113 research outputs found

    Microlamination Based Lumped And Distributed Magnetic Mems Systems Enabled By Through-Mold Sequential Multilayer Electrodeposition Technology

    Get PDF
    Microfabricated magnetic MEMS components such as permanent micromagnets and soft magnetic structures are key enablers in various lumped and distributed systems such as energy harvesters, magnetometers, biomagnetic filters, and electromagnetic micromotors. The unique functionalities of such systems often require designers to controllably scale the relevant dimensions of a device relative to the characteristic length of a targeted application. We demonstrate in this dissertation that the developed Microlamination Technology could create two-dimensional uniform- or dual- height monolithic metallic structures with additional deterministic structural and compositional complexities along thickness direction, suitable to facilely and flexibly fabricate both lumped and distributed magnetic MEMS systems at a designer\u27s will. The utility of the Microlamination Technology is further validated through the realization of two exemplary systems based on this technology: (i) A lumped system of laminated permanent micromagnets. Microfabricated permanent magnets possessing a multilayer structure enabled by the Microlamination Technology that preserves the high energy density of thinner magnetic films, while simultaneously reducing average residual stress of the films and achieving a significant thickness are presented. The key to retain the superior magnetic properties of thin films in thick laminations is the low interface roughness between the layers, which in turn improves the coercivity of the micromagnets. (ii) A distributed system of a bi-stable vertical magnetic actuator with non-contact latching. The utilization of the Microlamination Technology translates the structural periodicity (multilayer) into magnetic-field-pattern periodicity, which in turn enables the bi-stability of the microsystem and leads to the defined latching behavior. The latching mechanism is solely based on the magneto-static interaction without the need of a mechanical stop. No external energy is needed in the latching positions. This vertical bi-stable actuator could have potential applications as valves in micro-fluidic controls, and as integral parts of micro-mirrors in optical applications

    Design and Fabrication of a Micro-Bearing Assembly to Study Rotor Friction

    Get PDF
    The objective of this investigation was to design and fabricate a metrology tool for measuring the wear in micro-bearings. The critical component of the tool was a silicon test bed consisting of a bearing shaft and a set of microchannels to direct an air stream onto the fins of a micro-rotor assembled onto the bearing shaft. By driving the micro-rotor pneumatically, surface interactions between the bearing and the rotor can be studied over time. The silicon test bed mates to a custom aluminum chuck which has provisions for sealing the test bed and supplying air pressure from an external source. The silicon test bed was successfully fabricated by bulk micromachining using Deep Reactive Ion Etching (DRIE). Test rotors were also fabricated using DRIE and manually placed onto the bearing shaft of the test bed. A glass cover slide, held in place by the aluminum chuck, was used to seal the top of the test bed. Test rotors were successfully rotated using a minimum input air pressure of 0.5 psi

    Benzocyclobutene-based Electric Micromachines Supported on Microball Bearings: Design, Fabrication, and Characterization

    Get PDF
    This dissertation summarizes the research activities that led to the development of the first microball-bearing-supported linear electrostatic micromotor with benzocyclobutene (BCB) low-k polymer insulating layers. The primary application of this device is long-range, high-speed linear micropositioning. The future generations of this device include rotary electrostatic micromotors and microgenerators. The development of the first generation of microball-bearing-supported micromachines, including device theory, design, and modeling, material characterization, process development, device fabrication, and device test and characterization is presented. The first generation of these devices is based on a 6-phase, bottom-drive, linear, variable-capacitance micromotor (B-LVCM). The design of the electrical and mechanical components of the micromotor, lumped-circuit modeling of the device and electromechanical characteristics, including variable capacitance, force, power, and speed are presented. Electrical characterization of BCB polymers, characterization of BCB chemical mechanical planarization (CMP), development of embedded BCB in silicon (EBiS) process, and integration of device components using microfabrication techniques are also presented. The micromotor consists of a silicon stator, a silicon slider, and four stainless-steel microballs. The aligning force profile of the micromotor was extracted from simulated and measured capacitances of all phases. An average total aligning force of 0.27 mN with a maximum of 0.41 mN, assuming a 100 V peak-to-peak square-wave voltage, was measured. The operation of the micromotor was verified by applying square-wave voltages and characterizing the slider motion. An average slider speed of 7.32 mm/s when excited by a 40 Hz, 120 V square-wave voltage was reached without losing the synchronization. This research has a pivotal impact in the field of power microelectromechanical systems (MEMS). It establishes the foundation for the development of more reliable, efficient electrostatic micromachines with variety of applications such as micropropulsion, high-speed micropumping, microfluid delivery, and microsystem power generation

    Optical MEMS Switches: Theory, Design, and Fabrication of a New Architecture

    Get PDF
    The scalability and cost of microelectromechanical systems (MEMS) optical switches are now the important factors driving the development of MEMS optical switches technology. The employment of MEMS in the design and fabrication of optical switches through the use of micromachining fabricated micromirrors expands the capability and integrity of optical backbone networks. The focus of this dissertation is on the design, fabrication, and implementation of a new type of MEMS optical switch that combines the advantages of both 2-D and 3-D MEMS switch architectures. This research presents a new digital MEMS switch architecture for 1×N and N×N optical switches. The architecture is based on a new microassembled smart 3-D rotating inclined micromirror (3DRIM). The 3DRIM is the key device in the new switch architectures. The 3DRIM was constructed through a microassembly process using a passive microgripper, key, and inter-lock (PMKIL) assembly system. An electrostatic micromotor was chosen as the actuator for the 3DRIM since it offers continuous rotation as well as small, precise step motions with excellent repeatability that can achieve repeatable alignment with minimum optical insertion loss between the input and output ports of the switch. In the first 3DRIM prototype, a 200×280 microns micromirror was assembled on the top of the electrostatic micromotor and was supported through two vertical support posts. The assembly technique was then modified so that the second prototype can support micromirrors with dimensions up to 400×400 microns. Both prototypes of the 3DRIM are rigid and stable during operation. Also, rotor pole shaping (RPS) design technique was introduced to optimally reshape the physical dimensions of the rotor pole in order to maximize the generated motive torque of the micromotor and minimize the required driving voltage signal. The targeted performance of the 3DRIM was achieved after several PolyMUMPs fabrication runs. The new switch architecture is neither 2-D nor 3-D. Since it is composed of two layers, it can be considered 2.5-D. The new switch overcomes many of the limitations of current traditional 2-D MEMS switches, such as limited scalability and large variations in the insertion loss across output ports. The 1×N MEMS switch fabric has the advantage of being digitally operated. It uses only one 3DRIM to switch the light signal from the input port to any output port. The symmetry employed in the switch design gives it the ability to incorporate a large number of output ports with uniform insertion losses over all output channels, which is not possible with any available 2-D or 3-D MEMS switch architectures. The second switch that employs the 3DRIM is an N×N optical cross-connect (OXC) switch. The design of an N×N OXC uses only 2N of the 3DRIM, which is significantly smaller than the N×N switching micromirrors used in 2-D MEMS architecture. The new N×N architecture is useful for a medium-sized OXC and is simpler than 3-D architecture. A natural extension of the 3DRIM will be to extend its application into more complex optical signal processing, i.e., wavelength-selective switch. A grating structures have been selected to explore the selectivity of the switch. For this reason, we proposed that the surface of the micromirror being replaced by a suitable gratings instead of the flat reflective surface. Thus, this research has developed a rigorous formulation of the electromagnetic scattered near-field from a general-shaped finite gratings in a perfect conducting plane. The formulation utilizes a Fourier-transform representation of the scattered field for the rapid convergence in the upper half-space and the staircase approximation to represent the field in the general-shaped groove. This method provides a solution for the scattered near-field from the groove and hence is considered an essential design tool for near-field manipulation in optical devices. Furthermore, it is applicable for multiple grooves with different profiles and different spacings. Each groove can be filled with an arbitrary material and can take any cross-sectional profile, yet the solution is rigorous because of the rigorous formulations of the fields in the upper-half space and the groove reigns. The efficient formulation of the coefficient matrix results in a banded-matrix form for an efficient and time-saving solution

    Design and Simulation of a Novel Magnetic Microactuator for Microrobots in Lab-On-a-Chip Applications

    Get PDF
    This article presents the design of a magnetic microactuator comprising soft magnetic material blocks and flexible beams. The modular layout of the proposed microactuator promotes scalability towards different microrobotic applications using low magnetic fields.  The presented microactuator consists of three soft magnetic material (Ni-Fe 4750) blocks connected together via two Polydimethylsiloxane (PDMS) semi-circular beams. A detailed design approach is highlighted giving considerations toward compactness, range of motion and force characteristics of the actuator. The actuator displacement and force characteristics are approximately linear in the magnetic field strength range of 80-160 kA/m. It can achieve maximum displacements of 111.6 µm (at 160 kA/m) during extension and 10.7 µm (at 80 kA/m) during contraction under no-load condition. The maximum force output of the microactuator, computed through a contact simulation, was 404.3 nN at a magnetic field strength of 160 kA/m. The microactuator achieved stroke angles up to 18.4 in a study where the microactuator was integrated with a swimming microrobot executing rowing motion using an artificial appendage, providing insight into the capabilities of actuating untethered microrobots

    Tribology of Microball Bearing MEMS

    Get PDF
    This dissertation explores the fundamental tribology of microfabricated rolling bearings for future micro-machines. It is hypothesized that adhesion, rather than elastic hysteresis, dominates the rolling friction and wear for these systems, a feature that is unique to the micro-scale. To test this hypothesis, specific studies in contact area and surface energy have been performed. Silicon microturbines supported on thrust bearings packed with 285 µm and 500 µm diameter stainless steel balls have undergone spin-down friction testing over a load and speed range of 10-100mN and 500-10,000 rpm, respectively. A positive correlation between calculated contact area and measured friction torque was observed, supporting the adhesion-dominated hysteresis hypothesis. Vapor phase lubrication has been integrated within the microturbine testing scheme in a controlled and characterized manner. Vapor-phase molecules allowed for specifically addressing adhesive energy without changing other system properties. A 61% reduction of friction torque was observed with the utilization of 18% relative humidity water vapor lubrication. Additionally, the relationship between friction torque and normal load was shown to follow an adhesion-based trend, highlighting the effect of adhesion and further confirming the adhesion-dominant hypothesis. The wear mechanisms have been studied for a microfabricated ball bearing platform that includes silicon and thin-film coated silicon raceway/steel ball materials systems. Adhesion of ball material, found to be the primary wear mechanism, is universally present in all tested materials systems. Volumetric adhesive wear rates are observed between 4x10^-4 µm^3/mN*rev and 4x10^-5 µm3/mN*rev were determined by surface mapping techniques and suggest a self-limiting process. This work also demonstrates the utilization of an Off-The-Shelf (OTS) MEMS accelerometer to confirm a hypothesized ball bearing instability regime which encouraged the design of new bearing geometries, as well as to perform in situ diagnostics of a high-performance rotary MEMS device. Finally, the development of a 3D fabrication technique with the potential of significantly improving the performance of micro-scale rotary structures is described. The process was used to create uniform, smooth, curved surfaces. Micro-scale ball bearings are then able to be utilized in high-speed regimes where load can be accommodated both axially and radially, allowing for new, high-speed applications. A comprehensive exploration of the fundamental tribology of microball bearing MEMS has been performed, including specific experiments on friction, wear, lubrication, dynamics, and geometrical optimization. Future devices utilizing microball bearings will be engineered and optimized based on the results of this dissertation

    New Formulation for Finite Element Modeling Electrostatically DrivenMicroelectromechanical Systems

    Get PDF
    The increased complexity and precision requirements of microelectromechanical systems(MEMS) have brought about the need to develop more reliable and accurate MEMS simulation tools. To better capture the physical behavior encountered, several finite elementanalysis techniques for modeling electrostatic and structural coupling in MEMS devices havebeen developed in this project. Using the principle of virtual work and an approximationfor capacitance, a new 2-D lumped transducer element for the static analysis of MEMS hasbeen developed. This new transducer element is compatible to 2-D structural and beamelements. A novel strongly coupled 3-D transducer formulation has also been developed tomodel MEMS devices with dominant fringing electrostatic fields. The transducer is compatible with both structural and electrostatic solid elements, which allows for modeling complexdevices. Through innovative internal morphing capabilities and exact element integrationthe 3-D transducer element is one of the most powerful coupled field FE analysis tools available. To verify the accuracy and effectiveness of both the 2-D and 3-D transducer elements a series of benchmark analyses were conducted. More specifically, the numerically predicted results for the misalignment of lateral combdrive fingers were compared to available analytical and modeling techniques. Electrostatic uncoupled 2-D and 3-D finite element models werealso used to perform energy computations during misalignment. Finally, a stability analysisof misaligned combdrive was performed using a coupled 2-D finite element approach. Theanalytical and numerical results were compared and found to vary due to fringing fields

    AN INTEGRATED ELECTROMAGNETIC MICRO-TURBO-GENERATOR SUPPORTED ON ENCAPSULATED MICROBALL BEARINGS

    Get PDF
    This dissertation presents the development of an integrated electromagnetic micro-turbo-generator supported on encapsulated microball bearings for electromechanical power conversion in MEMS (Microelectromechanical Systems) scale. The device is composed of a silicon turbine rotor with magnetic materials that is supported by microballs over a stator with planar, multi-turn, three-phase copper coils. The micro-turbo-generator design exhibits a novel integration of three key technologies and components, namely encapsulated microball bearings, incorporated thick magnetic materials, and wafer-thick stator coils. Encapsulated microball bearings provide a robust supporting mechanism that enables a simple operation and actuation scheme with high mechanical stability. The integration of thick magnetic materials allows for a high magnetic flux density within the stator. The wafer-thick coil design optimizes the flux linkage and decreases the internal impedance of the stator for a higher output power. Geometrical design and device parameters are optimized based on theoretical analysis and finite element simulations. A microfabrication process flow was designed using 15 optical masks and 110 process steps to fabricate the micro-turbo-generators, which demonstrates the complexity in device manufacturing. Two 10 pole devices with 2 and 3 turns per pole were fabricated. Single phase resistances of 46Ω and 220Ω were measured for the two stators, respectively. The device was actuated using pressurized nitrogen flowing through a silicon plumbing layer. A test setup was built to simultaneously measure the gas flow rate, pressure, rotor speed, and output voltage and power. Friction torques in the range of 5.5-33µNm were measured over a speed range of 0-16krpm (kilo rotations per minute) within the microball bearings using spin-down testing methodology. A maximum per-phase sinusoidal open circuit voltage of 0.1V was measured at 23krpm, and a maximum per-phase AC power of 10µW was delivered on a matched load at 10krpm, which are in full-agreement with the estimations based on theoretical analysis and simulations. The micro-turbo-generator presented in this work is capable of converting gas flow into electricity, and can potentially be coupled to a same-scale combustion engine to convert high-density hydrocarbon energy into electrical power to realize a high-density power source for portable electronic systems

    Uv-liga Compatible Electroformed Nano-structured Materials For Micro Mechanical Systems

    Get PDF
    UV-LIGA is a microfabrication process realzed by material deposition through microfabricated molds. UV photolithography is conducted to pattern precise thick micro molds using UV light sensitive materials, mostly SU-8, and electroforming is performed to fabricate micro metallic structures defined by the micro molds. Therefore, UV-LIGA is a bottom-up in situ material-addition process. UV-LIGA has received broad attention recently than LIGA a micro molding fabrication process using X-ray to pattern the micro molds. LIGA is an expansive and is limited in access. In comparing to LIGA, the UV-LIGA is a cost effective process, and is widely accessible and safe. Therefore, it has been extensively used for the fabrication of metallic micro-electro-mechanical-systems (MEMS). The motivation of this research was to study micro mechanical systems fabricated with nano-structured metallic materials via UV-LIGA process. Various micro mechanical systems with high-aspect-ratio and thick metallic structures have been developed and are presented in this desertation. A novel micro mechanical valve has been developed with nano-structured nickel realized with UV-LIGA fabrication technique. Robust compact valves are crucial for space applications where payload and rubstaness are critically concerned. Two types of large flow rate robust passive micro check valve arrays have been designed, fabricated and tested for robust hydraulic actuators. The first such micro valve developed employs nanostructured nickel as the valve flap and single-crystal silicon as the substrates to house inlet and outlet channels. The Nano-structured nickel valve flap was fabricated using the UV-LIGA process developed and the microchannels were fabricated by deep reactive etching (DRIE) method. The valves were designed to operate under a high pressure (\u3e10MPa), able to operate at high frequencies (\u3e10kHz) in cooperating with the PZT actuator to produce large flow rates (\u3e10 cc/s). The fabricated microvalves weigh 0.2 gram, after packing with a novel designated valve stopper. The tested results showed that the micro valve was able to operate at up to 14kHz. This is a great difference in comparison to traditional mechanical valves whose operations are limited to 500 Hz or less. The advantages of micro machined valves attribute to the scaling laws. The second type of micro mechanical valves developed is a in situ assembled solid metallic (nickel) valves. Both the valve substrates for inlet and outlet channels and the valve flap, as well as the valve stopper were made by nickel through a UV-LIGA fabrication process developed. Continuous multiple micro molds fabrication and molding processes were performed. Final micro mechanical valves were received after removing the micro molds used to define the strutures. There is no any additional machining process, such as cutting or packaging. The alignment for laminated fabrication was realized under microscope, therefore it is a highly precise in situ fabrication process. Testing results show the valve has a forward flow rate of19 cc/s under a pressure difference of 90 psi. The backward flow rate of 0.023 cc/s, which is negligible (0.13%). Nano-structured nickel has also been used to develop laminated (sandwiched) micro cryogenic heater exchanger with the UV-LIGA process. Even though nickel is apparently not a good thermal conductor at room temperature, it is a good conductor at cryogentic temerpature since its thermal conductivity increases to 1250 W/k·m at 77K. Micro patterned SU-8 molds and electroformed nickel have been developed to realize the sandwiched heat exchanger. The SU-8 mold (200mm x 200mm x50mm) array was successfully removed after completing the nickel electroforming. The second layer of patterned SU-8 layer (200mm x 200mm x50mm, as a thermal insulating layer) was patterned and aligned on the top of the electroformed nickel structure to form the laminated (sandwiched) micro heat exchanger. The fabricated sandwiched structure can withstand cryogenic temperature (77K) without any damages (cracks or delaminations). A study on nanocomposite for micro mechanical systems using UV-LIGA compatible electroforming process has been performed. Single-walled carbon nanotubes (SWNTs) have been proven excellent mechanical properties and thermal conductive properties, such as high strength and elastic modulus, negative coefficient of thermal expansion (CTE) and a high thermal conductivity. These properties make SWNT an excellent reinforcement in nanocomposite for various applications. However, there has been a challenge of utilizing SWNTs for engineering applications due to difficulties in quality control and handling too small (1-2nm in diameter). A novel copper/SWNT nanocomposite has been developed during this dissertational research. The goal of this research was to develop a heat spreader for high power electronics (HPE). Semiconductors for HPE, such as AlGaN/GaN high electron mobility transistors grown on SiC dies have a typical CTE about 4~6x10-6/k while most metallic heat spreaders such as copper have a CTE of more than 10x10-6/k. The SWNTs were successfully dispersed in the copper matrix to form the SWNT/Cu nano composite. The tested composite density is about 7.54 g/cm3, which indicating the SWNT volumetric fraction of 18%. SEM pictures show copper univformly coated on SWNT (worm-shaped structure). The measured CTE of the nanocomposite is 4.7 x 10-6/°C, perfectly matching that of SiC die (3.8 x 10-6/°C). The thermal conductivity derived by Wiedemann-Franz law after measuring composit\u27s electrical conductivity, is 588 W/m-K, which is 40% better than that of pure copper. These properties are extremely important for the heat spreader/exchanger to remove the heat from HPE devices (SiC dies). Meanwhile, the matched CTE will reduce the resulted stress in the interface to prevent delaminations. Therefore, the naocomposite developed will be an excellent replacement material for the CuMo currently used in high power radar, and other HPE devices under developing. The mechanical performance and reliability of micro mechanical devices are critical for their application. In order to validate the design & simulation results, a direct (tensile) test method was developed to test the mechanical properties of the materials involved in this research, including nickel and SU-8. Micro machined specimens were fabricated and tested on a MTS Tytron Micro Force Tester with specially designed gripers. The tested fracture strength of nanostructured nickel is 900±70 MPa and of 50MPa for SU-8, resepctively which are much higher than published values

    Wireless capsule endoscope for targeted drug delivery

    Get PDF
    The diagnosis and treatment of pathologies of the gastrointestinal (GI) tract are performed routinely by gastroenterologists using endoscopes and colonoscopes, however the small intestinal tract is beyond the reach of these conventional systems. Attempts have been made to access the small intestines with wireless capsule endoscopes (WCE). These pill-sized cameras take pictures of the intestinal wall and then relay them back for evaluation. This practice enables the detection and diagnosis of pathologies of the GI tract such as Crohn's disease, small intestinal tumours such as lymphoma and small intestinal cancer. The problems with these systems are that they have limited diagnostic capabilities and they do not offer the ability to perform therapy to the affected areas leaving only the options of administering large quantities of drugs or surgical intervention. To address the issue of administering therapy in the small intestinal tract this thesis presents an active swallowable microrobotic platform which has novel functionality enabling the microrobot to treat pathologies through a targeted drug delivery system. This thesis first reviews the state-of-the-art in WCE through the evaluation of current and past literature. A review of current practises such as flexible sigmoidoscopy, virtual colonoscopy and wireless capsule endoscopy are presented. The following sections review the state-of-the-art in methods of resisting peristalsis, drug targeting systems and drug delivery. A review of actuators is presented, in the context of WCE, with a view to evaluate their acceptability in adding functionality to current WCEs. The thesis presents a novel biologically-inspired holding mechanism which overcomes the issue of resisting natural peristalsis in the GI tract. An analysis of the two components of peristaltic force, circumferential and longitudinal peristaltic contractions, are presented to ensure correct functionality of the holding mechanism. A detailed analysis of the motorised method employed to deploy the expanding mechanism is described and a 5:1 scale prototype is presented which characterises the gearbox and validates the holding mechanism. The functionality of WCE is further extended by the inclusion of a novel targeting mechanism capable of delivering a metered dose of medication to a target site of interest in the GI tract. A solution to the problem of positioning a needle within a 360 degree envelope, operating the needle and safely retracting the needle in the GI tract is discussed. A comprehensive analysis of the mechanism to manoeuvre the needle is presented and validation of the mechanism is demonstrated through the evaluation of scale prototypes. Finally a drug delivery system is presented which can expel a 1 ml dose of medication, stored onboard the capsule, into the subcutaneous tissue of the GI tract wall. An analysis of the force required to expel the medication in a set period of time is presented and the design and analysis of a variable pitch conical compression spring which will be used to deliver the medication is discussed. A thermo mechanical trigger mechanism is presented which will be employed to release the compressed conical spring. Experimental results using 1:1 scale prototype parts validate the performance of the mechanisms.Open Acces
    • …
    corecore