118 research outputs found

    Inherent Safety Intervention Framework

    Get PDF
    Despite being an attractive proposition in terms of safety and cost performance, the actual implementation of Inherent Safety in design is not widely observed in the industries. This has been documented in publications which indicated the lack of an effective Inherent Safety Quantification methodology and the lack of integration between process design stages with risk and consequence estimation are hurdles to designing inherently safer process plants. Initial attempts by other researches to quantify level of inherent safety resulted in the invention of few indices which are based on reactions involved and have been able to differentiate the level of inherent safety for various routes producing the same product. These indices account for temperature, pressure and presences of the chemicals in the reactions individually. These indices are not able to reflect the interaction of these process parameters and the actual composition of the process streams and their impact on level of inherent safety. This research developed a methodology which is able to differentiate level of inherent safety for various process routes and subsequently of the various process streams within a process route. The new indices known as Process Route Index (PRI) and Process Stream Index (PSI) are based on interactions of various process parameters and actual composition of process streams. These indices are part of the Inherent Safety Intervention Framework (ISIF) which is proposed and proven in this research to allow for proactive identification of consequences of a hazard and subsequently allow modifications based on Inherent Safety principles. Owing to its integration with process simulator, the ISIF can quickly reflect the changes of inherent safety levels when process modifications are simulated iteratively. In order to represent risk in a format familiar to many, this research proposed the concept of Inherent Risk Assessment (IRA) which is similar to Quantitative Risk Assessment (QRA) which is widely used. Similar to QRA, the IRA represent risk by means of a FN Curve. IRA reflects the inherent risk within the process being designed without yet considering mechanism and procedures to reduce risk to an ALARP level as the design stages progresses along. It is proposed that the IRA be used to determine initial acceptance, by government agencies, of a process being designed based on predetennined set of assumptions. The case studies presented towards the end of this research clearly demonstrated the effectiveness of the ISIF to quantify level of inherent safety at process route selection level using PRJ and using the PSI to prioritize streams for modification purposes. Based on the PRJ, an inherently safer route can be chosen and modification based on the principles of inherent safety can be implemented at the streams scoring higher PSI numbers. The IRA complements the work by representing the level of risk inherent to the process being considered in comparison to the limits set by local authorities

    Development of a hierarchical fuzzy model for the evaluation of inherent safety

    Get PDF
    Inherent safety has been recognized as a design approach useful to remove or reduce hazards at the source instead of controlling them with add-on protective barriers. However, inherent safety is based on qualitative principles that cannot easily be evaluated and analyzed, and this is one of the major difficulties for the systematic application and quantification of inherent safety in plant design. The present research introduces the use of fuzzy logic for the measurement of inherent safety by proposing a hierarchical fuzzy model. This dissertation establishes a novel conceptual framework for the analysis of inherent safety and proposes a methodology that addresses several of the limitations of the methodologies available for current inherent safety analysis. This research proposes a methodology based on a hierarchical fuzzy model that analyzes the interaction of variables relevant for inherent safety and process safety in general. The use of fuzzy logic is helpful for modeling uncertainty and subjectivities implied in evaluation of certain variables and it is helpful for combining quantitative data with qualitative information. Fuzzy logic offers the advantage of being able to model numerical and heuristic expert knowledge by using fuzzy IF-THEN rules. Safety is traditionally considered a subjective issue because of the high uncertainty associated with its significant descriptors and parameters; however, this research recognizes that rather than subjective, "safety" is a vague problem. Vagueness derives from the fact that it is not possible to define sharp boundaries between safe and unsafe states; therefore the problem is a "matter of degree". The proposed method is computer-based and process simulator-oriented in order to reduce the time and expertise required for the analysis. It is expected that in the future, by linking the present approach to a process simulator, process engineers can develop safety analysis during the early stages of the design in a rapid and systematic way. Another important aspect of inherent safety, rarely addressed, is transportation of chemical substances; this dissertation includes the analysis of transportation hazard by truck using a fuzzy logic-based approach

    Bibliography of Lewis Research Center technical publications announced in 1993

    Get PDF
    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1993. All the publications were announced in the 1993 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses

    FAULT DETECTION AND PREDICTION IN ELECTROMECHANICAL SYSTEMS VIA THE DISCRETIZED STATE VECTOR-BASED PATTERN ANALYSIS OF MULTI-SENSOR SIGNALS

    Get PDF
    Department of System Design and Control EngineeringIn recent decades, operation and maintenance strategies for industrial applications have evolved from corrective maintenance and preventive maintenance, to condition-based monitoring and eventually predictive maintenance. High performance sensors and data logging technologies have enabled us to monitor the operational states of systems and predict fault occurrences. Several time series analysis methods have been proposed in the literature to classify system states via multi-sensor signals. Since the time series of sensor signals is often characterized as very-short, intermittent, transient, highly nonlinear, and non-stationary random signals, they make time series analyses more complex. Therefore, time series discretization has been popularly applied to extract meaningful features from original complex signals. There are several important issues to be addressed in discretization for fault detection and prediction: (i) What is the fault pattern that represents a system???s faulty states, (ii) How can we effectively search for fault patterns, (iii) What is a symptom pattern to predict fault occurrences, and (iv) What is a systematic procedure for online fault detection and prediction. In this regard, this study proposes a fault detection and prediction framework that consists of (i) definition of system???s operational states, (ii) definitions of fault and symptom patterns, (iii) multivariate discretization, (iv) severity and criticality analyses, and (v) online detection and prediction procedures. Given the time markers of fault occurrences, we can divide a system???s operational states into fault and no-fault states. We postulate that a symptom state precedes the occurrence of a fault within a certain time period and hence a no-fault state consists of normal and symptom states. Fault patterns are therefore found only in fault states, whereas symptom patterns are either only found in the system???s symptom states (being absent in the normal states) or not found in the given time series, but similar to fault patterns. To determine the length of a symptom state, we present a symptom pattern-based iterative search method. In order to identify the distinctive behaviors of multi-sensor signals, we propose a multivariate discretization approach that consists mainly of label definition, label specification, and event codification. Discretization parameters are delicately controlled by considering the key characteristics of multi-sensor signals. We discuss how to measure the severity degrees of fault and symptom patterns, and how to assess the criticalities of fault states. We apply the fault and symptom pattern extraction and severity assessment methods to online fault detection and prediction. Finally, we demonstrate the performance of the proposed framework through the following six case studies: abnormal cylinder temperature in a marine diesel engine, automotive gasoline engine knockings, laser weld defects, buzz, squeak, and rattle (BSR) noises from a car door trim (using a typical acoustic sensor array and using acoustic emission sensors respectively), and visual stimuli cognition tests by the P300 experiment.ope

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen

    Engineering Physics and Mathematics Division progress report for period ending December 31, 1994

    Full text link

    Wind Farm

    Get PDF
    During the last two decades, increase in electricity demand and environmental concern resulted in fast growth of power production from renewable sources. Wind power is one of the most efficient alternatives. Due to rapid development of wind turbine technology and increasing size of wind farms, wind power plays a significant part in the power production in some countries. However, fundamental differences exist between conventional thermal, hydro, and nuclear generation and wind power, such as different generation systems and the difficulty in controlling the primary movement of a wind turbine, due to the wind and its random fluctuations. These differences are reflected in the specific interaction of wind turbines with the power system. This book addresses a wide variety of issues regarding the integration of wind farms in power systems. The book contains 14 chapters divided into three parts. The first part outlines aspects related to the impact of the wind power generation on the electric system. In the second part, alternatives to mitigate problems of the wind farm integration are presented. Finally, the third part covers issues of modeling and simulation of wind power system

    Green Technologies for Production Processes

    Get PDF
    This book focuses on original research works about Green Technologies for Production Processes, including discrete production processes and process production processes, from various aspects that tackle product, process, and system issues in production. The aim is to report the state-of-the-art on relevant research topics and highlight the barriers, challenges, and opportunities we are facing. This book includes 22 research papers and involves energy-saving and waste reduction in production processes, design and manufacturing of green products, low carbon manufacturing and remanufacturing, management and policy for sustainable production, technologies of mitigating CO2 emissions, and other green technologies

    ESSE 2017. Proceedings of the International Conference on Environmental Science and Sustainable Energy

    Get PDF
    Environmental science is an interdisciplinary academic field that integrates physical-, biological-, and information sciences to study and solve environmental problems. ESSE - The International Conference on Environmental Science and Sustainable Energy provides a platform for experts, professionals, and researchers to share updated information and stimulate the communication with each other. In 2017 it was held in Suzhou, China June 23-25, 2017
    corecore