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Abstract 

Previous studies (e.g., [5]) have shown that optimistic 
concurrency control (OCC) generally performs better than 
lock-based protocols in disk-based real-time database 
systems (RTDBS). In this paper we compare the two 
concurrency control protocols in both disk-based and 
memory-resident multiprocessor RTDBS. Based on their 
performance characteristics, a new lock-based protocol, 
called Two Phase Locking - Lock Write All (2PL-LW), is 
proposed. The results of our Performance evaluation 
experiments show that different characteristics of the two 
environments indeed have great impact on the protocols’ 
performance. We identify such system characteristics and 
show that our new lock-based protocols, 2PL-LW, is better 
than OCC in meeting transaction deadlines in both disk- 
based and memory-resident RTDBS. 

Keywords: real-time databases, concurrency control, 
multiprocessor, transaction scheduling. 

1. Introduction 

Real-time database systems (RTDBS) are database 
systems whose transactions are associated with timing 
constraints such as deadlines. The performance and 
correctness of a RTDBS depend on how well these 
constraints are met. For example, an electronic program 
trading application may respond to a stock’s price change 
by spawning a transaction to calculate a good holding 
strategy. This transaction needs to be completed by a 
certain deadline before the market condition is shifted too 
wide from .the original price quotes. Besides meeting 
transaction timing constraints, a RTDBS needs to observe 
data consistency constraints as well. A number of studies 
have been done on this subject, e.g., [ l ,  5, 6, 7, 8, 9, 131, 
in which different algorithms and protocols are suggested 
to schedule transactions according to their priorities. For 
example, the Earliest-Deadline-First (EDF) algorithm 
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assigns a higher priority to a transaction with an earlier 
deadline; the High-Priority (HP) concurrency control 
protocol allows a higher priority transaction abort a lower 
priority one when they conflict in accessing common data. 

In this paper we study the performance of two 
prevalent concurrency control protocols in both disk- 
based and memory-resident multiprocessor real-time 
database systems, namely, Two-Phase Locking - High 
Priority (2PL-HP) [I] and Optimistic Concurrency 
Control - Broadcast Commit (OCC-BC) [ l l ,  121. In [5], it 
is shown that OCC-BC outperforms 2PL-Hp under 
various system settings in disk-based RTDBS. One major 
reason is that under 2PL-HP, a (higher priority) 
transaction that restarts a (lower priority) one may later be 
restarted or miss its deadline due to the long and 
unpredictable disk access delay. This results in many 
useless restarts [5] and thus poor utilization of system 
resources. In this study we revisit the 2PL-HP Vs OCC- 
BC problem and investigate how data access delay affects 
the performance of the concurrency control protocols. The 
motivations behind this study are: 
0 Disk accesses are relatively slow and cause much 

unpredictability to transaction response time. Also, 
disk characteristics are particularly defiant to real-time 
scheduling. For example, serving disk requests 
earliest-deadline-first causes poor disk utilization and 
performance [ 141. High performance real-time 
database systems, therefore, tend to move real-time 
data - those accessed by transactions with stringent 
timing constraints - into main memory for fast, 
predictable, and parallel accesses [ 151. It is therefore 
useful to study the concurrency control protocols in a 
memory-resident RTDBS. 

0 Although optimistic concurrency control is shown to 
perform better in disk-based real-time systems, most 
commercially available database systems use two- 
phase locking. It is thus interesting to see how lock- 
based protocols can be improved to attain a better 
performance. 



The rest of this paper is organized as follows. In 
Section 2 we give a brief description and comparison of 
2PL-HP and OCC-BC. We highlight the characteristics 
of the two concurrency control protocols that contribute 
to their different behavior in disk-based and memory- 
resident systems. Based on the analysis, we propose a 
variant of 2PL-HP - 2PL-LW which has the advantages 
of both 2PL-HP and OCC-BC. Section 3 describes our 
real-time database system model and the simulation 
model. Results of the simulation experiments are 
presented in Section 4. Finally, Section 5 concludes the 
paper. 

2. Concurrency Control Protocols 

In a database system, transactions interact with each 
other through reads and writes of data pages. 
Concurrency control protocols are designed to maintain 
the database consistency despite concurrent execution of 
transactions [2]. For RTDBS, these conventional 
protocols are unsatisfactory because they do not take 
transactions’ priorities into account. For example, under 
Two-Phase Locking (2PL), a transaction holding a lock 
could have a lower priority than (and thus block) a high- 
priority requester - a phenomenon called priority 
inversion [l]. Since the low priority lock holder is 
discriminated against in its use of system resources (e.g., 
the CPU), the blocked high-priority transaction will 
experience extensive delay and is likely to miss its 
deadline. Applying the concurrency control protocols to 
a RTDBS thus requires modifications to the basic 
methods in resolving data conflicts. In the rest of this 
section, we mention two such modifications: 2PL-HP 
(Section 2.1) and OCC-BC (Section 2.2). We analyze 
their advantages and disadvantages. In section 2.3, we 
propose a new lock-based protocol Two-Phase Locking 
- Lock Writes All (ZPL-LW) which adopts the 
advantages of both 2PL-HP and OCC-BC. 

2.1.Two-Phase Locking - High Priority (2PL- 
Jw 

The basic Two-Phase Locking protocol is the most 
common locking protocol in conventional database 
systems. With 2PL, a transaction execution consists of 
two phases. In the first phase, locks are acquired but 
may not be released. In the second phase, locks are 
released but new locks may not be acquired. In case a 
transaction T, requests a lock that is being held by 
another transaction, T,, TR waits. 

As we have just demonstrated, one basic problem of 
2PL is the possibility of priority inversions. One solution 
to this problem is to restart the low-priority lock holder 

and let the high-priority lock requester proceed. This 
variant of 2PL is called Two-Phase Locking - High 
Priority (2PL-HP) [I]. Conflicts are thus resolved by a 
combination of blocking and restarts under 2PL-HP. 

2.2. Optimistic Concurrency Control - 
Broadcast Commit (OCC-BC) 

Although most commercially available database 
systems use lock-based concurrency control protocols, 
recent studies [5, IO] have suggested that optimistic 
concurrency control protocols (OCC) provide better 
performance in RTDBS. Here, we describe a variant of 
OCC called Optimistic Concurrency Control with 
Broadcast Commit (OCC-BC) [l 1, 121. 

Under OCC-BC, the execution of a transaction is 
divided into 3 phases: (1) read phase, (2) validation 
phase and ( 3 )  write phase. During the read phase, data 
pages are read into memory. Computations based on the 
values of these data pages are performed. New values 
are computed, but are not written into the database until 
the write phase. When a transaction T finishes its 
computation, it enters the validation phase in which all 
transactions that conflict with T are restarted. (This is 
done by checking the read-sets and the write-sets of 
transactions.) Finally, during the write phase, updated 
data pages are written back to the database. This strategy 
guarantees that as long as a transaction reaches it 
validation phase, it will always finish. Conflicts are thus 
resolved mainZy through restarting transactions.’ 

2.3.Performance Comparison: 2PL-WP Vs 
OCC-BC 

To compare the performance of 2PL-HP and OCC- 
BC under both disk-based and memory-resident systems, 
we need to understand the characteristics of the two 
concurrency control protocols and the characteristics of 
the two storage environments. Here, let us first identify 
three characteristics of a concurrency control protocol 
which directly affects its performance in a RTDBS: 

Number of Restarts. Both 2PL-HP and OCC-BC 
use transaction restarts as a part of their conflict 
resolution strategies. Restarting a transaction means 
giving up the resources already invested into the 
transaction and is thus detrimental to the system’s 
performance. While OCC-BC relies solely on restarts to 

’ A transaction T, that has passed its validation phase but before its 
write phase may conflict with another transaction T2 which enters the 
system after Tl’s validation. One solution to this race condition is to 
mark the data pages to be written by TI as “busy”. Transaction T, will 
thus be blocked when it tries to read the “busy” pages. OCC-BC thus 
also carries a small blocking factor in its conflict resolution scheme. 
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resolve conflict, 2PL-HP uses both restarts and blocking 
of transactions. In this respect, 2PL-HP uses fewer 
resitarts and wastes less system resources. 

Useless Restarts. After a transaction T, restarts 
another transaction T,, T, may later miss its deadline. 
We call the restart of T, useless, since this action does 
not help T, to make its deadline. Under 2PL-HP, T, may 
miss its deadline (and thus causes a useless restart) 
because of the delay experienced in further resource 
coritention (CPU and/or VO), or because it is later 
restarted by yet another higher priority transaction 
during conflict resolution. Under OCC-BC, a transaction 
that restarts others must be committing, and thus will 
never be restarted by others. In this respect, OCC-BC is 
better than 2PL-HP in avoiding useless restarts.2 

Chained Blocking. Under 2PL-HP, it is possible to 
form a chain of blocked transactions. In this case, a 
blocked transaction (e.g., the tail of a chain) may need to 
wait for a number of transactions to finish before it is 
granted the access to a data item. The transaction will 
thus experience extensive delay and misses its deadline. 
Some of this blocking may, in fact, be unnecessary. For 
example, a tail transaction T may be delayed by another 
transaction in the chain which later becomes tardy. The 
delay or the blocking caused to T is thus wasteful and 
therefore useless. OCC-BC is not based on blocking and 
therefore OCC-BC is better than 2PL-HP in this respect. 
We summarize the advantages and disadvantages of 
2PL-HP and OCC-BC in Table 1. In the table, we use a 
J ( X  ) to indicate good (bad) performance with respect 
to i1 certain system characteristic. 

- 
Number of restarts 
Useless restarts 
Chained blocking 

2PL-HP OCC-BC 
J X 
X J 
X J 

Table 1. Relative advantages and disadvantages of 
2PL-HP and OCC-BC 

Next, we need to understand the difference between 
disk accesses and memory accesses and the implication 
of it on the different behaviors of the two protocols. 

First, disk accesses are slow and unpredictable. The 
response time of a disk request depends on the position 
of the disk head (and thus on the previous disk access). 
Typical disk access time is in the order of milliseconds 
with a relatively large variance. Moreover, disk requests 

2 *  
11’ buffer management is not used, OCC-BC does not prevent useless 

resitarts completely. This is because after the validation phase, new 
data still needs to be written to the physical database before the 
deadline. Storage access delay may still cause the transaction to 
become tardy. 

are served one at a time. Therefore, it is possible that a 
disk request (and the issuing transaction) is blocked by a 
few others due to disk conzict (even if there is no data 
conflict among the transactions). Disk access delay and, 
more importantly, its variance, are amplified by the 
chain of requests. These factors are detrimental to 
satisfying transaction deadlines. Memory accesses, on 
the other hand, are pretty constant. Apart from data 
locking, data requests from different transactions can be 
served in parallel [ 151. Blocking is thus not induced by 
data accesses in memory-resident system. 

In [5], it is found that OCC-BC outperforms 2PL-HP 
in disk-based RTDBS. However, as we will see in our 
simulation analysis (Section 4), 2PL-HP performs better 
than OCC-BC in memory-resident RTDBS. Here, let us 
briefly explain these observations. 

Recall that there are three adverse factors affecting 
the performance of the concurrency control protocols 
(Table 1). For example, 2PL-Hp is good because it 
generates fewer restarts, but it is bad because more of 
the restarts are useless and the blocking of a transaction 
can result in chained blocking. Whether OCC-BC or 
2PL-HP is the better protocol depends on the seriousness 
of these factors. 

As we have just mentioned, data access in a disk- 
based system could be long, and with a large variance in 
response time. Under 2PL-HP, a transaction that restarts 
another one may later suffer extensive delay when it 
tries to acquire locks on other data items. As a result, the 
transaction may miss its deadline, wasting the restart it 
executed. This intensifies the useless restarts problem for 
2PL-HP. Also because of long data access time, 
transactions are holding locks longer. This significantly 
increases the probability of data conflict and magnifies 
the extent of chained blocking. Moreover, a high 
performance disked-based RTDBS uses deadline- 
cognizant techniques to schedule disk requests [ 141. 
Requests from transactions with earlier deadlines have a 
higher chance of being served first. The disk thus acts 
(indirectly) as an agent controlling the progress of the 
active transactions. Under OCC-BC, the result is that 
higher priority transactions are advancing at a bit faster 
pace while lower priority ones are delayed (or blocked) 
at the disk access level. This improves the performance 
of OCC-BC by causing (1) fewer restarts, and (2) 
transactions being restarted at an earlier stage, on 
average. 

The situation in a memory-resident system is just the 
opposite to a disk-based system. Since data accesses are 
much faster and can be done in parallel, the adverse 
effects of useless restarts and chained blocking are much 
reduced for 2PL-HP. Also due to parallel data accesses, 
under OCC-BC, low priority transactions are 
progressing at a similar pace as high priority ones. This 
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results in a higher level of concurrency, a higher chance 
of data conflicts and more restarts, and a higher 
probability that transactions are being restarted at a later 
stage. QCC-BC thus wastes more resources and 
performs worse than 2PL-HP. 

2.4. TWO Phase Locking - Lock Writes All (2PL- 
LW) 

With an understanding of the protocols’ behavior and 
the data access characteristics of disk-based and 
memory-resident systems, our goal now is to devise a 
concurrency control protocol that performs well under 
various system environments: both memory-resident and 
disk-based RTDBS. Here, we propose the following 
variant of 2PL: Two-Phase Locking - Lock Writes All 
(2PL-LW). The rules are: 
1. A transaction is divided into a readphase and a write 

phase. All reads precede writes. In the read phase, all 
physical database operations are read operations. 
Any updates to the data items are written into the 
private workspace of a transaction instead of into the 
database immediately. In the write phase, permanent 
updates of the database will be performed by creating 
write operations to apply the updates from the private 
workspace to the database. 

2. A data page can be locked under two modes: R-lock 
for reading and W-lock for writing. R-locks can be 
shared; W-locks are exclusive and are only acquired 
in the write phase. 

3. When a transaction T tries to read a page that is being 
W-locked by another transaction, T waits; otherwise, 
T acquires the R-lock on the page and proceeds. 

4. When a transaction Tenters its write phase, it checks 
if any pages in its write set are W-locked by others. If 
none, T acquires all the W-locks, releases all the R- 
locks, and restarts all transactions that are holding R- 
locks on any pages in Ts  write-set; Otherwise, T 
waits. 

5. When a transaction T finishes, it releases all its W- 
locks. Transactions that are waiting for the 
corresponding data pages are rescheduled. 
Similar to OCC-BC, under 2PL-LW, a transaction 

can restart others only when it is in its write phase, and 
therefore it will never be a target of restart itself. Thus, 
2PL-LW generates fewer useless restarts than 2PL-HP 
does. Also, if a transaction TA waits for another 
transaction TB, TB must be in its write phase, and thus it 
will never be blocked by others. Therefore, chained 
blocking does not occur. Moreover, similar to 2PL-W) 
2PL-LW resolves conflicts by a combination of blocking 
(rules 3 and 4) and restarts (rule 4). 2PL-LW thus 
generates fewer restarts than OCC-BC, which uses a 

purely restart-based conflict resolution. Finally, it can be 
shown that 2PL-LW is serializable and deadlock-free. 

3. Simulation Models 

To compare the performance of the concurrency 
control protocols, we model a disk-based RTDBS and a 
memory-resident RTDBS. Both models consist of the 
following five components (Figure 1): a Source that 
generates transactions; a Transaction Manager that 
models the execution of transactions; a Concurrency 
Control (CC) Manager that implements the details of the 
concurrency control protocols; a Resource Manager that 
models CPU and/or disk I/O resources; and a Sink that 
gathers various statistics, such as the percentage of 
missed deadlines. 

Start End 
Source Sink Transaction 

Manager b 

transaction transaction 

Resource (CPU Resource service CC Manager 
and/or Disk) request done 
Manager b 

I I I 

Figure 1. RTDBS model. 

3.1. Disk-based RTDBS Model 

The disk-based model consists of a shared-memory 
multiprocessor system operating on disk-resident data. A 
single transaction queue is shared by the multiple 
processors. CPU scheduling is preemptive-resume 
earliest-deadline-first. There are NumDisks disks in the 
system, each with its own service queue. The disks are 
scheduled independently according to the priority-based 
variant of the Elevator Algorithm [3]. We assume that 
all data is accessed from disk and ignore buffer pool 
considerations. The database itself is modeled as a 
collection of data pages and data accesses are done one 
page at a time. Disk access time is calculated by the 
formula: 

Disk access time = SeekFactor x sqrt(n) + 
DiskDeIay 

where n represents the number of tracks the disk head 
moves to service the request. In the simulation, we 
assume that disk requests are uniformly distributed 
across all disks and across all tracks within a disk. 
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Transactions are generated at the source as a Poisson 
prlocess with a mean arrival rate of ArrivalRate. A 
transaction consists of a series of (disk read, CPU 
prjocessing) pairs followed by a series of disk writes 
(Figure 2). The number of data pages read is uniformly 
distributed in the range [0.5 x PageCount, 1.5 x 
PageCount]. PageCount is the average number of pages 
accessed by a transactions. A page read by a transaction 
m,ay be updated with a probability of WriteProb. 

Meaning 

... ......................................................................... 

Baseline 
value 

Figure 2. Disk-based RTDBS transaction model 

PugeCounr Average pages accessed/transaction 
lVrr/eProb Write probability/accessed page 
SluckFuctor Slack factor in deadline assignment 

Eich transaction has an associated deadline. We use the 
fadlowing formula for deadline assignment: D, = AT + 
SF x R ,  where 

DT = deadline of transaction T, 
AT = arrival time of transaction T, 
RT = resource time of transaction T, 
SF = slack factor. 

The resource time of a transaction T is its response 
time if T is executed alone in the system (without 
encountering any contention for resources and data). The 
slack factor is a simulation parameter which controls 
how tight the deadlines are. We assume a$rm deadline 
system. I.e., tardy transactions are discarded even if they 
are incomplete. 

model. 
Table 2 summarizes the parameters in the simulation 

I6 pages 
0.25 
4.0 

NumDisks I Number of disks 

I a 

ArrivuZRute I Poisson rate of transaction arrivals 1 5-40 tx/sec 
TotulPaze I Number of uaees in the database I 1000 Dazes 

20 

I I formula I I 
I NumCPUs I Number of nrocessnrs I I O  I 

lOms 
0.5ms 

distance 

Table 2. Simulation parameters and their baseline 
values 

3.2. Memory-Resident RTDBS Model 

The memory-based model is similar to the disk-based 
model, except that disk requests are replaced by memory 
copy (between shared space and local space of 
transactions). We use the parameter BCopyTime to 
represent the copy time of a page. Figure 3 illustrates the 
transaction model. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Mem. ....................... 
COPY 

Figure 3. Memory-resident RTDBS model. 

4. Simulation Results 

In this section we present our simulation results 
comparing the three concurrency control protocols: 2PL- 
HP, OCC-BC, and 2PL-LW in both disk-based and 
memory-resident RTDBS. Due to space limitation, our 
discussion here is brief and will concentrate on the 
results which can illustrate the performance 
characteristics of the protocols. Interested readers are 
referred to [ 161 for more details. 

The simulation is written in the simulation language 
CSIM-17 [4]. At least 20000 transactions are generated 
at each simulation run. To highlight the protocols’ 
performance difference, we model both the disk-based 
and memory-based systems under a high data contention 
and resource contention scenario. The baseline 
parameter settings are shown in Table 2. 

4.1. Disk-Based Model 

Figure 4 shows the miss rate (the fraction of missed 
deadlines) of the three protocols in the disk-based 
environment as the transaction arrival rate ranges from 5 
to 40 transactions per seconds. Similar to the observation 
discussed in [5], 2PL-HP misses more deadlines than 
OCC-BC does. The modified two-phase locking 
protocol, 2PL-LW, on the other hand, performs the best. 
Under the experiment setting, 2PL-LW outperforms 
2PL-HP and OCC-BC by a wide margin when the load 
to the system is moderate (15-25 transactions/second). 
For example, at ArrivalRate = 20, 2PL-LW misses 7.5% 
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of deadlines, which is 2.3 times less than that of OCC- 
BC, and is 3.4 times less than that of 2PL-HP. 

As we have discussed in Section 2, one of the major 
factors that affects the protocols’ performance is the 
amount of system resources wasted in restarting 
transactions. Figure 5 shows the number of restarts per 
transaction under the three protocols versus the system 
load. Also shown are the curves of useful restart per 
transaction (a restart is useful if the transaction that 
restarts another meets its deadline). 

From the figure, we see that the general shape of the 
restart curves is ascending at low ArrivalRate and 
descending at high ArrivalRate. The reason is that at low 
load, as ArrivalRate increases, more transactions enter 
the system creating more conflict and restarts; At high 
load, however, system resources, like disk and CPU, are 
highly utilized. Queues start to build up at the resources 
and transactions experience long delay waiting for the 
resources. A transaction is thus likely to become tardy 
while it is waiting and is discarded before it conflicts 
with other transaction causing restarts. The restart curves 
thus go down at high value of ArrivalRate. 

Comparing the restart curves of the protocols, we see 
that OCC-BC generates the highest number of restarts. 
This is due to its restart-based conflict resolution. 
However, the number o f  useless restarts are relatively 
small. (I.e., the difference between the “restart” curve 
and the “useful restart” curve is relatively small.) This is 
because only the transactions which have already 
entered its validation phase can restart others, and these 
transactions are very close to finishing. 2PL-Hp, on the 
other hand, generates fewer restarts than OCC-BC does, 
but a good number of these restarts are wasteful. (The 
curves labeled “2PL-HP” and “2PL-HP useful” are 
pretty wide apart.) Letting a transaction restart others 
when it is in the middle of its execution therefore does 
not seem to do well. Finally, 2PL-LW generates few 
restarts and when it does, the restart is usually useful. 
This is because 2PL-LW uses a combination of blocking 
and restarts (which implies low restart rate) and restarts 
are done by those transactions in their write-phase only. 

To find out how much resource does a transaction 
restart waste, we measure the restart point of 
transactions [5] .  Figure 6 shows, on average, the fiaction 
of work a restarted transaction has completed. From the 
figure, we see that OCC-BC restarts transactions at a 
much earlier stage than 2PL-HP does. For example, at 
ArrivalRate = 30, under OCC-BC, a transaction is only 
30% complete when it is restarted. Comparing this with 
the 60% completion under 2PL-HP, a restart caused by 
OCC-BC is about half as expensive as it is under 2PL- 
HP. As a combination of 2PL-HP and OCC-BC, the 
average transaction restart point for 2PL-LW falls in 
between that of the two basic protocols. For example, at 

ArrivalRate = 30, a restarted transaction under 2PL-LW 
is about 45% complete. 

The effect of wasting system resources due to restarts 
is reflected by the system utilization. This is shown in 
Figure 7 in which we compare the useful CPU utilization 
under the three protocols. I.e., the fraction of time the 
CPUs are used to serve transactions that make their 
deadlines. We see that 2PL-HP makes the worse use of  
CPU cycles while 2PL-LW is the best within the range 
of ArrivalRate shown. This helps explain the relative 
miss rates of the protocols indicated in Figure 4. 

4.2. Memory-Based Model 

We repeat the experiments comparing the three 
concurrency control protocols under the memory- 
resident RTDBS model. The result is presented in 
Figures S,9 ,  10, and 11 showing the miss rates, (useful-) 
restarts, restart points, and CPU utilization respectively. 

Interestingly, OCC-BC misses many more deadlines 
than the two locking protocols (Figure 8). The 
performance of 2PL-HP and 2PL-LW are similar with 
2PL-HP having a slight edge. The reason for 2PL-HP’s 
good performance is that memory allows parallel and 
fast accesses. Data access requests can thus be served 
promptly. This reduces the amount of lock holding time, 
the probability of conflict and thus the number of 
restarts (Figure 9). Moreover, since transaction 
execution becomes much shorter, it is likely that a 
restarted transaction still has enough amount of time to 
meet its deadline. This is shown in Figure 9 where the 
useful restarts curves are very close to the restarts 
curves. The result of these is that 2PL-HP gives the 
highest useful system utilization (Figure 1 l), and thus it 
has the lowest miss rate among the protocols. 

5. Conclusions 

In this paper we compared the performance of 2PL- 
HP and OCC-BC in both disk-based and memory- 
resident RTDBS. Although it was shown that OCC-BC 
performs better than 2PL-HP in disk-based systems, our 
study shows that due to the differences in the access 
characteristics between disk and memory, 2PL-HP 
outperforms OCC-BC in a memory-resident system. We 
indicated three important factors, namely, the number of 
restarts, useless restarts, and chained blocking, which 
have great impact on the protocols’ performance. Based 
on the analysis, we proposed a new lock-based protocol, 
2PL-LW, which adopts the advantages of both 2PL-HP 
and OCC-BC. Our simulation results showed that 2PL- 
LW performed the best among the protocols in a disk- 
based system, and comparably to 2PL-HP in a memory- 
resident system. Since lock-based concurrency control 
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protocols are more popular and more easily than OCC-BC in multiprocessor real-time database 
implemented, 2PL-LW should be a better alternative systems. 
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