction deadlines in both disk-
based and memory-resident RTDBS.

Keywords: real-time databases, concurrency control,
multiprocessor, transaction scheduling.

1. Introduction

Real-time database systems (RTDBS) are database
systems whose transactions are associated with timing
constraints such as deadlines. The performance and
correctness of a RTDBS depend on how well these
constraints are met. For example, an electronic program
trading application may respond to a stock’s price change
by spawning a transaction to calculate a good holding
strategy. This transaction needs to be completed by a
certain deadline before the market condition is shifted too
wide from .the original price quotes. Besides meeting
transaction timing constraints, a RTDBS needs to observe
data consistency constraints as well. A number of studies
have been done on this subject, e.g., [l , 5, 6, 7, 8, 9, 131,
in which different algorithms and protocols are suggested
to schedule transactions according to their priorities. For
example, the Earliest-Deadline-First (EDF) algorithm

0-8186-8096-2/97 $10.00 0 1997 IEEE 141

Kam-yiu Lam
Department of Computer Science

City University of Hong Kong
83 Tat Chee Avenue, Hong Kong

cskylam@cityu.edu.hk

assigns a higher priority to a transaction with an earlier
deadline; the High-Priority (HP) concurrency control
protocol allows a higher priority transaction abort a lower
priority one when they conflict in accessing common data.

In this paper we study the performance of two
prevalent concurrency control protocols in both disk-
based and memory-resident multiprocessor real-time
database systems, namely, Two-Phase Locking - High
Priority (2PL-HP) [I] and Optimistic Concurrency
Control - Broadcast Commit (OCC-BC) [l l , 121. In [5], it
is shown that OCC-BC outperforms 2PL-Hp under
various system settings in disk-based RTDBS. One major
reason is that under 2PL-HP, a (higher priority)
transaction that restarts a (lower priority) one may later be
restarted or miss its deadline due to the long and
unpredictable disk access delay. This results in many
useless restarts [5] and thus poor utilization of system
resources. In this study we revisit the 2PL-HP Vs OCC-
BC problem and investigate how data access delay affects
the performance of the concurrency control protocols. The
motivations behind this study are:
0 Disk accesses are relatively slow and cause much

unpredictability to transaction response time. Also,
disk characteristics are particularly defiant to real-time
scheduling. For example, serving disk requests
earliest-deadline-first causes poor disk utilization and
performance [141. High performance real-time
database systems, therefore, tend to move real-time
data - those accessed by transactions with stringent
timing constraints - into main memory for fast,
predictable, and parallel accesses [151. It is therefore
useful to study the concurrency control protocols in a
memory-resident RTDBS.

0 Although optimistic concurrency control is shown to
perform better in disk-based real-time systems, most
commercially available database systems use two-
phase locking. It is thus interesting to see how lock-
based protocols can be improved to attain a better
performance.

The rest of this paper is organized as follows. In
Section 2 we give a brief description and comparison of
2PL-HP and OCC-BC. We highlight the characteristics
of the two concurrency control protocols that contribute
to their different behavior in disk-based and memory-
resident systems. Based on the analysis, we propose a
variant of 2PL-HP - 2PL-LW which has the advantages
of both 2PL-HP and OCC-BC. Section 3 describes our
real-time database system model and the simulation
model. Results of the simulation experiments are
presented in Section 4. Finally, Section 5 concludes the
paper.

2. Concurrency Control Protocols

In a database system, transactions interact with each
other through reads and writes of data pages.
Concurrency control protocols are designed to maintain
the database consistency despite concurrent execution of
transactions [2]. For RTDBS, these conventional
protocols are unsatisfactory because they do not take
transactions’ priorities into account. For example, under
Two-Phase Locking (2PL), a transaction holding a lock
could have a lower priority than (and thus block) a high-
priority requester - a phenomenon called priority
inversion [l]. Since the low priority lock holder is
discriminated against in its use of system resources (e.g.,
the CPU), the blocked high-priority transaction will
experience extensive delay and is likely to miss its
deadline. Applying the concurrency control protocols to
a RTDBS thus requires modifications to the basic
methods in resolving data conflicts. In the rest of this
section, we mention two such modifications: 2PL-HP
(Section 2.1) and OCC-BC (Section 2.2). We analyze
their advantages and disadvantages. In section 2.3, we
propose a new lock-based protocol Two-Phase Locking
- Lock Writes All (ZPL-LW) which adopts the
advantages of both 2PL-HP and OCC-BC.

2.1.Two-Phase Locking - High Priority (2PL-
Jw

The basic Two-Phase Locking protocol is the most
common locking protocol in conventional database
systems. With 2PL, a transaction execution consists of
two phases. In the first phase, locks are acquired but
may not be released. In the second phase, locks are
released but new locks may not be acquired. In case a
transaction T, requests a lock that is being held by
another transaction, T,, TR waits.

As we have just demonstrated, one basic problem of
2PL is the possibility of priority inversions. One solution
to this problem is to restart the low-priority lock holder

and let the high-priority lock requester proceed. This
variant of 2PL is called Two-Phase Locking - High
Priority (2PL-HP) [I]. Conflicts are thus resolved by a
combination of blocking and restarts under 2PL-HP.

2.2. Optimistic Concurrency Control -
Broadcast Commit (OCC-BC)

Although most commercially available database
systems use lock-based concurrency control protocols,
recent studies [5, IO] have suggested that optimistic
concurrency control protocols (OCC) provide better
performance in RTDBS. Here, we describe a variant of
OCC called Optimistic Concurrency Control with
Broadcast Commit (OCC-BC) [l 1, 121.

Under OCC-BC, the execution of a transaction is
divided into 3 phases: (1) read phase, (2) validation
phase and (3) write phase. During the read phase, data
pages are read into memory. Computations based on the
values of these data pages are performed. New values
are computed, but are not written into the database until
the write phase. When a transaction T finishes its
computation, it enters the validation phase in which all
transactions that conflict with T are restarted. (This is
done by checking the read-sets and the write-sets of
transactions.) Finally, during the write phase, updated
data pages are written back to the database. This strategy
guarantees that as long as a transaction reaches it
validation phase, it will always finish. Conflicts are thus
resolved mainZy through restarting transactions.’

2.3.Performance Comparison: 2PL-WP Vs
OCC-BC

To compare the performance of 2PL-HP and OCC-
BC under both disk-based and memory-resident systems,
we need to understand the characteristics of the two
concurrency control protocols and the characteristics of
the two storage environments. Here, let us first identify
three characteristics of a concurrency control protocol
which directly affects its performance in a RTDBS:

Number of Restarts. Both 2PL-HP and OCC-BC
use transaction restarts as a part of their conflict
resolution strategies. Restarting a transaction means
giving up the resources already invested into the
transaction and is thus detrimental to the system’s
performance. While OCC-BC relies solely on restarts to

’ A transaction T, that has passed its validation phase but before its
write phase may conflict with another transaction T2 which enters the
system after Tl’s validation. One solution to this race condition is to
mark the data pages to be written by TI as “busy”. Transaction T, will
thus be blocked when it tries to read the “busy” pages. OCC-BC thus
also carries a small blocking factor in its conflict resolution scheme.

142

resolve conflict, 2PL-HP uses both restarts and blocking
of transactions. In this respect, 2PL-HP uses fewer
resitarts and wastes less system resources.

Useless Restarts. After a transaction T, restarts
another transaction T,, T, may later miss its deadline.
We call the restart of T, useless, since this action does
not help T, to make its deadline. Under 2PL-HP, T, may
miss its deadline (and thus causes a useless restart)
because of the delay experienced in further resource
coritention (CPU and/or VO), or because it is later
restarted by yet another higher priority transaction
during conflict resolution. Under OCC-BC, a transaction
that restarts others must be committing, and thus will
never be restarted by others. In this respect, OCC-BC is
better than 2PL-HP in avoiding useless restarts.2

Chained Blocking. Under 2PL-HP, it is possible to
form a chain of blocked transactions. In this case, a
blocked transaction (e.g., the tail of a chain) may need to
wait for a number of transactions to finish before it is
granted the access to a data item. The transaction will
thus experience extensive delay and misses its deadline.
Some of this blocking may, in fact, be unnecessary. For
example, a tail transaction T may be delayed by another
transaction in the chain which later becomes tardy. The
delay or the blocking caused to T is thus wasteful and
therefore useless. OCC-BC is not based on blocking and
therefore OCC-BC is better than 2PL-HP in this respect.
We summarize the advantages and disadvantages of
2PL-HP and OCC-BC in Table 1. In the table, we use a
J (X) to indicate good (bad) performance with respect
to i1 certain system characteristic.

-
Number of restarts
Useless restarts
Chained blocking

2PL-HP OCC-BC
J X
X J
X J

Table 1. Relative advantages and disadvantages of
2PL-HP and OCC-BC

Next, we need to understand the difference between
disk accesses and memory accesses and the implication
of it on the different behaviors of the two protocols.

First, disk accesses are slow and unpredictable. The
response time of a disk request depends on the position
of the disk head (and thus on the previous disk access).
Typical disk access time is in the order of milliseconds
with a relatively large variance. Moreover, disk requests

2 *
11’ buffer management is not used, OCC-BC does not prevent useless

resitarts completely. This is because after the validation phase, new
data still needs to be written to the physical database before the
deadline. Storage access delay may still cause the transaction to
become tardy.

are served one at a time. Therefore, it is possible that a
disk request (and the issuing transaction) is blocked by a
few others due to disk conzict (even if there is no data
conflict among the transactions). Disk access delay and,
more importantly, its variance, are amplified by the
chain of requests. These factors are detrimental to
satisfying transaction deadlines. Memory accesses, on
the other hand, are pretty constant. Apart from data
locking, data requests from different transactions can be
served in parallel [151. Blocking is thus not induced by
data accesses in memory-resident system.

In [5], it is found that OCC-BC outperforms 2PL-HP
in disk-based RTDBS. However, as we will see in our
simulation analysis (Section 4), 2PL-HP performs better
than OCC-BC in memory-resident RTDBS. Here, let us
briefly explain these observations.

Recall that there are three adverse factors affecting
the performance of the concurrency control protocols
(Table 1). For example, 2PL-Hp is good because it
generates fewer restarts, but it is bad because more of
the restarts are useless and the blocking of a transaction
can result in chained blocking. Whether OCC-BC or
2PL-HP is the better protocol depends on the seriousness
of these factors.

As we have just mentioned, data access in a disk-
based system could be long, and with a large variance in
response time. Under 2PL-HP, a transaction that restarts
another one may later suffer extensive delay when it
tries to acquire locks on other data items. As a result, the
transaction may miss its deadline, wasting the restart it
executed. This intensifies the useless restarts problem for
2PL-HP. Also because of long data access time,
transactions are holding locks longer. This significantly
increases the probability of data conflict and magnifies
the extent of chained blocking. Moreover, a high
performance disked-based RTDBS uses deadline-
cognizant techniques to schedule disk requests [141.
Requests from transactions with earlier deadlines have a
higher chance of being served first. The disk thus acts
(indirectly) as an agent controlling the progress of the
active transactions. Under OCC-BC, the result is that
higher priority transactions are advancing at a bit faster
pace while lower priority ones are delayed (or blocked)
at the disk access level. This improves the performance
of OCC-BC by causing (1) fewer restarts, and (2)
transactions being restarted at an earlier stage, on
average.

The situation in a memory-resident system is just the
opposite to a disk-based system. Since data accesses are
much faster and can be done in parallel, the adverse
effects of useless restarts and chained blocking are much
reduced for 2PL-HP. Also due to parallel data accesses,
under OCC-BC, low priority transactions are
progressing at a similar pace as high priority ones. This

143

results in a higher level of concurrency, a higher chance
of data conflicts and more restarts, and a higher
probability that transactions are being restarted at a later
stage. QCC-BC thus wastes more resources and
performs worse than 2PL-HP.

2.4. TWO Phase Locking - Lock Writes All (2PL-
LW)

With an understanding of the protocols’ behavior and
the data access characteristics of disk-based and
memory-resident systems, our goal now is to devise a
concurrency control protocol that performs well under
various system environments: both memory-resident and
disk-based RTDBS. Here, we propose the following
variant of 2PL: Two-Phase Locking - Lock Writes All
(2PL-LW). The rules are:
1. A transaction is divided into a readphase and a write

phase. All reads precede writes. In the read phase, all
physical database operations are read operations.
Any updates to the data items are written into the
private workspace of a transaction instead of into the
database immediately. In the write phase, permanent
updates of the database will be performed by creating
write operations to apply the updates from the private
workspace to the database.

2. A data page can be locked under two modes: R-lock
for reading and W-lock for writing. R-locks can be
shared; W-locks are exclusive and are only acquired
in the write phase.

3. When a transaction T tries to read a page that is being
W-locked by another transaction, T waits; otherwise,
T acquires the R-lock on the page and proceeds.

4. When a transaction Tenters its write phase, it checks
if any pages in its write set are W-locked by others. If
none, T acquires all the W-locks, releases all the R-
locks, and restarts all transactions that are holding R-
locks on any pages in Ts write-set; Otherwise, T
waits.

5. When a transaction T finishes, it releases all its W-
locks. Transactions that are waiting for the
corresponding data pages are rescheduled.
Similar to OCC-BC, under 2PL-LW, a transaction

can restart others only when it is in its write phase, and
therefore it will never be a target of restart itself. Thus,
2PL-LW generates fewer useless restarts than 2PL-HP
does. Also, if a transaction TA waits for another
transaction TB, TB must be in its write phase, and thus it
will never be blocked by others. Therefore, chained
blocking does not occur. Moreover, similar to 2PL-W)
2PL-LW resolves conflicts by a combination of blocking
(rules 3 and 4) and restarts (rule 4). 2PL-LW thus
generates fewer restarts than OCC-BC, which uses a

purely restart-based conflict resolution. Finally, it can be
shown that 2PL-LW is serializable and deadlock-free.

3. Simulation Models

To compare the performance of the concurrency
control protocols, we model a disk-based RTDBS and a
memory-resident RTDBS. Both models consist of the
following five components (Figure 1): a Source that
generates transactions; a Transaction Manager that
models the execution of transactions; a Concurrency
Control (CC) Manager that implements the details of the
concurrency control protocols; a Resource Manager that
models CPU and/or disk I/O resources; and a Sink that
gathers various statistics, such as the percentage of
missed deadlines.

Start End
Source Sink Transaction

Manager b

transaction transaction

Resource (CPU Resource service CC Manager
and/or Disk) request done
Manager b

I I I

Figure 1. RTDBS model.

3.1. Disk-based RTDBS Model

The disk-based model consists of a shared-memory
multiprocessor system operating on disk-resident data. A
single transaction queue is shared by the multiple
processors. CPU scheduling is preemptive-resume
earliest-deadline-first. There are NumDisks disks in the
system, each with its own service queue. The disks are
scheduled independently according to the priority-based
variant of the Elevator Algorithm [3]. We assume that
all data is accessed from disk and ignore buffer pool
considerations. The database itself is modeled as a
collection of data pages and data accesses are done one
page at a time. Disk access time is calculated by the
formula:

Disk access time = SeekFactor x sqrt(n) +
DiskDeIay

where n represents the number of tracks the disk head
moves to service the request. In the simulation, we
assume that disk requests are uniformly distributed
across all disks and across all tracks within a disk.

144

Transactions are generated at the source as a Poisson
prlocess with a mean arrival rate of ArrivalRate. A
transaction consists of a series of (disk read, CPU
prjocessing) pairs followed by a series of disk writes
(Figure 2). The number of data pages read is uniformly
distributed in the range [0.5 x PageCount, 1.5 x
PageCount]. PageCount is the average number of pages
accessed by a transactions. A page read by a transaction
m,ay be updated with a probability of WriteProb.

Meaning

... ...

Baseline
value

Figure 2. Disk-based RTDBS transaction model

PugeCounr Average pages accessed/transaction
lVrr/eProb Write probability/accessed page
SluckFuctor Slack factor in deadline assignment

Eich transaction has an associated deadline. We use the
fadlowing formula for deadline assignment: D, = AT +
SF x R , where

DT = deadline of transaction T,
AT = arrival time of transaction T,
RT = resource time of transaction T,
SF = slack factor.

The resource time of a transaction T is its response
time if T is executed alone in the system (without
encountering any contention for resources and data). The
slack factor is a simulation parameter which controls
how tight the deadlines are. We assume a$rm deadline
system. I.e., tardy transactions are discarded even if they
are incomplete.

model.
Table 2 summarizes the parameters in the simulation

I6 pages
0.25
4.0

NumDisks I Number of disks

I a

ArrivuZRute I Poisson rate of transaction arrivals 1 5-40 tx/sec
TotulPaze I Number of uaees in the database I 1000 Dazes

20

I I formula I I
I NumCPUs I Number of nrocessnrs I I O I

lOms
0.5ms

distance

Table 2. Simulation parameters and their baseline
values

3.2. Memory-Resident RTDBS Model

The memory-based model is similar to the disk-based
model, except that disk requests are replaced by memory
copy (between shared space and local space of
transactions). We use the parameter BCopyTime to
represent the copy time of a page. Figure 3 illustrates the
transaction model.

.

Mem.
COPY

Figure 3. Memory-resident RTDBS model.

4. Simulation Results

In this section we present our simulation results
comparing the three concurrency control protocols: 2PL-
HP, OCC-BC, and 2PL-LW in both disk-based and
memory-resident RTDBS. Due to space limitation, our
discussion here is brief and will concentrate on the
results which can illustrate the performance
characteristics of the protocols. Interested readers are
referred to [161 for more details.

The simulation is written in the simulation language
CSIM-17 [4]. At least 20000 transactions are generated
at each simulation run. To highlight the protocols’
performance difference, we model both the disk-based
and memory-based systems under a high data contention
and resource contention scenario. The baseline
parameter settings are shown in Table 2.

4.1. Disk-Based Model

Figure 4 shows the miss rate (the fraction of missed
deadlines) of the three protocols in the disk-based
environment as the transaction arrival rate ranges from 5
to 40 transactions per seconds. Similar to the observation
discussed in [5], 2PL-HP misses more deadlines than
OCC-BC does. The modified two-phase locking
protocol, 2PL-LW, on the other hand, performs the best.
Under the experiment setting, 2PL-LW outperforms
2PL-HP and OCC-BC by a wide margin when the load
to the system is moderate (15-25 transactions/second).
For example, at ArrivalRate = 20, 2PL-LW misses 7.5%

145

of deadlines, which is 2.3 times less than that of OCC-
BC, and is 3.4 times less than that of 2PL-HP.

As we have discussed in Section 2, one of the major
factors that affects the protocols’ performance is the
amount of system resources wasted in restarting
transactions. Figure 5 shows the number of restarts per
transaction under the three protocols versus the system
load. Also shown are the curves of useful restart per
transaction (a restart is useful if the transaction that
restarts another meets its deadline).

From the figure, we see that the general shape of the
restart curves is ascending at low ArrivalRate and
descending at high ArrivalRate. The reason is that at low
load, as ArrivalRate increases, more transactions enter
the system creating more conflict and restarts; At high
load, however, system resources, like disk and CPU, are
highly utilized. Queues start to build up at the resources
and transactions experience long delay waiting for the
resources. A transaction is thus likely to become tardy
while it is waiting and is discarded before it conflicts
with other transaction causing restarts. The restart curves
thus go down at high value of ArrivalRate.

Comparing the restart curves of the protocols, we see
that OCC-BC generates the highest number of restarts.
This is due to its restart-based conflict resolution.
However, the number o f useless restarts are relatively
small. (I.e., the difference between the “restart” curve
and the “useful restart” curve is relatively small.) This is
because only the transactions which have already
entered its validation phase can restart others, and these
transactions are very close to finishing. 2PL-Hp, on the
other hand, generates fewer restarts than OCC-BC does,
but a good number of these restarts are wasteful. (The
curves labeled “2PL-HP” and “2PL-HP useful” are
pretty wide apart.) Letting a transaction restart others
when it is in the middle of its execution therefore does
not seem to do well. Finally, 2PL-LW generates few
restarts and when it does, the restart is usually useful.
This is because 2PL-LW uses a combination of blocking
and restarts (which implies low restart rate) and restarts
are done by those transactions in their write-phase only.

To find out how much resource does a transaction
restart waste, we measure the restart point of
transactions [5] . Figure 6 shows, on average, the fiaction
of work a restarted transaction has completed. From the
figure, we see that OCC-BC restarts transactions at a
much earlier stage than 2PL-HP does. For example, at
ArrivalRate = 30, under OCC-BC, a transaction is only
30% complete when it is restarted. Comparing this with
the 60% completion under 2PL-HP, a restart caused by
OCC-BC is about half as expensive as it is under 2PL-
HP. As a combination of 2PL-HP and OCC-BC, the
average transaction restart point for 2PL-LW falls in
between that of the two basic protocols. For example, at

ArrivalRate = 30, a restarted transaction under 2PL-LW
is about 45% complete.

The effect of wasting system resources due to restarts
is reflected by the system utilization. This is shown in
Figure 7 in which we compare the useful CPU utilization
under the three protocols. I.e., the fraction of time the
CPUs are used to serve transactions that make their
deadlines. We see that 2PL-HP makes the worse use of
CPU cycles while 2PL-LW is the best within the range
of ArrivalRate shown. This helps explain the relative
miss rates of the protocols indicated in Figure 4.

4.2. Memory-Based Model

We repeat the experiments comparing the three
concurrency control protocols under the memory-
resident RTDBS model. The result is presented in
Figures S,9 , 10, and 11 showing the miss rates, (useful-)
restarts, restart points, and CPU utilization respectively.

Interestingly, OCC-BC misses many more deadlines
than the two locking protocols (Figure 8). The
performance of 2PL-HP and 2PL-LW are similar with
2PL-HP having a slight edge. The reason for 2PL-HP’s
good performance is that memory allows parallel and
fast accesses. Data access requests can thus be served
promptly. This reduces the amount of lock holding time,
the probability of conflict and thus the number of
restarts (Figure 9). Moreover, since transaction
execution becomes much shorter, it is likely that a
restarted transaction still has enough amount of time to
meet its deadline. This is shown in Figure 9 where the
useful restarts curves are very close to the restarts
curves. The result of these is that 2PL-HP gives the
highest useful system utilization (Figure 1 l), and thus it
has the lowest miss rate among the protocols.

5. Conclusions

In this paper we compared the performance of 2PL-
HP and OCC-BC in both disk-based and memory-
resident RTDBS. Although it was shown that OCC-BC
performs better than 2PL-HP in disk-based systems, our
study shows that due to the differences in the access
characteristics between disk and memory, 2PL-HP
outperforms OCC-BC in a memory-resident system. We
indicated three important factors, namely, the number of
restarts, useless restarts, and chained blocking, which
have great impact on the protocols’ performance. Based
on the analysis, we proposed a new lock-based protocol,
2PL-LW, which adopts the advantages of both 2PL-HP
and OCC-BC. Our simulation results showed that 2PL-
LW performed the best among the protocols in a disk-
based system, and comparably to 2PL-HP in a memory-
resident system. Since lock-based concurrency control

146

protocols are more popular and more easily than OCC-BC in multiprocessor real-time database
implemented, 2PL-LW should be a better alternative systems.

RestarUtx (Disk- Based Model) e Miss Rate (Disk-Based Model)
Figure 4 Figure 5

0.8

0.7

0.6

0.5

0.4

I 0.3

0.2

0.1

a,

Y) .-

2

1.8

1.6

1.4

1.2

$ 1 I

d 0.8

0.6

0.4

0.2

0

-*- ZR-HP
- 0 W B C
+ ZR-LW useful

-y- ZR-HP useful

+ OCGBC useful

5 10 15 20 25 30 35 40

Arrival rate Arrival rate

Useful Utilization (Disk-Based Model)
Figure 7

0.45 I

Restart pt (Disk-Based Model)
Figure 6

0.7 ,

0.4 ..

0.35 ..

0.3 ..

0.25 ..

0.2 --

0.15 ..

-2R-HP

+ O W B C

0.1

o.2 1
0)

5 10 15 20 25 30 35 40

Arrival rate
Arrival rate

~~

Miss Rate (Memory-Based Model)
Figure 8

I 0.5

0.45 1
~~

Restarth (MemorySased Model)
Figure 9

0.6 ,

0.5 1
0.35
0.4 I 0.4

5
f 0.3
I

d
0.2

0.1

0

;
p 0.2

+ 2R-19

-0CGBC
+ 2R-LW useful

+ ZFL-Hpuseful

-e OCCBC useful

" " S Z X 4 ! 2 % W % 8
Arrival rate

" Z Z 4 5 8
Arrival rate

~ ~

Restart point (Memory-Based Model)
Figure I O

0.7

0.6

References

Useiul Utilization (Memory-Based Model)
Figure 11

l T I

0.9 -.

0.8 ..

0.7 .. - s
0.6 ..

N .- 3 0.5 ..

3 0.4 ..

$ 0.3 ..
c

Abbott, R., and Garcia-Molina, H., “Scheduling Real-
Time Transactions: A Performance Evaluation,” Proc. of
the 14th Conference on Very Large Database Systems,
Aug. 1988.
Bemstein, P.A., Hadzilacos, V. and Goodman, N.,
“Concurrency Control and Recovery in Database
Systems”, Addison-Wesley, Reading, Mass., USA, 1987.
Carey, M., Jauhari, R., and Livny, M., “Priority in
DBMS Resource Scheduling,” in the Proceedings of the
15th Conference on Very Large Database Systems, Aug.,
1989.
“CSIM 17 User Guide,” Mesquite Software, Inc. (URL:
http://www.mesquite.com/l-intro.htm1).
Haritsa, J. R., Livny, M., Carey, M. “On Being
Optimistic about Real-Time Constraints,” in the
Proceedings of the 9th ACMSymposium on Principles of
Database Systems, 1990.
Haritsa, J. R., Livny, M., Carey, M. “Earliest Deadline
Scheduling for Real-Time Database Systems,” in the
Proceedings of IEEE Real-Time System Symposium, pp.

Haritsa, I. R., Carey, M., and Livny, M., “Data Access
Scheduling in Firm Real-Time System,” in the
Proceedings of 13th International Conference on
Distributed Computing Systems, pp. 428-437, 1993.
Haritsa, J. R., Livny, M., Carey, M., “Value-Based
Scheduling in Real-Time Database Systems,” The VLDB
Journal, vol. 2, no. 2, pp. 117-152, 1993.
Huang, J, and Stankovic, J., Ramamritham, K. and
Towsley, D., “Priority Inheritance in Soft Red-Time
Databases,” Journal of Real-Time Systems, vol. 4, no. 3,

Huang, J. and Stankovic, J., “Experimental Evaluation of
Real-Time Concurrency Control Schemes,” in the
Proceedings of the 17th VLDB Journal, vol. 2, no. 2, pp.

232-242, 1991.

pp. 243-268, 1992.

117-152, 1993.

o.2 0.1 Y
Arrival rate

Menasce, D., and Nakanishi, T., “Optimistic versus
Pessimistic Concurrency Control Mechanisms in
Database Management Systems,” Information Systems,

Robinson, J., “Design of Concurrency Controls for
Transaction Processing Systems,” Ph. D. Thesis,
Carnegie Mellon University, 1982.
Ulusoy, O., “Processing of Real-time Transactions in a
Replicated Database Systems,” Journal of Distributed
and Parallel Databases, vol. 2, no. 4, pp. 405-436, 1994.
Abbot, R., Garcia-Molina, H., “Scheduling I/O Requests
with Deadlines: A Performance Evaluation,” IEEE Real-
Time System Symposium, 1990, pp. 113-124.
Huang, K. “Advanced Computer Architecture:
Parallelism, Scalability, Programmability,” McGraw
Hill, 1993.
Chiu, A., and Kao, B., “Comparing Two-Phase Locking
and Optimistic Concurrency Control Protocols in
Multiprocessor Real-Time Databases,” Technical Report,
TR-96-09, Department of Computer Science, The
University of Hong Kong.

vol. 7-1, 1982.

148

http://www.mesquite.com/l-intro.htm1

