7,660 research outputs found

    Wigner-Poisson and nonlocal drift-diffusion model equations for semiconductor superlattices

    Full text link
    A Wigner-Poisson kinetic equation describing charge transport in doped semiconductor superlattices is proposed. Electrons are supposed to occupy the lowest miniband, exchange of lateral momentum is ignored and the electron-electron interaction is treated in the Hartree approximation. There are elastic collisions with impurities and inelastic collisions with phonons, imperfections, etc. The latter are described by a modified BGK (Bhatnagar-Gross-Krook) collision model that allows for energy dissipation while yielding charge continuity. In the hyperbolic limit, nonlocal drift-diffusion equations are derived systematically from the kinetic Wigner-Poisson-BGK system by means of the Chapman-Enskog method. The nonlocality of the original quantum kinetic model equations implies that the derived drift-diffusion equations contain spatial averages over one or more superlattice periods. Numerical solutions of the latter equations show self-sustained oscillations of the current through a voltage biased superlattice, in agreement with known experiments.Comment: 20 pages, 1 figure, published as M3AS 15, 1253 (2005) with correction

    Nonequilibrium free energy, H theorem and self-sustained oscillations for Boltzmann-BGK descriptions of semiconductor superlattices

    Full text link
    Semiconductor superlattices (SL) may be described by a Boltzmann-Poisson kinetic equation with a Bhatnagar-Gross-Krook (BGK) collision term which preserves charge, but not momentum or energy. Under appropriate boundary and voltage bias conditions, these equations exhibit time-periodic oscillations of the current caused by repeated nucleation and motion of charge dipole waves. Despite this clear nonequilibrium behavior, if we `close' the system by attaching insulated contacts to the superlattice and keeping its voltage bias to zero volts, we can prove the H theorem, namely that a free energy Φ(t)\Phi(t) of the kinetic equations is a Lyapunov functional (Φ0\Phi\geq 0, dΦ/dt0d\Phi/dt\leq 0). Numerical simulations confirm that the free energy decays to its equilibrium value for a closed SL, whereas for an `open' SL under appropriate dc voltage bias and contact conductivity Φ(t)\Phi(t) oscillates in time with the same frequency as the current self-sustained oscillations.Comment: 15 pages, 3 figures, minor revision of latex fil

    Self-sustained current oscillations in the kinetic theory of semiconductor superlattices

    Get PDF
    We present the first numerical solutions of a kinetic theory description of self-sustained current oscillations in n-doped semiconductor superlattices. The governing equation is a single-miniband Boltzmann-Poisson transport equation with a BGK (Bhatnagar-Gross-Krook) collision term. Appropriate boundary conditions for the distribution function describe electron injection in the contact regions. These conditions seamlessly become Ohm's law at the injecting contact and the zero charge boundary condition at the receiving contact when integrated over the wave vector. The time-dependent model is numerically solved for the distribution function by using the deterministic Weighted Particle Method. Numerical simulations are used to ascertain the convergence of the method. The numerical results confirm the validity of the Chapman-Enskog perturbation method used previously to derive generalized drift-diffusion equations for high electric fields because they agree very well with numerical solutions thereof.Comment: 26 pages, 16 figures, to appear in J. Comput. Phy

    Convergence of a Finite Volume Scheme for a Corrosion Model

    Get PDF
    In this paper, we study the numerical approximation of a system of partial dif-ferential equations describing the corrosion of an iron based alloy in a nuclear waste repository. In particular, we are interested in the convergence of a numerical scheme consisting in an implicit Euler scheme in time and a Scharfetter-Gummel finite volume scheme in space

    Two mini-band model for self-sustained oscillations of the current through resonant tunneling semiconductor superlattices

    Full text link
    A two miniband model for electron transport in semiconductor superlattices that includes scattering and interminiband tunnelling is proposed. The model is formulated in terms of Wigner functions in a basis spanned by Pauli matrices, includes electron-electron scattering in the Hartree approximation and modified Bhatnagar-Gross-Krook collision tems. For strong applied fields, balance equations for the electric field and the miniband populations are derived using a Chapman-Enskog perturbation technique. These equations are then solved numerically for a dc voltage biased superlattice. Results include self-sustained current oscillations due to repeated nucleation of electric field pulses at the injecting contact region and their motion towards the collector. Numerical reconstruction of the Wigner functions shows that the miniband with higher energy is empty during most of the oscillation period: it becomes populated only when the local electric field (corresponding to the passing pulse) is sufficiently large to trigger resonant tunneling.Comment: 26 pages, 3 figures, to appear in Phys. Rev.
    corecore