The surface zonal winds observed in the giant planets form a complex jet
pattern with alternating prograde and retrograde direction. While the main
equatorial band is prograde on the gas giants, both ice giants have a
pronounced retrograde equatorial jet.
We use three-dimensional numerical models of compressible convection in
rotating spherical shells to explore the properties of zonal flows in different
regimes where either rotation or buoyancy dominates the force balance. We
conduct a systematic parameter study to quantify the dependence of zonal flows
on the background density stratification and the driving of convection.
We find that the direction of the equatorial zonal wind is controlled by the
ratio of buoyancy and Coriolis force. The prograde equatorial band maintained
by Reynolds stresses is found in the rotation-dominated regime. In cases where
buoyancy dominates Coriolis force, the angular momentum per unit mass is
homogenised and the equatorial band is retrograde, reminiscent to those
observed in the ice giants. In this regime, the amplitude of the zonal jets
depends on the background density contrast with strongly stratified models
producing stronger jets than comparable weakly stratified cases. Furthermore,
our results can help to explain the transition between solar-like and
"anti-solar" differential rotations found in anelastic models of stellar
convection zones.
In the strongly stratified cases, we find that the leading order force
balance can significantly vary with depth (rotation-dominated inside and
buoyancy-dominated in a thin surface layer). This so-called "transitional
regime" has a visible signature in the main equatorial jet which shows a
pronounced dimple where flow amplitudes notably decay towards the equator. A
similar dimple is observed on Jupiter, which suggests that convection in the
planet interior could possibly operate in this regime.Comment: 20 pages, 15 figures, 4 tables, accepted for publication in Icaru