87 research outputs found

    A model for Rayleigh-B\'enard magnetoconvection

    Full text link
    A model for three-dimensional Rayleigh-B\'{e}nard convection in low-Prandtl-number fluids near onset with rigid horizontal boundaries in the presence of a uniform vertical magnetic field is constructed and analyzed in detail. The kinetic energy KK, the convective entropy Ί\Phi and the convective heat flux (Nu−1Nu-1) show scaling behaviour with Ï”=r−1\epsilon = r-1 near onset of convection, where rr is the reduced Rayleigh number. The model is also used to investigate various magneto-convective structures close to the onset. Straight rolls, which appear at the primary instability, become unstable with increase in rr and bifurcate to three-dimensional structures. The straight rolls become periodically varying wavy rolls or quasiperiodically varying structures in time with increase in rr depending on the values of Prandtl number PrPr. They become irregular in time, with increase in rr. These standing wave solutions bifurcate first to periodic and then quasiperiodic traveling wave solutions, as rr is raised further. The variations of the critical Rayleigh number RaosRa_{os} and the frequency ωos\omega_{os} at the onset of the secondary instability with PrPr are also studied for different values of Chandrasekhar's number QQ.Comment: 11 pages (To appear in EPJB

    Anelastic Versus Fully Compressible Turbulent Rayleigh-B\'enard Convection

    Full text link
    Numerical simulations of turbulent Rayleigh-B\'enard convection in an ideal gas, using either the anelastic approximation or the fully compressible equations, are compared. Theoretically, the anelastic approximation is expected to hold in weakly superadiabatic systems with Ï”=ΔT/Trâ‰Ș1\epsilon = \Delta T / T_r \ll 1, where ΔT\Delta T denotes the superadiabatic temperature drop over the convective layer and TrT_r the bottom temperature. Using direct numerical simulations, a systematic comparison of anelastic and fully compressible convection is carried out. With decreasing superadiabaticity Ï”\epsilon, the fully compressible results are found to converge linearly to the anelastic solution with larger density contrasts generally improving the match. We conclude that in many solar and planetary applications, where the superadiabaticity is expected to be vanishingly small, results obtained with the anelastic approximation are in fact more accurate than fully compressible computations, which typically fail to reach small Ï”\epsilon for numerical reasons. On the other hand, if the astrophysical system studied contains ϔ∌O(1)\epsilon\sim O(1) regions, such as the solar photosphere, fully compressible simulations have the advantage of capturing the full physics. Interestingly, even in weakly superadiabatic regions, like the bulk of the solar convection zone, the errors introduced by using artificially large values for Ï”\epsilon for efficiency reasons remain moderate. If quantitative errors of the order of 10%10\% are acceptable in such low Ï”\epsilon regions, our work suggests that fully compressible simulations can indeed be computationally more efficient than their anelastic counterparts.Comment: 24 pages, 9 figure

    The Sun's Supergranulation

    Get PDF
    Supergranulation is a fluid-dynamical phenomenon taking place in the solar photosphere, primarily detected in the form of a vigorous cellular flow pattern with a typical horizontal scale of approximately 30--35~megameters, a dynamical evolution time of 24--48~h, a strong 300--400~m/s (rms) horizontal flow component and a much weaker 20--30~m/s vertical component. Supergranulation was discovered more than sixty years ago, however, explaining its physical origin and most important observational characteristics has proven extremely challenging ever since, as a result of the intrinsic multiscale, nonlinear dynamical complexity of the problem concurring with strong observational and computational limitations. Key progress on this problem is now taking place with the advent of 21st-century supercomputing resources and the availability of global observations of the dynamics of the solar surface with high spatial and temporal resolutions. This article provides an exhaustive review of observational, numerical and theoretical research on supergranulation, and discusses the current status of our understanding of its origin and dynamics, most importantly in terms of large-scale nonlinear thermal convection, in the light of a selection of recent findings.Comment: Major update of 2010 Liv. Rev. Sol. Phys. review. Addresses many new theoretical, numerical and observational developments. All sections, including discussion, revised extensively. Also includes previously unpublished results on nonlinear dynamics of convection in large domains, and lagrangian transport at the solar surfac

    Large-scale instabilities in a non-rotating turbulent convection

    Get PDF
    Formation of large-scale coherent structures in a turbulent convection via excitation of large-scale instability is studied. The redistribution of the turbulent heat flux due to non-uniform large-scale motions plays a crucial role in the formation of the coherent large-scale structures in the turbulent convection. The modification of the turbulent heat flux results in strong reduction of the critical Rayleigh number (based on the eddy viscosity and turbulent temperature diffusivity) required for the excitation of the large-scale instability. The mean-field equations which describe the large-scale instability, are solved numerically. We determine the key parameters that affect formation of the large-scale coherent structures in the turbulent convection. In particular, the degree of thermal anisotropy and the lateral background heat flux strongly modify the growth rates of the large-scale instability, the frequencies of the generated convective-shear waves and change the thresholds required for the excitation of the large-scale instability. This study elucidates the origins of the large-scale circulations and rolls in the atmospheric convective boundary layers and the meso-granular structures in the solar convection.Comment: 13 pages, 13 figures, Physics of Fluids, in pres

    Zonal flow regimes in rotating anelastic spherical shells: an application to giant planets

    Full text link
    The surface zonal winds observed in the giant planets form a complex jet pattern with alternating prograde and retrograde direction. While the main equatorial band is prograde on the gas giants, both ice giants have a pronounced retrograde equatorial jet. We use three-dimensional numerical models of compressible convection in rotating spherical shells to explore the properties of zonal flows in different regimes where either rotation or buoyancy dominates the force balance. We conduct a systematic parameter study to quantify the dependence of zonal flows on the background density stratification and the driving of convection. We find that the direction of the equatorial zonal wind is controlled by the ratio of buoyancy and Coriolis force. The prograde equatorial band maintained by Reynolds stresses is found in the rotation-dominated regime. In cases where buoyancy dominates Coriolis force, the angular momentum per unit mass is homogenised and the equatorial band is retrograde, reminiscent to those observed in the ice giants. In this regime, the amplitude of the zonal jets depends on the background density contrast with strongly stratified models producing stronger jets than comparable weakly stratified cases. Furthermore, our results can help to explain the transition between solar-like and "anti-solar" differential rotations found in anelastic models of stellar convection zones. In the strongly stratified cases, we find that the leading order force balance can significantly vary with depth (rotation-dominated inside and buoyancy-dominated in a thin surface layer). This so-called "transitional regime" has a visible signature in the main equatorial jet which shows a pronounced dimple where flow amplitudes notably decay towards the equator. A similar dimple is observed on Jupiter, which suggests that convection in the planet interior could possibly operate in this regime.Comment: 20 pages, 15 figures, 4 tables, accepted for publication in Icaru

    Hysteresis phenomenon in turbulent convection

    Full text link
    Coherent large-scale circulations of turbulent thermal convection in air have been studied experimentally in a rectangular box heated from below and cooled from above using Particle Image Velocimetry. The hysteresis phenomenon in turbulent convection was found by varying the temperature difference between the bottom and the top walls of the chamber (the Rayleigh number was changed within the range of 107−10810^7 - 10^8). The hysteresis loop comprises the one-cell and two-cells flow patterns while the aspect ratio is kept constant (A=2−2.23A=2 - 2.23). We found that the change of the sign of the degree of the anisotropy of turbulence was accompanied by the change of the flow pattern. The developed theory of coherent structures in turbulent convection (Elperin et al. 2002; 2005) is in agreement with the experimental observations. The observed coherent structures are superimposed on a small-scale turbulent convection. The redistribution of the turbulent heat flux plays a crucial role in the formation of coherent large-scale circulations in turbulent convection.Comment: 10 pages, 9 figures, REVTEX4, Experiments in Fluids, 2006, in pres
    • 

    corecore