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ABSTRACT 

 

UV-LIGA is a microfabrication process realzed by material deposition through 

microfabricated molds. UV photolithography is conducted to pattern precise thick micro 

molds using UV light sensitive materials, mostly SU-8, and electroforming is performed to 

fabricate micro metallic structures defined by the micro molds. Therefore, UV-LIGA is a 

bottom-up in situ material-addition process. UV-LIGA has received broad attention recently 

than LIGA – a micro molding fabrication process using X-ray to pattern the micro molds. 

LIGA is an expansive and is limited in access. In comparing to LIGA, the UV-LIGA is a cost 

effective process, and is widely accessible and safe. Therefore, it has been extensively used 

for the fabrication of metallic micro-electro-mechanical-systems (MEMS). The motivation of 

this research was to study micro mechanical systems fabricated with nano-structured metallic 

materials via UV-LIGA process. Various micro mechanical systems with high-aspect-ratio 

and thick metallic structures have been developed and are presented in this desertation.  

 

A novel micro mechanical valve has been developed with nano-structured nickel realized 

with UV-LIGA fabrication technique. Robust compact valves are crucial for space 

applications where payload and rubstaness are critically concerned. Two types of large flow 

rate robust passive micro check valve arrays have been designed, fabricated and tested for 

robust hydraulic actuators.  

 

The first such micro valve developed employs nanostructured nickel as the valve flap and 

single-crystal silicon as the substrates to house inlet and outlet channels. The Nano-structured 
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nickel valve flap was fabricated using the UV-LIGA process developed and the 

microchannels were fabricated by deep reactive etching (DRIE) method. The valves were 

designed to operate under a high pressure (>10MPa), able to operate at high frequencies 

(>10kHz) in cooperating with the PZT actuator to produce large flow rates (>10 cc/s). The 

fabricated microvalves weigh 0.2 gram, after packing with a novel designated valve stopper. 

The tested results showed that the micro valve was able to operate at up to 14kHz. This is a 

great difference in comparison to traditional mechanical valves whose operations are limited 

to 500 Hz or less. The advantages of micro machined valves attribute to the scaling laws.  

 

The second type of micro mechanical valves developed is a in situ assembled solid metallic 

(nickel) valves. Both the valve substrates for inlet and outlet channels and the valve flap, as 

well as the valve stopper were made by nickel through a UV-LIGA fabrication process 

developed. Continuous multiple micro molds fabrication and molding processes were 

performed. Final micro mechanical valves were received after removing the micro molds 

used to define the strutures. There is no any additional machining process, such as cutting or 

packaging. The alignment for laminated fabrication was realized under microscope, therefore 

it is a highly precise in situ fabrication process. Testing results show the valve has a forward 

flow rate of19 cc/s under a pressure difference of 90 psi.  The backward flow rate of 0.023 

cc/s, which is negligible (0.13%). 

Nano-structured nickel has also been used to develop laminated (sandwiched) micro 

cryogenic heater exchanger with the UV-LIGA process. Even though nickel is apparently not 

a good thermal conductor at room temperature, it is a good conductor at cryogentic 

temerpature since its thermal conductivity increases to 1250 W/k·m at 77K. Micro patterned 
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SU-8 molds and electroformed nickel have been developed to realize the sandwiched heat 

exchanger. The SU-8 mold (200µm x 200µm x50µm) array was successfully removed after 

completing the nickel electroforming. The second layer of patterned SU-8 layer (200µm x 

200µm x50µm, as a thermal insulating layer) was patterned and aligned on the top of the 

electroformed nickel structure to form the laminated (sandwiched) micro heat exchanger. The 

fabricated sandwiched structure can withstand cryogenic temperature (77K) without any 

damages (cracks or delaminations). 

 

A study on nanocomposite for micro mechanical systems using UV-LIGA compatible 

electroforming process has been performed. Single-walled carbon nanotubes (SWNTs) have 

been proven excellent mechanical properties and thermal conductive properties, such as high 

strength and elastic modulus, negative coefficient of thermal expansion (CTE) and a high 

thermal conductivity. These properties make SWNT an excellent reinforcement in 

nanocomposite for various applications. However, there has been a challenge of utilizing 

SWNTs for engineering applications due to difficulties in quality control and handling – too 

small (1-2nm in diameter). A novel copper/SWNT nanocomposite has been developed during 

this dissertational research. The goal of this research was to develop a heat spreader for high 

power electronics (HPE). Semiconductors for HPE, such as AlGaN/GaN high electron 

mobility transistors grown on SiC dies have a typical CTE about 4~6x10-6/k while most 

metallic heat spreaders such as copper have a CTE of more than 10x10-6/k. The SWNTs were 

successfully dispersed in the copper matrix to form the SWNT/Cu nano composite. The 

tested composite density is about 7.54 g/cm3, which indicating the SWNT volumetric fraction 

of 18%. SEM pictures show copper univformly coated on SWNT (worm-shaped structure). 
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The measured CTE of the nanocomposite is 4.7 x 10-6/°C, perfectly matching that of SiC die 

(3.8 x 10-6/°C). The thermal conductivity derived by Wiedemann-Franz law after measuring 

composit’s electrical conductivity, is 588 W/m-K, which is 40% better than that of pure 

copper. These properties are extremely important for the heat spreader/exchanger to remove 

the heat from HPE devices (SiC dies). Meanwhile, the matched CTE will reduce the resulted 

stress in the interface to prevent delaminations. Therefore, the naocomposite developed will 

be an excellent replacement material for the CuMo currently used in high power radar, and 

other HPE devices under developing. 

 

The mechanical performance and reliability of micro mechanical devices are critical for their 

application. In order to validate the design & simulation results, a direct (tensile) test method 

was developed to test the mechanical properties of the materials involved in this research, 

including nickel and SU-8. Micro machined specimens were fabricated and tested on a MTS 

Tytron Micro Force Tester with specially designed gripers. The tested fracture strength of 

nanostructured nickel is 900±70 MPa and of 50MPa for SU-8, resepctively which are much 

higher than published values. 
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CHAPTER 1 INTRODUCTION 

 

1.1 Micro-electro-mechanical-systems (MEMS) 

 

Micro-electro-mechanical-systems (MEMS) refer to the devices that have a characteristic 

length of less than 1mm but more than 1µm. MEMS devices normally combine electrical and 

mechanical components and are mostly fabricated using integrated circuit compatible batch-

processing technologies – microfabrcition process. The applications of MEMS are broadly 

found in aerospace, aeronautics, military, civil engineering, biomedics, automotive industry 

and so on [1]. In the early age of MEMS development, researches used materials and 

processes of microelectronics to build microscopic mechanical devices consisting of beams, 

pits, gears, membranes and even motors that can be deployed to move atoms or to open and 

close valves. The size of these mechanical elements is measured in microns, and like 

transistors, millions of them can be fabricated together in a single process. These devices can 

be classified into two categories: actuators and sensors, partial of which are listed below  

Accelerometers                         Micromotors                             

Actuators                                  Micropumps                              

Biomedical devices                  Microvalves                             

Flowmeters                              Optical devices/mirrors                 

Gas detectors                           Resonators                              

Gyroscopes                              Sensors                                 

Magnetic devices                     Spectrometers                           

Membranes                              Strain gauges                           



Micromachines                                                                  

That of the sensors is a particularly flourish field, comprising between the others:  

Chemical sensors                       Image sensors                           

Inertial sensors                           Pressure sensors                        

Stress sensors                             Thermal sensors                         

Tunneling sensors                       Tilt sensors   

 

Figure 1.1 shows an electrostatic driven micromotor. Figure 1.2 shows a MEMS-based 

electrostatic polysilicon gyroscope. 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1.1: An electrostatic driven micromotor [1] 

 

The major advantages of MEMS include: high performance (due to scaling laws and precise 

fabrication), low manufacturing cost (batch fabrication), low power consumption, portability, 

2 



easy maintenance and replacement, and environmental friendliness. The overall MEMS 

market is expected to triple, from $3.8 billion to more $11 billion, between 2000 and 2005, 

according to a report from Peripheral Research Corp. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.2: SEM view of an 80 µm thick, 2 mm in diameter, four-ring

gyroscope with meander-shaped springs [1] 

 

1.2 Microfabrication Techniques  

 

Micro-fabrication techniques can be classified into two groups: material subtractive 

techniques and material additive techniques. The material subtractive techniques include dry 

etching and wet etching. The additive techniques include physical vapor deposition, chemical 

vapor deposition, electro deposition, epitaxy and thermal oxidation. Both of the two group 

techniques need photo lithographically defined patterns to serve as etching masks or molds.   
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In the MEMS fabrication, lithography is typically the transfer of a pattern to a photosensitive 

material by selective exposure to a radiation source such as UV light or x-Ray. A 

photosensitive material (e.g. photoresist) is a material that experiences a change in its 

physical or chemical properties when exposed to a radiation source. Usually, there are two 

groups of photosensitive materials, one is positive photoresist and the other is negative 

photoresist. As for positive material, the unexposed potion will stay after developing. The 

negative material is the reverse. If we selectively expose a photosensitive material to 

radiation (e.g. by masking some of the radiation), the pattern of the radiation on the mask is 

transferred to the material exposed, as the properties of the exposed and unexposed regions 

differ (Figure 1.3)[1].   

 

4 

UV light, 

X-ray, etc

Figure 1.3: Sketch of a photolithography and an etching process. (a) deposition of target

material, (b) photoresist coating, (c) UV light expose (d) developing photoresist, (e)

etching, (f) stripping of photoresist 
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The subtractive process (e.g. etching) is employed to remove materials defined by the etching 

masks (e.g. patterned photoresist) to achieve the desired patterns. Generally speaking, there 

are two kinds of etching techniques, dry etching and wet etching. Dry etching is such a 

technique that a solid surface is etched by a gas or vapor, physically by ion bombardment, 

chemically by reactive species, or by a combination of physical and chemical mechanisms. 

Typically, dry etching needs to be performed in a vacuum chamber and usually plasma or an 

ion beam is needed to assist the etching process [1]. Wet etching employs a pool of liquids 

containing specific etchants to remove materials. These etching techniques are specifically 

designed for thin films and silicon materials. Thick metal films are difficult to etch and 

undercuts will occur.  

 

The additive process is used to deposit films of materials (either thin or thick), which usually 

involves a chemical or physical reaction. The chemical vapor deposition, electro deposition, 

epitaxy and thermal oxidation are chemical processes, while the physical vapor deposition is 

a physical process.  

 

Chemical Vapor Deposition (CVD) is excellent in good step coverage, and various materials 

can be deposited with this technology. However, some of them are less popular because of 

hazardous byproducts formed during processing. The quality of the materials deposited varies 

from process to process, however a good rule of thumb is that higher process temperature 

yields a material with higher quality and less defects. In this process, the substrate is placed 

inside a reactor to which a number of gases are supplied. The fundamental principle of the 

process is that a chemical reaction takes place between the source gases. The product of that 



reaction is a solid material which condenses on all surfaces inside the reactor. The two most 

important CVD technologies in MEMS are the Low Pressure CVD (LPCVD) and Plasma 

Enhanced CVD (PECVD). The LPCVD process produces layers with excellent uniformity of 

thickness and material characteristics. The main problems with the process are the high 

deposition temperature (higher than 600° C) and the relatively slow deposition rate. The 

PECVD process can operate at lower temperatures (down to 300° C) thanks to the extra 

energy supplied to the gas molecules by the plasma in the reactor. However, the quality of the 

films tends to be inferior to processes running at higher temperatures. Secondly, most 

PECVD deposition systems can only deposit the material on one side of the wafers on 1 to 4 

wafers at a time. LPCVD systems deposit films on both sides of at least 25 wafers a time. A 

schematic diagram of a typical LPCVD reactor is shown in the Figure1.4 below. 

 

 

 

 

 

 

 

 

 Figure 1.4: Typical hot-wall LPCVD reactor. 

 

Electrochemical deposition is suitable to make films of metals such as copper, gold and 

nickel. The films can be made in any thickness from ~1µm to 1 cm. The deposition is best 

6 
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controlled when used with an external electrical potential, however, it requires electrical 

contacts to the substrate when immersed in the liquid bath. In any process, the surface of the 

substrate must have an electrically conducting coating before the deposition starts. And a 

lapping process is usually involved after deposition. There are basically two technologies for 

electrodeposition: electroplating and electroless plating. In the electroplating process the 

substrate is placed in a liquid solution (electrolyte). When an electrical potential is applied 

between a conducting area on the substrate and a counter electrode in the liquid, a chemical 

redox process takes place resulting in the formation of a layer of material on the substrate and 

usually some gas generation at the counter electrode. In the electroless plating process a more 

complex chemical solution is used, where deposition happens spontaneously on any surface. 

This process is desirable since it does not require any external electrical potential and contact 

to the substrate during processing. Unfortunately, it is also more difficult to control with 

regards to film thickness and uniformity. A schematic diagram of a typical setup for 

electroplating is shown in the Figure 1.5. 

 

Epitaxy is a technique to grow single crystals on the substrate and quite similar to CVD 

process. This process can be used to form films of silicon with thickness of ~1µm to >100µm. 

Some processes require high temperature of the substrate, whereas others do not require 

significant heating of the substrate. Some processes can even be used to perform selective 

deposition, depending on the surface of the substrate. 



 

 

 

 

 

 

 

 
 

Figure 1.5: Typical setup for electrochemical deposition  

 

Thermal oxidation is used to oxidize of the surface of the substrate in an oxygen rich 

atmosphere. The temperature is raised to 800° C-1100°C to speed up the process. The growth 

of the film is spurned by diffusion of oxygen into the substrate, which means the film growth 

is actually downwards into the substrate. As the thickness of the oxidized layer increases, the 

diffusion of oxygen to the substrate becomes more difficult leading to a parabolic relationship 

between film thickness and oxidation time for films thicker than ~100nm. This process is 

naturally limited to materials that can be oxidized, and it can only form films that are oxides 

of that material. This is the classical process used to form silicon dioxide on a silicon 

substrate. A schematic diagram of a typical wafer oxidation furnace is shown in the Figure 

1.6 below. 

 

Physical Vapor Deposition (PVD) covers a number of deposition technologies in which 

material is released from a source and transferred to the substrate. The two most important 

8 
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technologies are evaporation and sputtering. In evaporation, the substrate is placed inside a 

vacuum chamber, where a block (source) of the material to be deposited is also located. The 

source material is then heated to the point where it starts to boil and evaporate. The vacuum is 

required to allow the molecules to evaporate freely in the chamber, and they subsequently 

condense on all surfaces. There are two popular evaporation technologies, which are e-beam 

evaporation and resistive evaporation each referring to the heating method. In e-beam 

evaporation, an electron beam is aimed at the source material causing local heating and 

evaporation. In resistive evaporation, a tungsten boat, containing the source material, is 

heated electrically with a high current to make the material evaporate. Sputtering is a 

technology in which the material is released from the source at much lower temperature than 

evaporation. The substrate is placed in a vacuum chamber with the source material, named a 

target, and an inert gas (such as argon) is introduced at low pressure. Gas plasma is struck 

using a DC or RF power source, causing the gas to become ionized. The ions are accelerated 

towards the surface of the target, causing atoms of the source material to break off from the 

target in vapor form and condense on all surfaces including the substrate. As for evaporation, 

the basic principle of sputtering is the same for all sputtering technologies.  

 

 



 

 

 

 

 

 

 

 
Figure 1.6: Typical wafer oxidation furnace. 

 

1.3 LIGA and UV-LIGA Process

 

A new technique, named micro molding can be employed to fabricate high-aspect-ratio 

MEMS structures, where thick metal layers are needed. This technique requires the 

development of a thick mold, and metal is inserted to the mold by using the electroforming 

technique. The well-known molding technique for MEMS fabrication is known as LIGA 

[1,2], which was developed first in Germany and stands for the German “Lithography, 

Galvanoformung und Abformung”. The first two words are the German equivalent of electro-

plating-through-lithography masks and the world “Abformung” represents for LIGA standing 

for injection molding. LIGA is a through mask plating process using thick molds (PMMA) 

for high aspect ratio features, which are originally patterned by X-Ray lithography. The cost 

of LIGA process is high because it uses X-Ray (and therefore needs gold masks) to pattern 

the molds.  

 

10 
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A newly developed micro molding technique, namely UV-LIGA [9], which uses a thick 

photoresist (for example SU-8) as the material for micro molds patterned by the conventional 

photolithography (UV light), is increasingly used for fabricating high aspect ratio MEMS 

structures. This process is easy to access and relatively cost-effectiveness in that it only needs 

simple equipment including conventional UV aligner, electrochemical cell and power supply, 

etc. The electrochemical deposition used in this process has a better throwing power than 

physical vapor deposition (PVD), which allows the production of high aspect ratioes and 

three dimensional structures with better precision. It is also attractive in the environmental 

point of view, because the waste is minimized due to the selectivity of material deposition 

and removal.  

 

Subsequently, metal is electrochemically formed into the molds. Upon removal of the molds, 

the MEMS structures are finished. Movable three-dimensional microstructures with high 

aspect ratioes can be obtained by combining the UV-LIGA process with the sacrificial layer 

techniques. 

 

The UV-LIGA process involves a thick layer of resist (from tens of microns to millimeters) 

as the molds, which can be exposed by UV light using the conventional mask aligner. Nickel 

(or copper) is usually used based on its mechanical strength, corrosion resistance, 

thermal/electrical conductivity and ease of electroplating. This process is capable of making 

three-dimensional features, while only two-dimensional structures can be made by the 

conventional surface micromachining techniques such as etching and physical vapor 

deposition.  



Typically, the process begins with the deposition of the metallic seed layer by using the 

physical vapor deposition process such as thermal evaporation, sputtering or e-beam 

evaporation, followed by patterning of the molds by the photolithography process. Then 

metals are filled into the molds by electroforming, and the molds are removed after 

electroforming. The process flow is shown in Figure 1.7. UV-LIGA process gives the 

opportunity to fabricate robust MEMS devices with low cost, improved performance and 

reliability [3]. The UV-LIGA (electroforming) technique is also employed to fabricate 

composite materials. Electrochemical co-deposition of particles with metals is an effective 

way to make innovative composite materials.  

Mold 

Seed layer 

Plated feature 

Substrate 

(d)

(c) 

(b) 

(a)

 

1.4 Electrochemical Deposition Rate

 

The deposition rate needs to be calculated out to guide the experiment. Electroforming is 

performed in a liquid solution called an electrolyte, otherwise referred to as the "plating bath". 

oval. 

 

Figure 1.7: Schematic drawing of the UV-LIGA process. (a) deposition of metallic

seed layer by PVD; (b) pattern the resist mold by photolithography; (c) electroforming;

(d) after mold rem
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lectrolyte, the deposition of a metal, which occurs during the 

lating process, has been generalized as Equation (1.1).  

electrons are required. That is, 

the total catholic charge used in the depo

The bath is a specially designed chemical solution that contains the desired metal ions (such 

as gold, copper, or nickel). In addition, various substances (additives) are introduced in the 

bath to obtain smooth and bright deposits. The object that is to be plated is submerged into 

the electrolyte (plating bath), acting as a negatively charged cathode. The positively charged 

anode(s) completes the electric circuit; those may be at opposite edges of the plating tank. A 

power source in the form of a battery or rectifier (which converts ac electricity to regulated 

low voltage dc current) is providing the necessary current (Figure 1.5). Now, in the bath the 

electric current is carried largely by the positively charged ions from the anode(s) toward the 

negatively charged cathode. This movement makes the metal ions in the bath to migrate 

toward extra electrons that are located at or near the cathode's surface outer layer. Therefore, 

it would appear that the thickness of the electroplated layer on the substrate is determined by 

the time duration of the plating. 

 

For a single metallic ion in the e

p

M+n + ne- ==> M                                                  (1.1) 

Obviously, to reduce one mole of a given metal, "n" moles of 

sition "Q" (coulomb) is the product of the number of 

gram moles of the metal deposited "m", the number of electrons taking part in the deposition 

"n", Avogadro's number "Na" (the number of atoms in a mole), and the electrical charge per 

electron "Qe" (coulomb). Thus, the following equation gives the charge required to reduce 

"m" mole of metal:  
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f the last two terms in this equation is the "Faraday constant" "F". 

Therefore, the number of moles of metal reduced by charge "Q" can be obtained as:  

m = Q / (n F)                                                      (1.3) 

On the other hand, the total charge used in the deposition can be obtained as the product of 

the current "I" (ampere) and the time of deposition "t" (second) if the deposition current is 

held constant. Or, if the current varies during the deposition:  

Q = m n Na Qe                                                     (1.2) 

Now, the product o

∫= IdtQ                                                            (1.4) 

So, the number of moles deposited can be calculated as:  

∫= Idt
nF

m 1                                                           (1.5) 

The weight of the deposit "w" (gram) can now be obtained by multiplying Equation (1.5) 

with the atomic weight "Mw" of the deposited metal. Finally, to calculate the thickness of the 

deposit, we have to use the density of the metal "ρ" (gram/cm3):  

ρ = w / V = w / (A T)                                                 (1.6) 

where "V" is the volume of the deposited metal in cm3, "A" is the area of the deposit in cm2, 

and "T" is its thickness in cm. Solving for thickness, using Equations (1.5) and (1.6) we have 

the useful practical expression:  

∫== Idt
nFA
M

A
wT w

ρρ
                                               (1.7) 

As mentioned above, if the current is held constant during the deposition, the integral in 

equation (1.7) can be replaced by the simple product of current and time "I×t". Therefore, 

(1.7) can be rewritten as  



ρρ nFA
ItMw w==                                                      (1.8) 

A
T

If we define a new variable current density J=I/A, equation (1.8) can be written as  

ρρ nF
JtM

A
w w=                                                        (1.9) T =

Applying equation (1.8) to nickel, we can Figure out its deposition rates vs. current (Figure 

1.8) assuming that the current efficiency is 100% (95%-97% for real case). The constants 

used in this case are listed below: 

 

 

MW  =58.69 g m

n  =2e 

Density (ρ) =8.9 g cm
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For copper, the deposition rate can be calculated using the constants listed below and is 

 the same 

conditions.  

M   =63.55 g mol-1

n  =2e 

Density (ρ) =8.96 g cm-3

 

 

 

 

 

 

 

 

 

 

 

1.5 Principles Governing Electroforming Process

shown in Figure 1.9. The deposition rate is about 10% higher than that of nickel in
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Figure 1.9: Copper electrochemical deposition rate (calculated) 

 

 

To perform electroforming with good pre ishing conditions, it is necessary to 

nderstand the hat affect the 

 perform electroforming with good pre ishing conditions, it is necessary to 

nderstand the hat affect the 

cision and fincision and fin

uu  principles governing this process. There are many factors t principles governing this process. There are many factors t
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ccess or failure of through molds plating, including substrate cleanness, adhesion between 

on of the plated film, nucleation and metallurgical structure. In addition to these, 

another important problems is the cu  mass transportation. For successful 

electroplating, it is required that the princip ass transport and current distribution to be 

well understood [4].  

1.5.1 Mass Transport 

ass transport is important in the plating process in that it determines the ultimate rate in the 

lectro mical micro-fabrication process. It has an important influence on the shape 

volut of the electrode in through molds plating and affects the microstructures of the 

eposited metals. Even with vigorous agitation on the bulk solution, convection cannot reach 

ery deep into very small and narrow patterns. 

o, mass transport can be described by a diffusion model, in which metal ions diffuse to the 

ottom of the feature (cathode), where the concentration may be depleted due to the diffusion 

istance from t maller at the 

m. Thus, hydrogen bubbles will be greatly generated, which degrades the quality 

of the film. A simple dimensional analysis suggests that, assuming stagnant diffusion within 

the feature, 

su

substrate and seed layer, resist, developing solution, seed layer surface pretreatment, plating 

solution, resist removal. This represents a complex set of interactions, which will primarily 

affect adhesi

rrent distribution and

les of m

 

 

M

e che

ion e

d

v

 

S

b

d he bulk electrolyte. As a result, the local deposition rate is s

feature botto

D
L2

                                                      ≅τ                                                                            (1.10) 
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he uniformity of the thickness of electro deposition is determined by the current distribution 

on a macroscopic level. And on a s t distribution determines the shape 

volution in through molds processes and the degree of leveling. In most applications, mass 

t the work piece scale, the current distribution mainly depends on the cell geometry, anode 

. As the current flows through the cell (electrolyte), the local current density on 

where τ is the characteristic diffusion time constant, L is the feature depth, and D is the 

diffusion coefficient of the metal ions. For L = 1 mm and D ~ 10-5 cm2/s for a metal ion in 

water at 25 °C, τ = 1000 sec [5]. The diffusion time constant is important in choosing the 

time step for pulse plating [6]. 

 

1.5.2 Current Distribution 

 

T

maller scale, the curren

e

transport and current distribution are intimately related. 

 

Three kinds of scales can be distinguished when studying current distribution on patterned 

electrodes: the work piece scale, the pattern scale and the feature scale.  

 

A

and cathode size and position, agitation uniformity on the cathode and with or without 

auxiliary electrodes, which can be calculated in the same way as in other electrochemical 

reactors.  

 

The size, spacing of the features and their geometry determine the current distribution on 

pattern scale

the cathode increases at the patterns and current crowding occurs to an extent depending on 



the size of the masked area. Figure 1.10 illustrates schematically the current distribution on 

the pattern scale and the feature scale [4]. The larger the surrounding covered area and the 

smaller the plated feature the higher will be the local current density because of current 

crowding. Therefore, the large

19 

Figure 1.10: Schematic drawing of the pattern scale and feature scale current distribution

on a patterned electrode (after reference [4]). 

 

 

 

 

 and the small patterns will be plated at different rates. The 

aller features will grow faster. The uniformity of current distribution at pattern scale can 

be improved by reducing the e tance, optimizing the electrode 

rrangement and the cell design.  

n the feature scale, the concentration field of the reacting species and/or the potential field 

sm

ffective anode-cathode dis

a

 

 

 

 

 

 

 

 

O

in the feature determine the current distribution, which determines the shape of the growth 

front in plate-up plating and the homogeneity of cavity filling. In order to get uniform current 

distribution on the feature scale, leveling agent is used, which works as an inhibitor of the 
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e DC plating is by no means very uniform, which leads to a 

on-uniformly plated surface profile especially for thick structures. Therefore, it is necessary 

 use pulse reverse plating to achieve even surface. It is mainly a catholic deposition cycle 

llowed by an anodic dissolution (etching) cycle, which offers the theoretical opportunity to 

chieve a more uniform current distribution [6].  

o get uniform plating profile, the pulse parameters are chosen in such a way that the current 

uring the plating cycle is more uniformly distributed than during the anodic etching cycle. 

sually, a higher current density is applied in the anodic etching cycle, which gives a higher 

tching rate at the peaks leading to a flat profile finally. The schematic drawing of the pulse is 

he mean current density can be calculated by  

metal deposition reaction. The valleys of a surface profile are more difficult to access than the 

peaks. Therefore, the peaks are more strongly inhibited by the leveling agent, leading to a 

more flat surface. Some additives for this purpose are coumarin and 2-Butyne-1, 4-diol. 

 

1.5.3 Pulse Reverse Plating 

 

Since the current distribution in th

n

to

fo

a

 

T

d

U

e

shown in Figure 1.11.  

 

T

                                          ron

rronp

tt
tjtj

j
+a

×−×
=

                                                                (1.11) 

where, jp is the deposition current density in mA/cm2, jr is the electrochemical dissolving 

current density, ton is the deposition time, tr is the dissolving time. 
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ating 

 the through hole plating. Here, the plating rate is proportional to L2/r, where L is the whole 

thickness and r is the hole’s ra ution depends on the absolute 

imension as well as on the aspect ratio.  

1.6 Scaling Laws in MEMS

The pulse reverse plating improves the feature-filling performance, however, it requires more 

complex equipments and a large number of electrochemical conditions must be controlled for 

the optimization of pulse parameters. An example of application of the pulse reverse pl

is

dius. So, the current distrib

d

 j + 

 jr 

jp 

0 
t 

ton                   tr 

                          Figure 1.11: Schematic drawing of the pulse scheme 

- 

 

 

With the characteristic length scale decreasing from the macroscopic to the micrometer size, 

micro devices could behave different from their macro counterparts. Due to the large surface 

rfaces and interfac

s dimensions diminishing. 

area to volume ratio, su ial phenomena play a key role in MEMS 

performance and reliability. The effects of gravity become negligible as compared with 

adhesive and friction effects. Surface tension dominates gravity a
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inear dimension L. In the following, except when 

explicitly stated, it is assumed that all the linear dimensions vary proportionally to L. This 

implies that all  S vary like L2 (S ∝ L2) and all volumes V vary like L3 (V ∝ L3). This 

implies that the masses m scale to m ∝ L3 for incompressible media. So the gravitation force  

 = mg ∝ L3                                                   (1.12) 

Therefore the pressure exerted by the gravitation force is 

PG = G/S∝ L                                                (1.13) 

The adhesion force between two surfaces is mostly caused by the Van der Waals type forces 

[84]. The attractive force experienced by an infinite flat slab separated by a distance x from 

another infinite flat slab is given by [85]   

Fa(x) = H/(6πx2)                                        (1.14) 

where H is the so-called Hamaker constant. H depends on the nature of the medium between 

the slabs. H is of the order of 10−19 J in air and of 10−20 J in water. This relation is valid 

for x between around 2 and 10 nm. It is obvious that Fvdw(x) varies like the contact area. 

F (x) ∝ L2                                                 (1.15) 

It is obviously that the gravitation force and the surface adhesion force behave differently, 

and the adhesion force dominates the gravitational force at low L. Gravitation may then be 

Therefore, it is important to understand the scaling laws to design and understand the 

performance of micro devices.  

 

1.6.1 Scaling Laws in Mechanics 

 

Let us consider elements with a typical l

areas

G

a



neglected at such small dimensions, both in the micro- and the nano-worlds. Therefore, the 

striction problem needs to be considered and solved when designing micro devices.  

1.6.2 Scaling Laws in Fluid Mechanics 

 

For the flow in pipes, the transition from l

ich liquids flow. 

 

uency of cantilever beams (Figure 1.12) used in 

Chapter 2 can be expressed.  

 

 

The transition from laminar to turbulent flow is given by the Reynold number Re. Re = 

ρνL/µ, where ρis the density, ν is velocity and µ is the dynamic (absolute) viscosity. If v ∝L, 

then  

Re ∝ L2   (v ∝ L)                                         (1.16) 

aminar to turbulent flow occurs when Re ≅ 103 [7]. 

In this case, turbulence disappears in micro systems in wh

1.6.3 Resonant Frequency of the Cantilever Beams 

 

Applying scaling laws, the resonant freq
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Figure 1.12: Typical cantilever beam studied 
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When a force P is applied to its transverse direction at the free end, the displacement at th

end can be expressed as: 

is 

EI3
PLLu )(

3

−=                                                    (1.17) 

e displacement, L is the length of the beam, E is the modulus of where u is the transvers

elasticity and I is the moment of inertia. So, the stiffness of the beam k is  

3

3
L
EIk =                                                         (1.18) 

In this case, I can be determined by  

31
12

the resonant frequency in traverse direction can be determined by 

wtI =                                                     (1.19) 

masseffective
stiffnessf

π2
1

0 =                               (1.20) 

The effective mass is the equivalent moving mass of the beam and can be determined by  

Lwtmmeff ρ
140140

==                                (1.21) 

Therefore,  

3333

ρ
E

L
tf 20 164.0= ∝ L-1                                 (1.22) 

or the nickel beam used in chapter 2 with L µm, t=10 µm, E=211 Gpa (bulk) and 

=8900 Kg/m3, the resonant frequency can be derived as 49.9 KHz from equation 1.22. For 

omparing, if we increase the dimensions 100 times proportionally (L=4 cm, t=1 mm), then 

 

F =400 

ρ

c
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the frequency will be reduced to 499 Hz. So, scaling laws are valid in the frequency of micro 

devices. 
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1.6.4 Squeeze-Film Damping 

 design, where the 

frequency and quality factor need to be considered. 

e-film damping (Figure 1.13) in these devices.  

 

 

 

 

where F is the damping force, V is the relative velocity betwe e

For incompressible fluid, the damping coefficient has been derived [86, 87] as 

 

Damping issue is a crucial concern for RF MEMS and our microvalve

According to Andrews et al [86, 87], the 

quality factor is dominated by squeez

 

 

 

 

 

en th  two plates, u is the fluid 

velocity and h is the gap between the two plates.  

 

34217.0
h
A

V
FB µ==                                             (1.23) 

0

2

 

Figure 1.13 Squeeze film damping 
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 between plates. So the damping ratio can be obtained from 

where A is the area of the moving plate, µ is the dynamic viscosity of the fluid and h0 is the 

initial gap

04 fM effπ
Bζ =                                              (1.24) 

where Meff is the effective of the system, and f ped resonant frequency. Finally, 0 is the undam

the damped resonant frequency fd can be found as 

2
0 1 ζ−= ffd                                           (1.25) 

 

1.7 Objectives of the Research 

 

The dissertational research focused on design ng, fabricating and characterizing novel 3-D 

MEMS devices with electroformed nano-structured materials. Scaling laws are applied in the 

design to achieve highly functional devices. The developed micro devices and processes are 

listed below:  

• Development of a robust hybrid nickel-silicon microvalve using UV-LIGA 

electroformed nickel; 

• Development of a robust monolithic solid nickel microvalve using a bottom-up in situ 

Development of micro heat-exchangers for cryogenic heat transfer; 

• Development and characterization of copper/carbon nanotube nanocomposites with 

decreased CTE (coefficient of thermal expansion) and increased thermal conductivity 

for heat spreading. 

i

UV-LIGA electroforming process; 

• 
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Firstly, compact microvalve arrays for robust pumps were developed and tested, where both 

c) and high-pressure support (>10 Mpa). 

However, the silicon material used may be a problem when la

 this case, more robust compact microvalve arrays would be needed. Therefore, self-

assembled solid nickel microv

ages.  

 

Third, copper/SW posite was developed through electroforming process by 

dispersing SWNTs

Density m  SWNT is approximately 18 percent. The 

measured CTE is greatly reduced from

improved, m

 

• Mechanical and material characterization of electroformed nickel and nanocomposite 

for MEMS devices using micromachined specimens; 

nickel and silicon were used for the valve fabrication. The completed valve has a high 

frequency (>10 kHz), high flow rates (10 ml/se

rge dynamic loads are subjected. 

In

alves were developed and tested.  

 

Second, laminated micro heat exchanger was developed by the UV-LIGA process, where 

patterned SU-8 and the electroformed nickel were used as structural materials with micro 

fluid channels inside. The fabricated microstructure passed cryogenic test without any 

structural dam

NT nanocom

 in copper electrolyte and being co-deposited with copper when plating. 

easurement implies the content of

 pure copper while its thermal conductivity is greatly 

aking it an ideal candidate for heat spreading.  
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Finally,  

simulat sting was conducted using 

icrofabricated specimens. Results were obtained and presented in this dissertation. 

 for better understanding the mechanical behavior in micro scale and validating

ion results of MEMS devices, mechanical te

m
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2.1 Introduction

CHAPTER 2 ELECTROFORMED ROBUST LARGE FLOW RATE 

PASSIVE HYBRID MICRO CHECK VALVES 

 

 

Compact actuators are currently being proposed for space related applications [1,7]. Compact 

robust actuators are important because they provide larger power per unit volume/weight 

ratio than conventional actuators. Actuator requirements include large displacements, large 

output forces, a high bandwidth, and a high precision together with a compact size. One 

example is that NASA intends to reduce the launching cost dramatically from current 

$8000/pound to $100/pound by 2025 [7]. Miniaturization will play an important role for 

achieving the objective, as any reduction in mass or power required for a space instrument or 

subsystem results in an exponential savings for launch cost [7]. MEMS based microvalves 

and compact piezoelectric pumps represent key components for fluid management systems to 

meet the rigorous performance requirements for various space applications. For example, 

NASA has identified a low-leak space qualified regulator valve as a key technology for 

enabling micro-instruments, micro-spacecraft, and the future of space exploration [7].  

 

Hydraulic compact actuators consisting of piezoelectric stacks and robust microvalves 

represent an alternative approach to other compact actuators. These hydraulic actuators 

produce power per unit volume ratio about 100 to 1000 times greater than their electrostatic 

counterparts. Compact pumping components (pusher) are fabricated with smart (active) 

materials due to simplicities in design and high power densities. These smart materials 
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includ hape 

memory alloys a mpact pumping 

ponents include large displacements, large force outputs, high working frequencies, low 

energy consumptions (high efficiency) and

aterials produce larger force outputs at high operation frequencies (up to 

ncy is required for microvalves to produce 

e, but are not limited to, piezoelectric materials, magnetostrictive materials, s

nd phase change materials [8]. Requirements for co

com

 ease of operation. Generally speaking, 

piezoelectric m

100kHz) with small displacements (<0.5%); shape memory alloys produce large 

displacements (up to 8%) and very high energy densities with low working frequencies 

(<100Hz). Other materials and/or driving mechanisms are ranked in between the piezoelectric 

material and shape memory alloys, in terms of forces, displacement outputs and the 

operational frequencies. 

 

Robust microvalve is required to perform two functions as a component of a hydraulic 

actuator (pump). One function is manipulating/directing/switching the flow direction 

(forward or backward) and the other one is to bear the load when the valve is in a closed state. 

Therefore, requirements for compact valves are stricter than those for a pumping component 

(pusher), in addition to the common limitations encountered in MEMS devices [9]. 

Nevertheless, valves should be able to open wide (enhancing forward flow) and close tightly 

(preventing back flow). A high operation freque

high flow rates such that large displacements could be achieved for the hydraulic actuator.  

 

Current research on micro valves can be classified as active (self controlled) valves and 

passive valves (controlled by the pressure difference produced by the pusher) [10-22]. 

Research on non-mechanical moving parts or valveless system is not referenced in this article 
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ive valves or check valves are operated by pressure differences 

reated by the pumping component (pusher). These valves have been successfully tested in 

his research investigates the feasibility of utilizing micro mechanical passive valves to 

due to the small pressure gradient and/or small flow rate produced. In general, active valves 

have a relatively quicker response time or higher frequency response (for example, up to 100 

kHz for piezoelectric valves). However, they provide only low to moderate flow rates due to 

either small displacement (piezoelectric) or longer response time (shape memory alloys). The 

active valves also need additional control unit (power activated) for operation so that 

additional power consumption is required. This will make a complicate design and hard to 

fabricate. In addition, the synchronization between pumping component (pusher) and the 

valve is challenging at high frequencies.  

 

On the other hand, pass

c

both macro scale and micro scale applications [10,11,12]. While successful in operation, 

these passive valves are typically more susceptible to back flow (leaking) problems. In 

addition, traditional passive valves (macro scale) are considered to be low frequencies, i.e. 

less than 500 Hz [10]. However, the emerging MEMS techniques provide the opportunity to 

design and fabricate high functional passive valves. Scaling laws have proven that micro 

mechanical systems could be changed greatly when the physical dimensions shrink [12] and 

they should apply equally to robust micro valves.  

 

T

achieve high operational frequencies, large flow rates and large pressure support for a robust 

compact piezoelectrically actuated pump. Scaling laws were applied to the design. A novel 

micro reinforced valve flap is employed to provide high-pressure capabilities, i.e., 10 MPa 
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crovalve Design

when the valve is closed. It is also designed to work at frequencies larger than 10,000 Hz. 

With a specially designed valve stopper, the valve is also capable of preventing potential tear-

off of the valve flap under an extreme high pressure when it is open. Test results show that a 

flow rate of 18 cc/sec can be achieved under a pressure of 50 psi. The work indicates that 

microvalves can be used to support extremely high-pressure difference (> 10 MPa) and large 

flow rates (>10 cc/sec) with high operational frequencies (>10 kHz).  

 

2.2 Mi

 
2.2.1 Requirements 

 

lves can meet all these requirements.   

The micro mechanical passive valve designs are based on the requirements for compact 

hydraulic actuators being developed for space applications [23,24]. The requirements on the 

integrated micro valves include:  

• Ability to support pressure differences of 10 MPa or larger;  

• Flow rates of 10 cc/sec or larger;  

• Operating frequencies of 10 kHz or larger;  

• Low or no power consumption.  

As described below, current MEMS based microva

 

2.2.2 Hydraulic Actuator and Microvalve Structure 

 

Figure 2.1 is a sketch of the microvalve design integrated with a compact robust pump (the 

hydraulic actuator) being developed. A piezoelectric stack is used as the pump pusher, which 



produces large pressures and high flow rates when operated at high operating frequencies. 

The pump pusher (PZT) deforms a membrane to compress the liquid in the chamber to open 

the valve. The pump is 50 mm long and 25 mm in diameter (Figure 2.1). 
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The microvalve developed is a mechanical normally closed check valve (Figure 2.2 and 

Figure 2.1 b for array). The microvalve consists of inlet channels and novel nickel valve flaps, 

and a valve stopper (Figure 2.2). Liquid is directed through orifice of the valve flap and 

passing the outlet channels fabricated on the valve stopper. The gap between valve flap and 

valve stopper is 10 µm. The valve flap (Figure 2.2) is linked with four identical micro beams 

(springs), which hold the valve flap to the valve substrate and thus closes the valve channel 

(200 µm in diameter, Figure 2.2) elastically.  

 

The valve is opened by a pressure pulse produced by the PZT actuator (Figure 2.1 a), where 

forces liquid passing the valve inlet channels and then through the valve flap (Figure 2.2). 

The valve returns closed by the spring force developed in the four beams in addition to the 

Figure 2.1: Sketch of compact pump and integrated microvalves (not in scale) 

C. A-A view A. Pump  B. Valve  

A

Pump chamber 

Inlet  

Outlet

PZ

A

Valv

50 mm 

Membrane
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cture (300 µm x 40 

m x 20µm) is designed on top of the valve-flap (Figure 2.2). It is used to increase the 

valve’s load bearing ability. 

 

reverse pressure difference upon PZT’s contraction (Figure 2.1). The size of the valve-flap 

(square) is 300 µm x 300 µm held by four beams (50 µm x 400 µm each) and the thickness is 

10 µm for both the valve flap and the beams. A cross-shaped nickel stru

µ

Top view 

Micro beam 

Stopper
 
 

Silicon 

Figure 2.2: Details of individual microvalve of valve array shown in Figure 1 C 

 

wafer 

Side view: valve open 

Flow 

Unit: µm 

channel 

Orifice 

Nickel flap 

Cross 

Micro beam 

Inlet channel

Inlet 

Silicon wafer 
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When the valve is open (see Figure 2.3), the fluid flow beneath the th absolutely a 

Newtonian flow. If entrance effects are neglected, the pressure drop can then be given by the 

Bernoulli equation. By expressing the fluidic resistance, and the velocity, the pressure drop 

can be written as:  

2.2.3 Flow Rate Calculation 

 

The flow rate requirement needs to be fulfilled. So, it is important to predict the flow rates of 

the valve for different pressure differences applied. Equation for flow rates was developed 

based on Bernoulli equation. 

 

in plate is 

3

12
zD
QLP =∆

s

s

∆π
µ

                                                      (2.1) 

where µ is the dynamic viscosity of the fluid (for water µ=0.001 N-s/m2), Q is the volume 

flow rate, ∆p is the pressure difference and ∆z is the maximum on of the beam. 

Therefore, the flow rate can be written as: 

 deflecti

( )3

12
zP

L
D

Q
s

s ∆∆=
µ

π

                                                 (2.2) 

 

The flow rate under different pressure is obtained from equation 2.2 with a duty of 50% 

assigned due to the operational mechanism (∆z is f m based on the structure, 

Figure 2.4). 

ixed to 10 µ
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Calculation results (Figure 2.4) indicated that a single valve with above-mentioned 

dimensions could not produce sufficient flow for this 

 2.1 C). The resulted flow rate would be 84 times 

larger than that of a single valve so that flow rate of 10 cc/sec could be easily achieved at a 

relative low pressure (30 Psi in Figure 2.5). Array of 

mmetric arrangement over the 12 mm in diameter proposed from the pump design.  

 

Figure 2.3: Scheme of flow rate calculation parameters 

 

 

 

 

 

 

 

 

research. Larger valves would reduce 

the frequency and the load bearing ability, and are therefore not an option. In order to meet 

the flow rate requirement (> 10 cc/sec), a compact robust microvalve array consisting of 84 

individual valves has been adopted (Figure

84 valves was selected due to the 

sy



 

Pressure difference (Psi) 

Figure 2.4: Calculated flow rate of a single micro valve 
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Figure 2.5: Calculated flow rate of 84 micro valves 
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2.3 Finite Element Analysis

 

Static finite el  was conducted to predict the stress distribution over the valve 

ap and the si n substrate both in the open and close condition. The resonant frequency 

as also simu te the design. The properties of nickel used here are: density of 

.88 g/cc, modulus of elasticity of 207 Gpa and Poisson's Ratio of 0.31 (bulk).  

2.3.1 1st Mode Resonant Frequency and Damping 

inite element simulation was conducted with the help of I-DEAS. In this case, the ends of 

e cantilever beams (spring) were clamped. Results show that the first natural frequency of 

e valve is 30 Hz in vacuum. This is much higher than the required PZT actuator’s 

esignated wor  frequency (10 kHz). Therefore, it is safe for the valve to work at this 

equency. This also a major advantage of MEMS devices due to scaling laws. With the 

imensions shrink with MEMS devices, the natural frequency will be improved greatly. The 

ode shape is shown in Figure 2.6.  

he damped frequen 5). First of all, the 

amping coefficient B can be calculated from 

ement analysis
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3
0

2

1042.3
)1010(
)10300(001.04217.04217.0 µ              (2.3) 

The effective mass of this system is a combination of the mass of the flap and the effective 

mass of the beams, which can be derived from 
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So the damping ratio can be obtained from 
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Therefore the damped resonant frequency is  

1042.3 ×B

KHzffd 5.24605.018.301 22
0 =−×=−= ζ                                          (2.6) 

This is still much higher than the required PZT actuator’s designated working frequency (10 

kHz). 

Figure 2.6: First mode natural frequency of the micro valve flap 

39 
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2.3.2 Stress Analysis of the Valve Flap 

 

the safety of the flap is extremely important. In 

order to predict any potential damages occurring in the flap, the stress distribution was 

analyzed to find the maximum value and its locations. If they are beyo

ply. For all the simulation discussed below, the 

ends of the beams were fixed and pressure differences were applied on one side of the flap. 

 

2.3.2.1 Stress on the flap when it is fully opened

As the key component of the microvalve, 

nd the strength limits 

of the material, changes of the design will ap

 

It is anticipated that the pressure differences acting on the valve flap during the open period 

are not very high (pressure difference over the valve flap, less than 100 psi). Therefore, a 

pressure difference of 1 atmosphere (14.5 Psi) was applied on the valve flap. The stress 

distribution on the valve flap was illustrated in Figure 2.7.The maximum von misses stress is 

191 Mpa, which corresponds to a maximum deflection of 6 µm in the center of the flap. It is 

reasonable to predict that the stress is proportional to the deflection in the elastic range. The 

deflection is determined by the pressure difference applied. 

 

The maximum stress on the cantilever beams as well as at the connections by beams and the 

flap will be very large if the flap can move unrestrictedly, during “open” state of the valve. In 

order to preve f of the beams 

in case of large pressure differences applied; a valve stopper has been designed (Figure 2.1 

and Figure 2.2). The valve stopper is fabricated out of silicon wafer and bonded on top of the 

nt any potential failures such as permanent deformation or tear of
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flap to stop the valve-flap ) during the open period 

igure 2.1 b and Figure 2.2). The gap of 10 µm is chosen such that the maximum stress is in 

e 

alve-flap touches the valve stopper during open periods  

 motion to a limited distance (10 µm

(F

the allowable range as well as a high flow rate can be maintained (Figure 2.5). The maximum 

stress of 318 Mpa for a deflection of 10 µm can be predicted elastically from Figure 2.7, 

which is allowable for the nickel material used from the results of strength testing in Chapter 

6. Test results show that micromachined nickel has a tensile strength larger than 800 Mpa. 

Nevertheless, the cross pattern will also overcome potential stiction problems when th

v

 

 

Figure 2.7. Stress distribution over microvalve flap while it is fully opened 

 
Unit:Pa Fixed Maximum stress 

400 µm 2 x 50 µm 
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2.3.2.2 Stress on the flap when it is closed

 

As mentioned above, the valve needs to support pressure larger than 10 MPa when it is 

closed. The valve flap is the key component for this load bearing. As the valve flap is a 

membrane (10 microns thick), it is difficult to support such a high pressure without 

permanent deformation/damage (predicted by FEA simulation). To overcome this problem, a 

micro cross structure is designed to add on top of the valve flap. Even though the cross has a 

small dimension (300 x 40 x 20 µm), the effect of stress reduction is tremendous.  

It indicated that the maximum von misses stress of the valve flap with cross pattern could be 

reduced by a factor of 5 than ithout cross when the valve is closed to support 10 MPa 

pressure (Figure 2.8). Figure 2.8 shows that with the help of the micro cross structure, the 

valve flap can stand up to 10 MPa pressure difference without failure. The maximum stress of 

180 Mpa under pressure of 10 MPa occurs in the micro cross instead of in the flap when no 

cross present. The stress is safe for the flap according to the testing results from Chapter 6. 

This pressure support ability is 4 times larger than that without the cross structure.  

 

2.3.3 Stress Analysis of Silicon Substrate 

 

 silicon piece (12 mm in diameter and 500 µm thick) is used to support the valve flap and to 

house the inlet channels. It is anticipated to hold pressure when the valve is closed. Therefore, 

stresses will be generated over it during operations. The valve was supported in such a way 

that can minimize the stress, as shown in Figure 2.9.  

 

 that w

A
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ue to the symmetry of the geometry, only one quarter of the silicon substrate was simulated. D

Commercially available (100) single crystal silicon is used with Young's Modulus of 150 Gpa 

and Poisson's Ratio of 0.17: all the edges shown in Figure 2.10 were fixed. The stress results 

were illustrated in Figure 2.10. The maximum stress is 179 Mpa, which is located in the 

edges of the structure. The published value from [25] is as high as 1Gpa for RIE fabricated 

single crystal silicon, as being used in the fabrication described below. Therefore, this silicon 

structure is safe.  

Fixed                                                       Unit: Pa 

 

Figure 2.8: Stress distribution of microvalve under 10 MPa pressure while closed. 

Maximum 

stress 

400 µm 2 x 50 µm 



Supporting area 

1 mm1 mm 
Simulated area 

1 
m

m
 

Figure 2.9: Supporting area of the valve & the silicon substrate 

Figure 2.10: Stress distribution of silicon substrate under 10 MPa pressure while closed. 

Fixed                                                     Unit: Pa 

Inlet channel 
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In summary, the designed valve structure is safe both for the nickel and the silicon according 

to the nces 

up to 10 Mpa while maintaining a large flow rate. The 1st natural frequency of the flap is very 

high (30.8 KHz), which allows the valve to operate at 10 KHz without resonance related 

damages.  

 finite analysis results. The valve is predicted to be able to support pressure differe
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2.4 Fabrication

 

An innovative fabrication process was designed with the concern of the available equipment 

and the needs for the precise machining. The process consists of etching inlet channels in a 

silicon substrate, electroforming nickel the valve flap and the micro cross, etching outlet 

channels in an m the silicon 

wafers for packaging.  

 

As illustrated in Figure 2.12, the valve flap and the micro beams as well as the cross pattern 

are fabricated by electroforming nickel on a silicon wafer with patterned photoresist as molds 

(Figure 2.11) and a spurted (or evaporated) metallic thin layer as the starting seed. The nickel 

electroforming solution used was a slightly modified Watts bath [26] based on experimental 

results conducted during the development regarding of internal stress and surface roughness. 

The solution contained NiSO4·6H2O 350 g/l, NiCl2·6H2O 25 g/l, H3BO3 40 g/l and Saccharin 

0.1 g/l. The PH value of the solution was held at 4.0~4.5 and the temperature were kept 

constant at 60 °C. A nickel deposition rate of 12 µm/hour was achieved by maintaining the 

cu

d patterned serving as the molds for the electroforming of the cross. Next 

other silicon substrate and separating valves and stoppers fro

rrent density of 10 mA/cm2.  

 

The fabrication process (Figure 2.12) starts with a silicon wafer coated with a thin layer of 

Cr/Cu by the thermal evaporation (or spurting) for nickel electroforming. Then photoresist 

(shapely 1075) was applied and patterned by photolithography to form the electroforming 

molds. After electroforming the valve flap and micro beams, another layer of photoresist was 

applied an
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electroforming was conducted to gen cross. Finally the whole flap pattern 

ontaining the cross was formed (Figure 2.13). 

icon underneath was etched out. The valve-flap and beams are then 

leased by removing a sacrificial layer underneath. 

erate the micro 

c

 

Next, a deep reactive ion etching (RIE) process was used to fabricate the valve inlet channels 

(100 micron in radius) and separate the silicon supporting substrate from the backside of the 

silicon wafer with the help of a double-side aligner. The RIE etching stopped at the nickel 

valve flap when all sil

re

 

The valve stopper was fabricated by wet chemical etching to make the cross ribs similar to 

that of the valve. Deep RIE was used to open outlet channels on the silicon substrate (as a 

valve stopper) for liquid passages when the valve is open. A separation etching was 

performed during etching of channels (both on inlet substrate and outlet or valve stopper 

substrate). No dicing (actually it is difficult to dice circular shape) is needed. The valve 

Photoresist 
Mold 
 
Metallic 
seed layer 
 
Spacer 
underneath

   Figure 2.11: Photoresist mold (thickness 12 µm) for the flap electroforming 
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rocess is shown in Figure 2.12.  

stopper was then bonded on top of the valve array and final device (weighs 0.2 grams) was 

ready (Figure 2.14) for testing. The fabrication p

Figure 2.12: Fabrication process: (1) Spacer with seed layer on the top; (2)

Nickel plating of the springs and the flap with PR mold; (3) Cros )

Structure released by lift-off; (5) Hole etched by deep RIE etching 

s plated; (4



 

 

φ=12 mm 

Cross 
 
Beam 
 
Flap 

Figure 2.13: Array of microvalves (84) over 6-mm radius area before bonding with

valve stopper 

φ=12 mm 

Outlet channel 

Figure 2.14: Microvalve arrays (84) 

The device weighs 0.2 grams in total.  

after bonding with valve stopper (top view).
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The electroformed nickel was studied in the material aspect in terms of grain size and 

morphology. Figure 2.15 shows the surface profile of the electroformed nickel. It is obvious 

that the grain size in this material is in the nano meter range. It is expected that the yield 

strength (σy) of polycrystalline metals and alloys will increase with decreasing grain size (d) 

according to the well-known Hall–Petch (H–P) equation [99]: 

                                                       (2.7) 

where σ0 is friction stress resisting the motion of gliding dislocation, and k is the Hall–Petch 

slope, which is associated with a measure of the resistance of the grain boundary to slip 

transfer. Therefore, the electroformed nickel is expected to have a higher strength than 

conventionally fabricated nickel, which has a larger grain size. This is proved by the tensile 

test

 

 

 

 

 

 

 

 

 

2/1
0

−+= kdy σσ

 results as described in chapter 6.  

 

Figure 2.15: Nanostructured electroformed nickel. 
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2.5 Test Results and Discussion

 

The characterization of the microvalve was performed by measuring the flow rates on an 

array of 84 single valves under different pressure conditions. The valve array was held by a 

specifically designed valve holder (upper left, Figure 2.16) while a pressure difference is 

applied. DI water was used for testing.  

rates versus applied pressure differences are 

 the results the valve’s crack pressure is determined to be about 

 Psi. The measured flow rates is proportional to the pressure differences applied, as 

redicted by Poiseuille’s law. The flow rate is about 18 cc/s at a pressure difference of 50 psi, 

hich is the largest pressure tested. Much higher flow rate is expected if larger pressures are 

applied based on Poiseuille’s law. On the other hand, the valve sealing is very good as the 

2.5.2 Repeat Static Testing 

 

In addition to the valve’s functional performance, the valve’s durability/reliability is another 

relatively important concern. A specific loading/unloading sequence was designated to testify 

the valve’s durability. The tested loading parameters are indicated in the lower right in Figure 

 

2.5.1 Single Static Testing 

 

Static test was performed by raising the pressure from low to high for both the forward flow 

and the backward flow. Test results of flow 

provided in Figure 2.16. From

5

p

w

backflow rate is negligible (Figure 2.16). 
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2.17. Ramped pressure differe e flap and then released back 

ep by step in an interval of 10 psi. The flow rates were measured at each pressure level 

nearly proportional to the pressure differences applied, regardless of how the pressure was 

applied. This indicates that Pois is structure during the test. An 

portant fact is that there were no damages or permanent deformations presented in the 

8 
10 
12 
14 
16 
18

nces were applied over the valv

st

during the testing process. The tested pressure progressed from lower pressure to higher. 

Flow rates versus applied pressures are shown in Figure 2.17. 

 

 
20 

 

The test results in Figure 2.17 show that the flow rates measured repeat very well at similar 

pressure levels over a the range of pres

0 10 20 30 40 50 
0 

4 
6 

sure differences tested. The flow rates are really 

li

euille’s law is valid for th

im

valve flap during the loading/unloading testing processes, since any permanent deformation 

would result in non-elastic response (Poiseuille’s law world not be valid). Microscope 

inspection verified this after testing. This is due to the relatively small bending of the beams.  
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Figure 2.16: Forward and backward flow rates under pressure differences (water) 
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lly designed valve holder for 

dynamic response characterization. Two sets of the microvalve array (Figure 2.14) were 

tested. The water was pumped against a blocking force and the increased pressure was 

measured. Test results showed that a measured pressure rose up to 350 psi when the pumping 

frequency was 10kHz. This is the highest pressure buil-up from lve ever produced, 

based on the author’s knowledge. 

 

 

2.5.3 Dynamic Testing 

 

The fabricated valve set was assembled in a similar way as depicted in Figure 2.16 with a 

piezoelectric pump at Kinetic Ceramic Inc. using a specifica

a microva
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2.6 Conclusion

 

A robust passive high frequencies, high pressure micro check valve has been developed for 

piezoelectrically actuated pumps or hydraulic actuators. The valve can support pressure up to 

10 MPa due to a novel cross pattern designed on the valve flap. The valve’s reliability is 

assured by using a mechanical valve stopper. The valve flap was fabricated with the 

electroformed nickel on silicon substrates. Deep RIE etching was used to fabricate the valve 

channels on silicon substrates as well as separate valve and valve stopper from silicon wafers. 

The whole valve array weighs 0.2gram including the packaging. The flow rate of the 

icrovalve tested is about 18 cc/sec (DI water) under a pressure difference of 50 psi. No 

amage was identified during the repeated tests. Dynamic test results showed that the micro 

alve integrated with a compact piezoelectric pump can produce a pressure of 350 psi when 

perates at 10kHz develop o mechanical passive valve array matches well to 

iezoelectric pushe herent m l proper es in terms of high actuating frequencies and 

rge force suppor i . The compact ydraulic actuators integrated with the novel 

icrovalve arrays will find broad applications in aerospace and deep space exploration for 

uid management syste ps and robust actuators where payload is critical, as 

ell as other industry appli tions he d robu ness are important.    
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CHAPTER 3 LOW STRESS SU AND ITS APPLICATION FOR 

THE FABRICATING A NOVEL MICRO HEAT EXCHANGER 

-8 PROCESS 

 

3.1 Introduction

 

SU-8 is an ultra-thick, high contrast, negative tone, epoxy based photoresist, which can be 

exposed by near UV lights. It is an excellent material for the fabrication of high aspect ratio 

[27,28] and vertical wall Micro-Electro-Mechanical Systems (MEMS). Thick layer up to 

several milimeters [29] can be achieved by a single spin coating. SU-8 has very high optical 

transparency above 360nm, which makes it ideally suitable for imaging near vertical 

sidewalls in very thick films. It is reported that an aspect ratio of 18 was achieved 

reproducibly with a single layer [30]. Because of its superior aspect ratio, vertical sidewalls 

and stable characteristics within a nickel–sulfamate & sulfate solution, SU-8 turns out to be 

an excellent molding material for the electroforming process. In addition, SU-8 has good 

physical properties and is also a good structure material for microstructures. The mechanical 

’propertiessuch as Young smodulus and the ultimate strength (differ with processing) are 

measured by a newly developed tensile test method with the help of a MTS Tytron 

Microforce Tester (chapter 6). 

 

However, using SU-8 in the fabrication of MEMS devices is greatly limited the large internal 

stress generated in the fabrication process and its poor adhesion on most metals, such as 

copper, gold, titanium and chromium, etc [28]. In order to overcome these problemss, a 

newly developed material by Microchem Inc., called Omnicoat, was applied to improve 
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fabricati ro heat 

inated structure) designed to operate at cryogenic temperature was then 

fabricated by this process, in which SU-8 wo icro molds for nickel electroforming 

aterial for the thermal insulation layers. Even though nickel is not a 

adhesion of SU-8 on metallic layer. The parameters in the SU-8 process were refined for the 

on of low internal stress, ultra-thick, high aspect ratio micro molds. A mic

exchanger (a lam

rks as the m

as well as the structural m

good thermal conductor at room temperature, its thermal conductivity increases to 1250 

W/k.m at cryogenic temperature (77K). Therefore nickel was chosen for the thermal 

conduction layer. The thermal conductivity of SU-8 is 0.2 W/m-K (general value for 

thermoplastic), making it ideal for thermal insulation. The laminated microstructure with 

stacked nickel and SU-8 for potential micro heater exchanger had been fabricated and passed 

the cryogenic test without structural damages. 

 

3.2 Development of the SU-8 Process

 

SU-8 is a negative photoresist, good for fabricating pricise and stable patterns because of its 

good physical and optical properties as well as its stability in most chemicals. However, it is 

very difficult to produce fine thick SU-8 structures due to the large internal stress generated if 

following the process provided by the manufacturer, which will induce micro cracks (Figure 

3.1) in the structures harming its mechanical strength and reliability or even completely 

distort the patterns. This situation could be worse if the SU-8 layer is being used on top of 

metallic layers. The SU-8 patterns may be totally peeled off due to the poor adhesion between 

SU-8 and the metallic layer by the large internal stress produced (Figure 3.2). So it is 

necessary to optimize the fabrication process to develop low stress, cracks free SU-8 patterns 



for MEMS development. In order to overcome the adhesion problem, an Omnicoat layer is 

applied between SU-8 and the metallic layer to improve the adhesion. It also helps to remove 

the micro molds after nickel electroforming, because the Omnicoat is dissolvable in the SU-8 

remover.  
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 Figure 3.1: Distorted SU-8 pattern and cracks 

Crack 

 

 

Figure 3.2: SU-8 pattern partially peeled off  
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tion of thick SU-8. The major parameter to be controlled in order to reduce the 

ternal stress is the amount of cross-linkage in the material after post exposure bake. 

sufficient cross-linkage is good for stress and easiness of removal, but it will cause 

evelopment failure and bad wall profile. Excessive linkage is good for fine pattern 

eneration and good wall profile, but it will cause high film stress and difficulties to remove. 

herefore the amount of linkage need to be balanced for a low stress, cracks free, high aspect 

tio SU-8 process. The controllable parameters for this are the dose of exposure and the 

mperature & time of the post exposure bake. Also relaxation between steps is assigned to 

elp to reduce the internal stress.  

 this dissertational research, the author has conducted experiments to optimize the process, 

 terms of spin speeds, the soft bake time and temperature, the exposure time, the post 

xposure time and temperature and the relaxation time between steps. A process for low 

ress, high aspect ratio, and ultra thick SU-8 structures has been developed. In this process, 

e Omnicoat and SU-8 as well as the processing materials (Developer, Remover, etc) were 

urchased from Microchem Inc. SU-8 2150 was preferred to use in this research for thick 

oating because of its high viscosity. The Omnicoat layer and SU-8 layer were spun on by a 

onventional spinner (Model WS-400A –6NPP/LITE by Laurell Technologies Cooperation) 

and near UV exposed by a Karl Suss mask aligner with a power density of 13 mW/cm2 for I-

line (365 nm).  

3.2.1 SU-8 Process 

 

The extra high internal stress in SU-8 after post exposure bake (PEB) is a critical problem for 

the applica
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he detailed process for a 300 µm thick layer is listed below: 

t aligner for 4 minutes;  

. Relax 30 minutes;  

T

1. Spin on Omnicoat layer at 3000 RPM for 30 seconds by a conventional spinner;  

2. Bake Omnicoat layer at 200 oC on a hotplate for 1minute;  

3. Dispense 3 ml SU-8 2150 on a 3” wafer and spin coating at 1500 RPM for 30 seconds by 

a conventional spinner; 

4. Relax at least 1 hour;  

5. Soft bake at 65 oC for 15 minutes on leveled hotplate and at 95 oC for 8 hours (ramp 

temperature up and down slowly); 

6. Relax 9 hours after soft bake at room temperature;  

7. Remove bead in the edge; 

8. Near UV exposure with contac

9

10. Post exposure bake at 55 oC for 2 hours (ramp temperature up and down slowly);  

11. Relax for at least 24 hours;  

12. Develop with Microchem developer for 30 minutes, rinse with IPA followed DI water 

and blow dry; 

13. Etch by MF 319 to remove the uncovered Omnicoat;  

14. Nickel electroforming; 

Remove SU-8 mold by Microchem Remover PG at 90 oC for 30 minutes. 
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3.2.2 Discussions 

llow the 

inate the stress related to the 

com ents and allow the trapped air bubbles to evolve out of the film, 

i ooth and bubbles free SU-8 coating. The relaxation step (5) is to 

ma hich is designed to apply in the spin coating step. 

owed when soft baking. The method 

is by a knife after soft bake with nitrogen blowing to remove 

(8400 mJ/cm2) is used intently to 

 in the SU-8, which makes it possible to link the SU-8 at low 

 at low 

ich is much lower than the recommended temperature 95 oC). 

exposure bake step. The low temperature used in the post exposure bake (PEB) is to reduce 

 allow it to relax in the mean time, 

is greatly reduced in this scheme. As a contrary, cracks and 

al stress, if baking 

temperature is 95 oC (recommended by manufacture) or above. The IPA (isopropyl alcohol) 

used in the development step works well as an indicator for under developing if white spots 

 

The more than 1-hour relaxation time (step 3) just after the spin coating is used to a

SU-8 to re-flow in order to get a flat surface as well as to elim

spin coating step. A long time soft bake is used in this process on a leveled hotplate to 

pletely vaporize the solv

wh ch results in a very sm

reduce the stress due to SU-8 shrink. For step (7), the Bead Remover PG provided by the 

nufacture is not intended to use, w

However, this didn’t work well because the SU-8 refl

used to remove the bead here 

the powders produced. For exposure, a much higher dose 

produce a strong acid

temperature in the post exposure bake step. After near UV exposure, the SU-8 is baked

temperature (as low as 55 oC, wh

It is reported that most of the internal stress in the exposed SU-8 layer is produced in the post 

the rate of heat enhanced SU-8 cross-linkage as well as to

so that the internal stress 

distortions are easy to identify in SU-8 patterns caused by large intern
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are observed when the SU-8 sample  as well as a solvent for the SU-8 

eveloper which is insoluble in water.  

layer 

Figure 3.3: A 250 µm thick SU-8 mold for a nickel mesh like structure with 2704 squares 

columns (200 µm by 200 µm) in an area of 1.7 cm2 (1.5 cm by 1.5 cm) 

 is rinsed by IPA

D

 

The fabricated SU-8 molds are shown in Figure 3.3. They are free of cracks under inspection 

of microscope and no distortions are identified. Good adhesion between SU-8 patterns and 

the copper seed layer has been achieved. This conclusion can be safely drawn from the fact 

that no SU-8 structures were peeled off from the seed layer after developing as well as in the 

process of electroforming. This is a very good method to test the SU-8 adhesion strength on 

silicon wafer due to its large coefficient of thermal expansion  (CTE) which will cause an 

expansion mismatch between SU-8 and the substrate (such as Silicon or glass wafer with very 

small CET) when temperature increases (e.g. rinsing into nickel electroplating bath with a 

typical temperature of 55 oC). This mismatch will induce a large shear stress in the interface, 

causing peeling off of the SU-8 pattern from the substrate in case of a weak adhesion. This 

also indicates that the internal stress in the SU-8 layer is reduced to an acceptable level.  

 

Metallic seed 
SU-8 mold 



3.3 Design of the Micro Heat Exchanger

 

The designed micro heat exchanger is a sandwiched structure, as shown in Figure 3.4, in 

 

As shown in Figure 3.4, for a heat exchanger having a cross section of 1.5 cm by 1.5 cm, it 

houses an array of 2704 micro channels with dimension of 200 µm by 200 µm and the wall 

thickness of 50 µm. The thickness of each layer is 300 µm. In this design, square-shaped 

micro channels are preferred for the reason of increasing the space usage comparing to 

ci h 

which heat carrying liquid flows through an array of micro channels formed by laminated 

layers consisting of thermal conductive layers (nickel) and thermal insulation layers (SU-8). 

The heat can be dissipated quickly through the nickel layer, as a short distance between the 

boundaries. Nickel is a good thermal conductor at cryogenic temperatures. Its thermal 

conductivity is 90.7 W/m-K at room temperature and 1950 W/m-K at 15K. A good heat-

exchanging efficiency is expected at cryogenic temperature. 

             (a) Iso view                                      (b) Top view  

Figure 3.4: Sketch of the micro heat exchanger 

rcular shaped channels. The nickel layers (thermally conductive) will be electroformed wit

61 
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SU-8 molds. The adhesion yer (Cu/Cr) layer will be 

reatly improved by using Omnicoat (purchased from Microchem Inc.). In this process, SU-8 

roduced in the structure. This 

temperature gradient is used for the FEM simulation. The properties adopted in the 

simulation are from the mechanical testing as well as from [31,32,33] and listed in table 3.1 

 

Table 3.1: Properties used for heat exchanger simulation 

 

Property Nickel (bulk) SU-8  

 between the SU-8 mold and the seed la

g

works as molds for nickel electroforming as well as thermal insulation layers. 

 

Finite element simulation was performed to find the maximum stress developed in the micro 

heat exchanger upon operation. As the structure is fabricated at room temperature and there 

will be a great temperature gradient when one end of the heat exchanger accesses to a 

cryogenic temperature. For temperature changing from room temperature to 77K, a 

temperature gradient of 2.5 k per nickel layer will be p

Modulus of Elas GPa ticity 207 GPa 2.5 

Poisson's Ratio 0.31 0.22 [19-21] 

Tensile Strength, Ultimate 317 MPa 50 Mpa 

Coefficient of thermal expansion (CTE) 13.1 µm/m-°C 21 µm/m-°C [19-21] 
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s is 10.7 Mpa, 

cated in the interface between nickel and SU-8 layers. This stress is by no means large, 

The simulation results of a five-layer sandwiched structure (consisting three nickel layers and 

two layer of SU-8) are illustrated in Figure 3.5. Only one half of the structure is analyzed 

because of the symmetric geometry. The results show that the maximum stres

lo

which won’t cause the structure to fail if proper bonding between layers is achieved.   

 

 

Symmetric 
constraint 
(Fixed) 

   Nickel                 SU-8              Unit: Pa        

Max stress 

Higher temperature 

Lower 
temperature 

Figure 3.5: Stress distribution of the micro heat exchanger 
 

3.4 Fabrication

 
The fabrication process is a UV-LIGA compatible electroforming process, in which nickel 

patterns were formed firstly by using SU-8 molds, then these molds were removed and finally 

the structural SU-8 patterns were patterned on top of the nickel structures. Therefore, this is a 

bottom-up self-assembled fabrication process. 

 

3.4.1 Process Flow 

 

The process flow is shown in Figure 3.6. The process begins with cleaning the 3-inch silicon 

wafer, followed by thermal evaporation of chromium and copper seed layer for nickel 

electroforming. Then a very thin layer of Omnicoat is coated on the copper layer and then 
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e-layer 

structures together to form the heat exchanger. The function of the Omnicoat layer is to 

improve the adhes  to g to strip off the 

r after electroforming.  

Figure 3.6: Fabrication process flow for th d bake

Omnicoat layer followed by SU-8 spin on coating after seed layer evaporation;  

baked. A thick SU-8 2150 layer is spun on top of the Omnicoat layer and patterned to form 

the micro molds for nickel electroforming. The SU-8 mold is completely removed by the SU-

8 Remover PG after nickel electroforming is finished. Finally, another SU-8 layer is 

deposited and patterned on top of the nickel structure to form the thermal insulation layer. So, 

a double layer is formed. Thick structures can be achieved by bonding more doubl

ion of SU-8 layer  the Copper seed layer as well as helpin

SU-8 laye

SU-8 coating for micro molds 
 

Omnicoat layer on the top of 

metallic seed layer 

 
 Nickel thermal conducting 

 
 Cu/Cr Seed layer 
 

 Silicon wafer 

 
SU-8 insulation layer 
 

(a) 

(b) 
 

(c) 
 

 
(d) 
 

(e) 

 

(g) 
 

 Nickel electroforming 
  

layer 

 
 

 
 Omnicoat layer 
 
 

 
 

 
 
 
(f) 

 
 

 
 

e micro heat exchanger. (a) Coat an

(b) Pattern and develop SU-8 layer and then develop Omnicoat layer;(c) Nickel

electroforming; (d) Remove SU-8 mold and Omnicoat layer; (e) Coat and bake second

Omnicoat layer and SU-8 layer; (f) Pattern and develop SU-8 layer; (g) Develop Omnicoat
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late, magnetically and air stirred. It is important to carefully 

adjust the pH, the amount of saccharin in the bath to get low internal stressed electroformed 

nickel layer. The SU-8 mold and the plated nick . The plated nicked 

structure is shown in Figure 3.7. 

 

3.4.3 Fabricated SU-8/Nickel Sandwiched Structure 

 

The SU-8 micro lds are completely removed by the Remover PG with the help of 

Omnicoat. Then, another SU-8 layer is deposi fer after the remained nickel 

structure is cleaned by IPA and DI water and co t. The second SU-8 layer 

is then baked, exposed and developed. And finally, double-layered structures are achieved. 

The SU-8 and Nickel sandwiched structure is shown in Figure 3.8. There is no delamination 

id

an  wafer and 

no

 

3.4.2 Nickel Electroforming 

 

The nickel thermal conductive layer is plated in a modified Watts bath, which contains 

Nickel Sulfate 300 g/L, Nickel Chloride 25 g/L, Boric Acid 40 g/L, Saccharin 0.1 g/L, X-100 

0.01 cm3/L. The PH value of the solution is kept at 4.0~4.5. A plating rate of 1 µm/min is 

achieved by maintaining the current density at 50 mA/cm2 [4,34,35]. The temperature of the 

solution is kept at 55 oC by a hotp

el are both 300 µm thick

 mo

ted on the wa

ated with Omnicoa

entified under microscope inspection. This suggests that the adhesion between SU-8 layer 

d the nickel layer is very good. This structure is then removed from the silicon

 deformation was found.  
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SU-8 on top of 
Nickel 

 
Micro Channel 

Figure 3.8: Top view of SU-8/Nickel sandwiched structure 

200 µm 

Micro Channel 

Nickel 

Figure 3.7: Top view of nickel thermal conductive layer with thickness of 300 µm

Cu/Cr seed layer 
residual 
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3.5 Testing

 

To test its temperature enduring capability, the fabricated SU-8/Nickel sandwiched structure 

was immersed into liquid nitrogen (about 77K) directly from room temperature. After certain 

time (5 minutes), the structure was taken out to room temperature for observation. By 

inspection under microscope, no damages (cracks or delamination) were identified (Figure 

3.9). 

 

The microstructure after testing is shown in F gure 3.9. There is no crack developed in the 

SU-8/Nickel pattern and the adhesion between SU-8 and nickel layer is still good. Comparing 

to Figure 6, the tested structure is still in good shape and no deformation is found. This means 

that this laminated structure and the material  chosen can stand cryo temperature without 

damag

 

 

i

s

es, same as simulation results indicated in Figure 3.3. 

Figure 3.9: Top view of the tested sandwiched structure 

200 µm 
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3.6 Discussions and Conclusions

 

ing low stress ultra-thick high aspect ratio SU-8 structures is newly developed by our 

roup and the adhesion failure problem between SU-8 and metallic layers is sucessfully 

) micro heater exchanger was 

uccessfully fabricated with patterned SU-8 as micro molds and electroforming process to 

enerate electroformed nickel as thermal conductive layer, since nickel has very high thermal 

conductivity at cryogenic temperature. SU-8 layer is patterned on top of the nickel structure 

to form the thermal insulation layer. By careful processing the SU-8 layer and the help of 

Omnicoat layer, the adhesion between SU-8 and metal is greatly improved. The fabricated 

SU-8 molds are free of cracks and show very good adhesion to the seed layer. The patterned 

SU-8 structural layer also sticks tightly to the nickel layer.  

 

The SU-8/nickel sandwiched structure passed the test in liquid nitrogen and no damages and 

deformations w  This verified the 

SU-8 is a very important material for fabricating thick vertical-wall micro patterns with 

sample equipment and low cost. However, large internal stress is often produced during the 

fabrication process as well as the poor adhesion between SU-8 and metallic layers, which 

causes deformation or mechanical failure of the devices. Therefore, a UV-LIGA process 

target

g

solved by applying a Omnicoat layer between the two layers. The mechanical properties of 

the SU-8 fabricated by this process are tested with Young’smodulus of about 2.5 Gpa and 

an ultimate strength of about 50 Mpa. 

 

With the help of this process, a laminated (sandwiched

s

g

ere observed, after taking out to room temperature.
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simulation results that the ure can stand at cryogenic 

mperatures (77K). 

nickel/SU-8 micro heater struct

te



CHAPTER 4 DEVELOPMENT OF IN SITU ASSEMBLED SOLID NICKEL 
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MICROVALVES 

 

4.1 Introduction

 

As described in chapter 2, the author has successfully developed compact microvalve array 

for robust hydraulic pumps. However, when considering real applications where large 

dynamic loads are subjected, the silicon used may be a problem. This device needs carefully 

handling; otherwise it is easy to break because of its brittleness (silicon). Figure 4.1 shows a 

broken valve crushed by the valve holder when testing.  

 

 

 

 

 

 

 

 

Therefore, it is needed to develop a more robust compact microvalve array for large dynamic 

loads as well as easiness of handling. For this purpose, a self-assembled solid nickel valve 

was developed and tested. A micromachined thick nickel substrate and stopper were used to 

substitute the silicon substrate and stopper, respectively. Micro channels were formed into the 

nickel substrate and stopper using SU-8 molds. The stopper was aligned to the valve array 

 
Broken Silicon 
 
Inlet channel 
 

Nickel 

Figure 4.1: A broken silicon-nickel valve 
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u  

as the sacrificial layers during the v molds are also used to separate the 

ed nickel valve from the substrate such that clean-edged valves will be received 

after removing all sacrificial materials. 

sing an in situ UV-LIGA fabrication process. Thick (SU-8) and thin photo resist were used

alve fabrication. SU-8 

electroform

 

4.2 Valve Design

 

The microvalve and the pump are shown in Figure 4.2. The valve array contains 80 single 

valves with the stopper automatically aligned to the valve array during fabrication. The whole 

dimension of the valve is 12 mm in diameter with total thickness of 1 mm. Each microvalve 

e 1 c), which are the bottom substrate containing the inlet 

e valve flap sitting above and the top substrate as the valve flap stopper and 

bottom and the stopper is 500 µm. The inlet channels (Figure 1 c, 

igure 2 c) are  diameter. Outlet channels are 200 µm and 400 µm in diameter, 

spectively (Figure 2 d). Both inlet and outlet channels are defined by SU-8 molds, which 

re also used to separate the valve set from its surroundings.  

 copper sacrificial layer purting) with 

 

consists of three parts (Figur

channels, th

outlets. The thickness of the 

F  200 µm in

re

a

 

A made by physical vapor deposition (evaporation or s

thickness of 0.2 µm is employed to define the gap between the flap and the bottom substrate 

as well as serving as seed layer for flap electroforming. The bottom of the stopper is 10 µm 

higher than the flap, which is defined by a sacrificial layer (photoresist). 
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frequency of the flap as well as 

ssisting to overcome any stiction problem when the flap is lifted by opening pressure and 

elps to decrease the 

tress  

 

The details of the valve flap are shown in Figure 4.3. The dimensions of the valve flap and 

beams as well as those of cross were optimized to reduce the stress. The double-layered valve 

flap with a total dimension of 300 µm x 300 µm is employed to open and close the valve. The 

bottom layer is 10 µm thick while the top layer is 15 µm thick. Comparing to the silicon-

nickel valve described in chapter 2, this valve flap is strengthened while keeping the total 

mass of the flap small. This helps to maintain a high resonant 

a

contacts with the stopper thereafter. 

 

Four micro beams are designed to hold the flap elastically. Their dimensions are 600 µm x 50 

µm x 10 µm, longer than those of the silicon-nickel valve. This change h

s

 

Flow in 

Pump chamber 

Flow out 

Flap Inlet  

Outlet 

PZT 

         (a)                                 (b)                                                (c)          

Figure 4.2: Robust pump and valve. (a) pump  (b) valve array (c) concept sketch of the valve



700 µm 
 

600 µm 
 

500 µm 

30 µm

2 x 50 µm

Micro beam 
 
 
Bottom layer 
 
Toper layer 

 

4.3 Stress Analysis

 

Stress analysis was performed to find out the location and value of the maximum stress. First 

of all, the 1st mode resonant frequency was simulated by running mode analysis in I-DEAS, 

which is 18 kHz.  

 

Figure 4.3: Concept sketch of the valve flap (top view) 

4.3.1 Stress on the Flap When It Is Fully Opened 

e beam-ends were fixed and pressure difference was applied to the bottom of the flap 

 lift it. For easy comparison, the deflection of the flap was kept at 6 µm, which is the same 

 

The stress distribution in the valve flap was modeled by finite element analysis. In the open 

state, th

to
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value as used in chapter 2. The stress distribution is shown in Figure 4.4. The maximum von 

misses stress is 128 Mpa located in the beams, which rcent lower than that of silicon-

nickel valve (Figure 4.5). Higher-pressure difference will produce larger flap displacements, 

which will be sustained at 10 µm by valve stopper in case such a pressure difference is 

applied that it is capable of producing a displacement larger than 10 µm if the stopper is not 

present. In this way, the valve can support pressure up to 10 Mpa without damages.   

 

 is 32 pe

Figure 4.4: Stress distribution over microvalve flap while it is fully opened 

Unit: Pa 
Maximum stress         Fixed

               600 µm                                      2 x 50 µm 

4.3.2 Stress on the Flap When Closed 

 

As mentioned in chapter 2, the valve needs to support pressure larger than 6 Mpa when 

closed. Therefore a pressure difference of 10 MPa is applied to the flap when it is closed with 

all the beam-ends fixed. The stress distribution is presented in Figure 4.6. The maximum von 



misses stress is 132 Mpa, which is 34 percent lower than that of a silicon-nickel valve (Figure 

4.7).  
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Figure 4.5: Comparing of maximum von misses stress 

between silicon-nickel valve and solid nickel valve when fully 

 

Unit: Pa 

Maximum stress             Fixed 

                600 µm                                  2 x 50 µm 

Figure 4.6: Stress distribution over microvalve flap while it is closed  
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Figure 4.7: Comparing of maximum von misses stress between

silicon-nickel valve and solid nickel valve when closed 

34% reduced 
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4.3.3 Stress in the Nickel Bottom Substrate 

ecause the nickel bottom substrate (0.5 mm thick) would support pressure, the stress 

nalysis was performed to find the maximum stress. Due to geometric symmetry, only one 

uarter of it was analyzed. A pressure difference of 10 Mpa was applied to one side of the 

ickel piece. The results are shown in Figure 4.8. The maximum von misses stress identified 

 119 Mpa, which is 34 percent lower than that of silicon-nickel valve (Figure 4.9). This 

alue is in the safe range of the nickel material used. The use of nickel as the supporting 

bstrate overcomes the brittleness n-nickel valve. This 

alve is much easier to handle either in the process of fabrication or in post services.  

 

B

a

q

n

is

v

su  of the silicon substrate of the silico

v

 



Supporting area 

1 
m

m
 

1 mm    1 mm 

Unit: Pa
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Figure 4.8: sure while closed
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Stress distribution of nickel substrate under 10 MPa pres
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Figure 4.9: Comparing of maximum von misses stress in supporting 

substrate between silicon-nickel valve and solid nickel valve when closed 

      Silicon-nickel valve               Nickel valve 
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) 34% reduced 
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4.4 Fabrication Process 

 

The fabrication of the compact microvalve array has been completed by an in situ UV-LIGA 

process. The valve inlet and outlet channels are defined by SU-8 molds. The valve flaps are 

defined by Photoresist molds. Chemical mechanical polishing (CMP) has been applied during 

the fabrication. After electroforming, all SU-8 and photoresist molds are removed by using 

SU-8 rem er. Finally, separated valve arrays are received. Therefore, this is a bottom–up 

self-assembled fabrication. Neither etching nor bonding (or packaging) is involved during the 

fabrication. 

 

The fabrication process begins with evaporating or spurting a Cu/Cr seed layer and then 

photoresist (Shipley 1813 or AZ 4620, 12 µm thick) is spun on and patterned with UV 

lithography technique to form micro molds for the valve flap and the beams (step A and 

Figure 4.11). A 10 µm thick nickel layer is electroformed to generate the valve flap and 

micro beams (Figure 4.10), which are defined by the photoresist micro molds (step B).  

 

The thickness of the nickel layer is controlled by current density and plating time. In this case, 

it was plated with current density of 10 mA/cm2 for 50 minutes. A nickel sulfamate solution 

(table 4.1) was adopted  to produce stronger nickel 

structure

 

ov

 in this process, which has the ability

 than the traditional Watts nickel solution.  



Silicon wafer 

(A) Nickel           Micro beam                                   Flap          PR mold

Cu/Cr seed layer 

Silicon wafer 

(B) 

4.10: Sketch of fabrication process step (A) & (B). (A) Seed layeFigure r

deposition and PR molds patterning (B) Electroforming for valve flap and beams. 

Figure 4.11: PR molds (12 µm thick) for valve flap and micro beams 

300 µm 
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Table 4.1: Operating conditions for electrochemical deposition schemes (nickel sulfamate 

solution) 

 

Constituent/condition Concentration (/L)/value 

Nickel sulfamate (Ni(SO3NH2)2_4 H2O) 1.54 M 

Boric acid (H3BO3)  0.73 M 

Sodium dodecyl sulfate (SDS) 0.1 g 

Saccharin 0.1 g 

Operating temperature 60 °C 

PH 3.5-4.0 

Current density (mA/cm2) 10-25 

 

Next (step C, Figure 4.12), a thin layer of copper was evaporated or spurted on top of nickel 

layer and then patterned by the copper etchant to form sacrificial layer covering the valve flap 

and the micro beams. This is used to define the gap (0.2 µm) between valve flap and its 

bottom substrate. Then SU-8 molds (Figure 4.13) are patterned on top of copper sacrificial 

layer to define the inlet channels. Electroforming was then conducted to form the supporting 

substrate and the inlet channels (step D).  

 

The copper etching solution used in step C acts as a redox etchant, which contains 

CuSO4·5H2O t is that it 

oesn’t etch nickel. The measured etching rate is about 2500  to 3000  per minute.  

(15g/L) and NH4OH (30% by wt) 300ml/L. The reason for choosing i

o
A

o
Ad



SU-8 molds to separate valves 

Silicon wafer 

Silicon wafer 

SU-8 molds for 

inlet channels

Nickel

Copper sacrificial layer                (C) 

(D) 

Figure 4.12: Sketch of fabrication process step (C) & (D). (C) SU-8 molds patterning

(D) Electroforming for nickel substrate and inlet channels. 

SU-8 mold 

200 µm 

Figure 4.13: SU-8 molds for inlet channels 

 

After electroforming, the thick nickel layer was polished to remove any higher points and 
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thus makes the surface flat. In this step, an automatic polisher is employed with alumina 
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slurry. Then, the nickel & SU-8 stru % KOH solution operating at 80 

°C (step E). Copper etchant was applied to remove the Cu/Cr seed layer followed by a 

cleaning step. This will remove the ph lds for flap and micro beams. Then, the 

nickel & SU-8 structure was flipped over and photoresist molds (Shipley 1075 or AZ 4620, 

18 µm thick) were patterned on its top for the top layer of the flap (Step F).  

 

The top layer of the flap was then electroformed through PR molds (step G, Figure 4.15). The 

finished microvalve array and valve flap are shown in Figure 4.16 and 4.17, respectively. 

Another layer of photoresist (10 µm thick) was then applied to define the gap between the 

stopper and the flap. This PR layer was me or spurting a thin layer of 

c pper 

(s

cture was released by 30

otoresist mo

talized by evaporating 

opper on it and patterned by the copper etchant to serve as the seed layer for the sto

tep H).   

 

(E) 

Nickel

       Micro beam    Valve flap                                                     SU-8  

PR mold 

Nickel

(F) 

Figure 4.14: Sketch of fabrication process step (E) & (F). (E) Release nickel & 

SU-8 structure from silicon wafer (F) Pattern PR molds for top layer of the flap 



Nickel
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Nickel

Figure 4.15: Sketch of fabrication process step (G) & (H). (G) Electroforming for the top

layer of the flap (H) Pattern PR molds for defining the gap between flap and stopper 

(G) 

               Valve flap 

(H) 

             Second PR layer                                     Copper seed layer

Figure 4.16: Fabricate microvalve array (80) 

φ =12 mm 



 

φ=
12

m
m

 Micro beams 
Flap 

Nickel bottom substrate 

Figure 4.17: Finished micro flap with total thickness of 25 µm 
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A nickel layer (10 µm thick) was plated over the copper seed layer for the following SU-8 

process, in which the shrink force will cause the copper seed layer peel off if SU-8 is applied 

on top of it directly (step I, Figure 4.18). Next, all the photoresist was removed by acetone to 

avoid its confliction problem with SU-8 (step J, Figure 4.18). Then a SU-8 thick layer was 

applied and patterned to define the stopper & outlet channels (step K, Figure 4.19). The 

stopper (500 µm thick) was formed through SU-8 molds (step L, Figure 4.19) with 

electrochemical deposition. After electroplating, polishing was applied to make the surface 

flat. Finally, all the SU-8 molds were removed by SU-8 remover @ 90 °C, followed by 

copper etching to remove interior copper materials (step M, Figure 4.20).   



(I) 

(J) 

Nickel layer 

Nickel

Nickel
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Figure 4.18: Sketch of fabrication process step (I) & (J). (I) Electroforming for the

nickel thin film (J) Removal photoresist 

 

Nickel

Nickel

SU-8 molds for outlet 

channels 

Figure 4.19: Sketch of fabrication process step (K) & (L). (K) SU-8 molds 

for stopper & outlet channels (L) Electroforming for stopper 

(L) 

(K) 



 

Inlet channels  

Nickel stopper 

Nickel bottom substrate

Outlet channels 

Flap                 Micro beam 

Figure 4.20: Final released structure 
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Th 4.21, with scanning electron microscopy (SEM) 

pictures showing the details of the inlet (Figure 4.22) and outlet (Figure 4.23), respectively.  

 

              (a)                                                                                                              (b) 

Figure 4.21: Finished nickel valve (a) Inlet (b) Outlet 

    Inlet channel                                                                                        Outlet channel 

e final fabricated valve is shown in Figure 
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Figure 4.22: SEM picture of valve inlet (tilted for 25 degree) 

 

 

Figure 4.23: SEM picture of valve outlet (tilted for 25 degree) 
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4.5 Flow Rate Measurement

 

For the characterization purpose, the flow rate of the microvalve with an array of 80 single 

alves was measured under difference pressure. A fluid system (Figure 4.24) was developed, 

hich contains a compressor, a liquid tank, pressure gauges, a flow meter, a filter and a valve 

older for the microvalve fabricated.  

he valve array was housed by a specifically designed valve holder as described in chapter 2 

hile a pressure was applied by the compressor. DI water was used for testing and flow rate 

as measured by the flow meter. Test results of flow rate versus applied pressure difference 

re provided in Figure 4.25.  

rom the result The measured 

flow rate is proportional to the pressure difference applied, as predicted by Poiseuille’s law. 

The flow rate is about 19 ml/sec at a pressure difference of 90 psi, which is the largest 

pressure provided by the compressor. Much higher flow rate is expected if larger pressures 

are applied based on Poiseuille’s law. On the other hand, the valve sealing is very good as the 

Figure 4.24: Scheme of flow rate measurement system 
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F s the valve’s crack pressure is determined to be about 5 psi. 
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backflow rate is very small (Fig  rate is 0.023 ml/sec at applied 

ressure of 90 psi, which is negligible (0.13%). 

’s durability. The tested loading parameters are indicated in the 

wer right in Figure 4.26. Ramped pressure difference was applied over the valve flap and 

The test results in Figure 4.26 show that the flow rates measured repeat very well at similar 

pressure levels over the range of pressure differences tested. The flow rate is really linear 

ure 4.25). The backward flow

p

 

 

 

 
14

16

18

 

 

 

 

 

 

 

 

The valve’s durability is also an important concern in addition to the valve’s functional 

performance. As described in chapter 2, a specific loading/unloading sequence was 

designated to testify the valve

lo

then released back step by step in an interval of 10 psi. The flow rate was measured at each 

pressure level during the test process. The tested pressure progressed from lower pressure to 

higher. Flow rates versus each applied pressure are shown in Figure 4.26. 
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Figure 4.25:Tested flow rate versus pressure applied for a microvalve  
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is structure during the test. An important fact 

 that there were no damages or permanent deformations presented in the valve flap during 

e loading/unloading testing processes, otherwise any permanent deformation would result 

 non-elastic response (Poiseuille’s law would not be valid). Microscope inspection verified 

is after test. We attribute this to the relative small bending of the beam. 

proportional to the pressure difference applied, regardless of how the pressure was applied. 

This indicates that Poiseuille’s law is valid for th
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Figure 4.26: Repeated test of forward flow rate under loading/unloading conditions 
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4.6 Conclusion

 

A self-assembled robust passive high-frequency high-pressure solid nickel micro check valve 

has been developed for piezoelectricaly actuated pumps or hydraulic actuators. The valve can 

support pressure up to 10 MPa due to a novel double-layered valve flap. Simulation results 

show that the valve has a resonant frequency of 18 kHz (1st mode). The valve’s reliability is 

assured by using a mechanical valve stopper. 

 

The fabrication of the val  an in situ UV-LIGA process, in which the valve 

stopper was self-assembled to the valve array without any additional bonding process. Thick 

photoresist (SU-8) and thin photoresist are used as the sacrificial layers during the valve 

fabrication. The valve inlet and outlet channels were defined by SU-8 molds, which was also 

used to sep e electroformed nickel val m the substrate. Chemical mechanical 

polish has been applied during the fabrication. A lectroforming, all SU-8 and photoresist 

molds were removed by using SU-8 remover. Finally, separated fina e arrays were 

received. Therefore, this is a bottom–up self-assembled fabrication. Neither etching nor 

bonding (or packaging) is involved during the fabrication.  

Test results show the forward flow rate is proportional to the pressure applied. It is 

approximately 19 cc/s at a pressure difference of 90 psi. The backward flow rate is 0.023 cc/s 

at 90 Psi pressure, which is negligible (0.13%). A specific loading/unloading sequence has 

been designed to test the reliability of the valve. Results show that the flow rate is extremely 

ve employed

arate th ve fro

fter e

l valv
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well repeated over a large range of pressure differences. This implies that no damage or 

ermanent deformation is present. p
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RMED COPPER/SWNT NANOCOMPOSITE 

5.1 Introduction

 

CHAPTER 5 ELECTROFO

 

 

Electrolytic co-deposition of particles with metals is an effective way to fabricate innovative 

composite materials [36,37]. Generally speaking, composite co-deposition consists of 

electrolyte in which micron or sub-micron insoluble particles or fibers are suspended. Some 

amount of these particles become embedded in the electrochemically produced solid phase, to 

which they impart special properties, such as electrical conductivity, physical properties, 

mechanical strength, wear or corrosion resistance, etc. Metal particles, metallic oxide 

particles and polymer particle are used. For example, SiC particles are embedded in Nickel 

matrix to improve the hardness of the composite.  

 

The deposition rate of the second phase material is affected by several interrelated parameters: 

the electrolyte concentration of the metal ions and particles, pH, applied current 

density/potential, agitation, organic additives and particle size. Pulse reverse plating can be 

used to increase the particle deposit concentration by eliminating a fraction of the plated 

metal if the concentration of sub-micron particles embedded in the deposit by conventional 

DC plating is not sufficient. The method has recently been demonstrated by Podlaha et al. for 

the copper c-alumna system, employing long, steady-state pulses, where the particle deposit 

concentration was improved six times over that found in DC electrical deposition. 
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ecently, carbon nanotubes, due to their small dimensions, remarkable strength and physical 

pro g 

pplications, such as nanotube-based field emitters, nanoprobes in metrology and biological 

and chemical investigations [37], a reinforcements in high performance 

omposites. 

electrical conductivity depending on its 

hirality. The thermal conductivity of CNT depends on the temperature and its chirality 

ctions, and 

WNTs as good media for lithium and hydrogen storage. Because of its high mechanical 

R

perties, are proven to be a very unique material for a whole range of promisin

a

nd mechanical 

c

 

Discovered by Iijima et al in 1991 [38], carbon nanotubes (CNT) displays unique mechanical 

and electronic properties, which have initiated intensive research on these quasi-one-

dimensional structures. Theoretical studies have suggested that SWNTs could have a 

Young’s modulus as high as 1TPa [37,39], although testing experiments on single nanotubes 

are still in progress. The theoretical estimate for the tensile strength of individual SWNTs is 

up to 150 Gpa, or over hundreds stronger than steel, which has a tensile strength of 400 Mpa. 

SWNT shows either metallic or semiconductor 

c

[47,48]. Simulation results discovered that (10,10) SWNTs have thermal conductivity around 

30000 W/m•K at temperature of 100 K [40]. At room temperature, the thermal conductivity 

of SWNTs is in the range of 1750 to 5850 W/m•K [41]. 

 

The potential applications of CNT so far include the use of nanotubes as electron field 

emitters for vacuum microelectronic devices, individual MWNTs and SWNTs attached to the 

end of an Atomic Force Microscope (AFM) tip for using as nanoprobe, MWNTs as efficient 

supports in heterogeneous catalysis and as microelectrodes in electrochemical rea

S



strength, SWNTs are used as excellent load-bearing reinforcements in composites. Recently, 

CNTs or composites based on CNTs draw people’s attention, such as in heat transport 

management in ULSI (ultra-large-scale integration) chips and other miniature device 

components due to their high thermal conductivity [42].  
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arbon nanotubes are perfectly quasi-one-dimensional straight tubes with diameters in C

nanometer scale. Single-walled nanotubes (SWNT) can be considered as a flat graphene sheet 

(Figure 5.1) cylindrically rolled into a seamless tube with a constant radius [43,49]. Two 

atoms in the sheet are selected as the origin, and when the sheet is rolled, the two atoms 

coincide with one another. The vector OA is known as the "rollup" vector, whose length is 

equal to that of the circumference of the nanotube. The tube is created so that point O touches 

point A, and B touches B’. The tube axis is perpendicular to the rollup vector. The chiral 

vector of the nanotube, OA, can be defined by 

                                        21 amanOA +=                                                        (5.1) 

1awhere  and 2a  

ich ar

are unit vectors in the two-dimensional hexagonal lattice, and n and m are 

integers, wh e referred to as chiral indices. The angle θ, which is the angle between OA 

nd 1a , is called the chiral angle and always less than 30 degree.  a

 

Carbon atoms in SWNT can be assigned to a coordinate system (n, m), with m <= n at all 

times. As chiral vectors change, nanotube properties change from metallic to semi-

conducting. The (n, 0) direction is known as zigzag structure, while the n=m s denoted as 

armchair structure (Figure 5.2). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Graphene sheet illustrating chiral arrangements 
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Figure 5.2: Armchair, Zigzag and Chiral Nanotubes  
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 should be noted that all armchair chiralities of CNT display metallic properties. In addition, 

hiral vectors with: 

                                                          n - m = 3i                                                            (5.2) 

here i is an integer, yield metallic properties. All other arrangements of (n, m) in CNT 

isplay semi-conductor properties. Chirality affects the electrical properties of nanotubes, as 

ell as optical activity, mechanical strength, and various other properties. Deformations and 

efects in CNT can also have a profound impact on intrinsic properties. Junctions or bends in 

anotubes can be introduced by the replacement of a hexagonal carbon ring with a pentagonal 

r heptagonal ri fect the electrical 

onductivity of nanotubes. 

ike graphite and diamond, the thermal conductivity of carbon nanotubes is dominated by; 

ttice vibrations, which are described as elastic waves moving through the solid with the 

eed of sound [43]. These waves are described as phonons in the quantum picture and can 

arry heat through the solid. Phonons can collide with on another in what are called Umklapp 

r Normal processes due to anharmonicities of the interatomic forces. This phonon scattering 

ads to a finite thermal conductivity. As the temperature decreases, the probability for such 

attering diminishes, and thus the thermal conductivity increases.  

he thermal conduct ere as the z axis, is 

lated to the heat flowing down a long rod with a temperature gradient dT/dz by 

                                               

It

c

w

d

w

d

n

o ng. Bends, which may be inward or outward, can severely af

c

 

L

la

sp

c

o
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ivity κ of a solid along a particular direction, taken hT

re

dz
dTk

dt
dQ

A
−=

1                                                                 (5.3) 
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tion to the heat conductance dominates, κ is proportional to Cvl, the 

pr n 

 W/mK and the room temperature the value is 6600 W/mK. 

 

Besides thermal conductivity, the coefficient of thermal expansion is extremely important. 

Since carbon nanotubes consist of sp2 bonds related to graphite, they are expected to have a 

negative CTE at moderate temperatures. Based on molecular dynamics, Yong-kyun Kwon, et 

where dQ is the energy transmitted across the area A in the time interval dt. In solids where 

the phonon contribu

oduct of the heat capacity per unit volume C, the speed of sound V, and the phonon mea

free path l. The latter quantity is limited by scattering from sample boundaries (related to 

grain sizes), point defects, and by Umklapp processes.  

 

Based on molecular dynamics, S. Berber, et al [40] calculated the thermal conductivity of an 

isolated (10,10) nanotube along its axial direction, as illustrated in Figure 5.3. The 

calculations suggest that at T=100 K, carbon nanotubes show an unusually high thermal 

conductivity value of 37000

Figure 5.3: Temperature dependence of the thermal conductivity for a (10,10)

carbon nanotube for temperatures below 400 K. [40] 



al predicted the value of CTE to be as low as –12 x 10-6 K-1 at 400 K [44]. They also claimed 

that nanotubes contracts both axially and volumetrically (Figure 5.4). CTE of nanotubes can 

also be measured by X-ray diffraction [45], where the estimated value of CTE is –1.5 ± 2.0 x 

10-6 K-1 in diameter between room temperature and 900 K. 
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Figure 5.4: CTE of carbon nanotubes (a) linear (b) volumetric [44] 
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(b) 
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e main problem is caused by the 

ifficulties of creating a good interface between nanotubes and the polymer matrix. Thus, it is 

ifficult to attain good load transfer from the matrix to the nanotubes, during loading. The 

ason for this is essentially two-fold. First, nanotubes are atomically smooth and have nearly 

e same diameters and aspect ratios (length/diameter) as polymer chains. Second, nanotubes 

re almost always organized into aggregates, which behave differently in response to a load, 

s compared to individual nanotubes.  

 promising way to fabricate nanotube-reinforced composites is electrochemically co-

epositing nanotubes into metal matrix. In this case, the metal atoms will grow directly on the 

all of the nanotubes due to its conductivity, which makes a good interface for load/heat 

ansfer. 

5.2 Motivation

These properties make carbon nanotubes a potential candidate for reinforcements in 

composite materials. Nanotubes filled polymer composites are a major material application 

area, however there have not been many successful experiments showing the advantage of 

using nanotubes as fillers over traditional carbon fibers. Th

d

d

re

th

a

a

 

A

d

w

tr

 

 

The request to reduce the size of electronic device d integrated MEMS/NEMS faces the 

hallenge of th e thermal 

anagement in nanosize devices become increasingly important as the size of the devices 

duces.  

 

s an

c e thermal management problem. It is now widely accepted that th

m

re



One problem arises: how to move heat from AlGaN/GaN high electron mobility transistors 

grown on SiC substrate dies used in high power radar. As illustrated in Figure 5.5, the active 

devices generate huge heat up to 10000 W/cm2, which will spread in SiC and result in an 

energy density of 100 – 400 W/cm2. There are two problems need to be solved. First, the 

excessive heat needs to be moved efficiently, in which a high conductive material will 

replace the CuMo substrate. Second, to reduce stress in the CuMo-SiC interface. These 

components have substantially different coefficients of thermal expansion (CTE) resulting in 

undesirable stress caused by thermal expansion mismatch, which can induce fatigue and 

fracture-related failures (eg. delimination) at their interface. 

 Active devices 

A 

CuMo 

 SiC 
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(b)

Figure 5.5: Concept scheme of the heat management structure for transistor 
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al conductivity of the CuMo is low and its CTE doesn’t match that 

the stress in the interface will reach up 40 to 70 

inate the solder used. A solder of 96.5 Sn-3.5 Ag 

ith a thickness of 50 µm is used to bond the SiC die to the CuMo plate. This solder has a 

aximum boning strength of around 35 Mpa at room temperature and wi nish with 

mperature increasing and aging.  

 solution to this problem is to develop a new material to match the CTE of SiC along with a 

igh thermal conductivity. Since carbon nanotube has negative CTE, it is the ideal filler for 

etal matrix composite to reduce the overall CTE. Electroforming provides a convenient way 

 fabricate this kind of material. Copper is n for the base material for its good thermal 

onductivity as well as the ease to el ate. Furthermore, when combining with 

icromaching technique, we can grow thi omposite material directly on the SiC and 

The properties of the SiC die and the copper-molly substrate are listed in table 5.1.  

 

 

 

 

 

 
 
 
 

Material Thermal conductivity (W/m-k) CTE (10-6/K) 

SiC 490 3.8 

CuMo 181 5.8 

96.5Sn-3.5Ag 
(solder) 57 17.6-30 

Table 5.1: Thermal properties of SiC, CuMo and Sn-3.5Ag at temperature range of 20 to

150 °C 

 

It is obvious that the therm

of the SiC die with a ratio of 3.5. As a result, 

Mpa as power goes up, which will delam
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layer and 

eposition techniques. 

5.3 Prediction of Copper/SWNT Properties

exclude the use of solder. The bonding strength is assured by choosing proper seed 

d

 

 

Different models exist to calculate the properties of a composite from those of its components. 

The Rule of Mixture can obtain an approximation. If the com s have nearly equal 

properties, the targeting property can be expressed as:  

                                             

ponent

( )fmffc VaVaa −+= 1                                                          (5.4) 

Where a  is the property of the composite, a is the corresponding property of the 

reinforcement material, am is the that of the matrix and Vf is the volume fraction of the former.  

 

For CTE, because copper and carbon nanotube have different Young’ smodulus, the 

equation can be adjusted by using the modulus (E) of each component [46]:  

 

 

 

where E  is the modulus of the reinforcement material and E  is that of the matrix material.  

 

Using equation 5.5, we can calculate the CTE of the composite approximately (Figure 5.6). 

The properties involved are listed in table 5.2. Similarly, the estimated thermal conductivity 

can be obtained by equation 5.4 (Figure 5.7). Because the random dispersion of SWNT in the 

composite, we assume the property of the composite is isotropic.  

c f 

     

                            (5.5) 

f m



Table 5.2: Properties of single-walled carbon nanotube and pure copper 
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Material Thermal conductivity (W/m-k) CTE (10-6/K) Young’smodulus (Gpa) 

SWNT 3000 -1.5 1000 

Copper 385 16.4 110 
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From Figure 5.6, we discover that the CTE of the composite is 4.0 x 10  /K at the volume 

fraction of the 20%, which matches that of SiC (3.8 x 10  /K). The corresponding thermal 

conductivity of the composite is 908 W/m-k from Figure 5.7, four times higher than that of  
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Figure 5.6: CTE estimation for copper/SWNT v.s. SWNT’s volume fraction  
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an remove more heat 

from the SiC die, which will reduce the temperature of the transistors and that of the SiC-base 

plate interface, and therefore decrease the interfacial stress. The matched CTE plays an m re 

important role in reducing the stress, especially for dynamic thermal loads. 

 

e properties, the interfacial temperature and stress were simulated with finite 

 

CuMo current used. With a higher thermal conductivity, the composite c
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Figure 5.7: Thermal conductivity estimation for copper/SWNT v.s. SWNT’s 

volume fraction 

he
rm

al
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on
du

ct

Using thes

element analysis, showing in Figure 5.8 and 5.9, respectively. Thanks to symmetry, one 

quarter of the structure was used for simulation. The maximum stress in the interface is 20.6 

Mpa, a safe value for the solder (96.5Sn-3.5Ag) and other potential bonding methods.  



Figure 5.8:Temperature Gradient in SiC and Cu/CNT composite (around 80 °C) 
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Figure 5.9: Stresses in SiC and Cu/CNT composite, right top edge of SiC plate

removed to focus on stresses at interface (Max 20.6 Mpa) 
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5.4 Fabrication

 

Electroforming is chosen to fabricate the composite, shown in Figure 5.10. In this case, the 

SWNTs are dispersed in the copper electrolyte and co-deposited with copper atoms.  

 

5.4.1 Starting materials 

 

The electrolyte used in this case is a high-performance acid copper solution with components 

listed in table 5.3. All the chemicals except “Copper Gleam CLX Start-Up” were purchased 

from Fisher Scientific Inc. The latter was ordered from Thinktink.com, a major supplier for 

semiconductor industry. A square-shaped Platinum mesh was used for anode.  

 

Figure 5.10: Concept scheme of electroforming for the copper/SWNT composite 
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The single-walled carbon nanotubes w from Nanostructured and Amorphous 

aterials Inc. without any further treatment. The purity of the SWNT is extremely important 

can find 

that the purity of the SWNT is very high, without any impurities identified.  

Table 5.3:Bulk acid copper electrolyte recipe 

 

Component To make 100 L, add: 

ere purchased 

M

for the quality of the composite; so scanning electron microscopy (SEM) was conducted to 

characterize its purity (Figure 5.11, 5.12). Looking at the SEM picture carefully, we 

Deionized (or distilled) water 70.9 liters 

Copper Sulfate Pentahydrate Crystals (CuSO4·5H2O) 7.5 Kg 

35% sulfuric acid (car battery acid) 28.6 liters 

Concentrated hydrochloric acid (35% HCl) 13.3 ml 

Copper Gleam CLX Start-Up 1.25 liters 

 

 

 

 

Figure 5.11: SEM picture of the as-purchased purified SWNT soot 

 

 

 

 

 

 



 

Figure 5.12: SEM picture of the as-purchased purified SWNT soot dissolved by acetone.
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5.4.2 Fabrication process 

 order to achieve good distribution of SWNTs in the composite, it is very important to 

isperse the SWNTs in the electrolyte. For this purpose, SWNT dispersion experiments were 

onducted with the help of surfactants. Three in-house surfactants including Sodium Dodecyl 

ulfate (SDS), Triton X-100 and Pointe Scientific Inc Wetting Agent (mainly Triton) were 

sed as dispersants and ultrasonic stirring was employed to break the nanotube aggregates. 

he dispersion process is shown below: 

• Disolve surfactants (1% by weight) in DI water.  

• Add nanotube soot to the solution above, ultrasonic stirring for at least 24 hours. 

• Mix desired amount SWNT solution with copper bath and sonificate for at least 1 

hour. 

 

In

d

c

S

u

T
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Uniform black solutions were obtained at this moment. Then these solutions were observed 

for aggreagating without stirring. Regarding to time, the Pointe Scientific Inc Wetting Agent 

gives the best results. SWNT solution (Figure 5.13) based on it can survive for serval days 

without aggregation of the nanotube with maximum concertration of 10g/L. 

ating conditions are listed in table 5.4. This solution 

was mo r ions was increased by adding more 

cop r is in 

the 

consum portant to get a high initial concentration. The 

Figure 5.13: SWNT (1g/L) dispersed in copper bath with Pointe Scientific Inc

Wetting Agent 

 

Next, electroforming was conducted to fabricate the composite using the solution obtained 

above. Current density and SWNT concentration of the solution are adjusted to change the 

SWNT content in the composite. The pl

dified from table 5.3. The concentration of coppe

pe  sulfate, because no copper anode was used in the experiment which will drop debr

process of dissolving and then damage the cathode. Therefore, the copper ions were being 

ed in the process. So it is im
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Table 5.4: Electroforming conditions for the composite 

Component Concentration (/L) 

concentration of the sulfuric acid was reduced because it will be produced in the process of 

electroplating. The current density was kept low to maximum the SWNT content in the 

composite.  

 

Copper Sulfate (CuSO4·5H2O) 250 g 

98% sulfuric acid 40 mL 

Hydrochloric acid (35% HCl) 0.13 mL 

Copper Gleam CLX Start-Up 1 mL  

SWNT 2 g 

Temperature Room temperature 

Current density  10 mA/cm2

 

 

At current density of 10 mA/cm2, the electroforming will take 5 days to get the composite 

ess of 1 mm. Also some thin samples with thickness of 10-20 microns were with thickn

fabricated for electrical conductivity measurement.  

 

5.5 Characterization

 

The fabricated samples were then taken for characterization. First, the density was measured 

to find the overall SWNT content in the composite approximately. And SEM picture was 



taken to see the morphology. The electrical conductivity was measured by a four-point probe, 

from which the thermal conductivity was derived by the Wiedemann-Franz Law.  
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5.5.1 Morphology 

The m

m re 5.14-5.16.  

 

 

orphology of the as-fabricated composite was indicated by scanning electron 

icroscopy (SEM), shown in Figu

Figure 5.14: SEM picture of the composite surface, magnified by 1000 times.  



Figure 5.15: SEM picture of the composite surface, magnified by 5000 times. 

Figure 5.16: SEM picture of the composite surface, magnified by 10000 times. 
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The worm-shaped structures are copper coated carbon nanotubes. This is obvious when 

comparing with the SEM picture of pure electrochemical deposited copper (Figure 5.17). 

Energy Dispersive Spectroscopy (EDS) shows that this worm-shaped structure contains 

29.6% (atomic ratio) Carbon atoms (Figure 5.18). The composite material is more condense 

after polishing (Figure 5.19). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17: SEM picture of the pure copper surface, magnified by 3000 times 
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Figure 5.18: Energy Dispersive Spectroscopy (EDS) of the composite 

 



Figure 5.19: SEM picture of the polished composite surface, magnified by 2000 

times. The surface was intently left rough for SEM.  
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5.5.2 Density measurement 

hree polished samples (Figure 5.20) were used for density measurement.  

 

T

 

Figure 5.20: Polished composite sample. 

15 mm 
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A Balance with accuracy of 10-4 g was used to measure the mass of the samples, while their 

volume was measured by immersing them into a cylinder with accuracy of 10-2 mL. The 

results are listed in table 5.5.  

 

Table 5.5: Density measurement of composite samples 

 
 

 

 

 

 

 

he average density of the three samples is 7.54 g/cm3. When considering the Rule of 

Mixture (equation 5.4) and the de 33 g/cm3) as well as that of pure 

opper (8.92 g/cm3), we can find the volume fraction of the carbon nanotube of 18%.  

5.5.3 CTE measurement 

o measure the coefficient of thermal expansion (CTE), we used the Thermomechanical 

nalyzer (TMA), as presented in Figures 5.21. It measures dimensional changes in a material 

s a function of temperature ntrolled atmosphere. Since the nanotubes are 

ndomly oriented and distributed in the composite, it is reasonable to assume that the 

omposite has isotropic pr

Sample Weight (g) Volume (cm3) Density (g/cm3) 

 

1 1.869 0.231 8.09 

2 1.819 0.252 7.21 

3 1.646 0.225 7.32 

Average                                                                      7.54 

T

nsity of carbon nanotube (1.

c

 

 

T

A

a or time under a co

ra

c operties.  
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-6 -6

-6  CTE decreases first and then increases with temperature 

 

 

 

 

 

 

 

 

 

Figure 5.2 al system  1: TMA thermomechanic
 

 

The measured CTE was presented in Figure 5.22. The average value in the temperature of 30 

to 150 °C is 4.70 x 10 /°C, which is close to the calculated value (4.61 x 10 /°C) from 

Figure 5.6 corresponding to the SWNT volume fraction of 18%. The composite has a lowest 

CTE of 4.22 x 10 /°C at 88 °C. The
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oing up from 30 to 150 °C. This may be caused by the interrelation mechanism between 

WNT and copper atoms, which needs to study further. 

 

5.5.4 Electrical conductivity measurement 

he electrical conductivity was measured by a four-point probe (Figure 5.23). The purpose of 

is instrument is to measure the resistivity of any semiconductor or conductive material. The 
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Figure 5.22: Measured CTE of copper/SWNT composite 

 

 

 

 

 

 

 

 

 

 

 

 

T

th

reason of using a second set of probes in addition to the traditional 2-point probe is that it is 

used for sensing and since negligible current flows in these probes, only the voltage drop 

across the device under test is measured. As a result, resistance measurement or I-V curve 
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generation is more accurate. The resistance measured by 2-wire setup includes not only the 

resistance in question, but also that of leads and contacts.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.23: 4-point probe configuration 



120 

ted and measured for comparative 

urpose. The results @ 20 °C are list in table 5.6 and 5.7.  

Table 5.6: Resistivity measurement of the composite sample 

Composite sample (thickness=22 µm) 

Thin samples were fabricated to fit the requirements. The thickness was measured by a 

profiler. Electroplated pure copper samples were fabrica

p

 

Measured point Restivity (µΩ-cm) Rs (Ω/ ) V/I (Ω) 

Point 1 1.1858 0.000539 0.000118 

Point 2 1.2408 0.000564 0.000124 

Point 3 1.2342 0.000561 0.000123 

Average 1.2203 0.000555 0.000122 

 

 

 

Table 5.7: Resistivity measurement of electroplated pure copper sample  

Electroplated pure copper sample (thickness=10.5 µm) 

Measured point Restivity (µΩ-cm) Rs (Ω/ ) V/I (Ω) 

Point 1 1.6695 0.00159 0.000352 

Point 2 1.785 0.00170 0.000376 

Point 3 1.7115 0.00163 0.000360 

Average 1.7220 0.00164 0.000363 
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 better than that of copper. The 

onductivity is the reverse of resistivity. From this relation, we can obtain the electrical 

better than that of copper (5.8 x 

107 Ω-1m-1, Figure 5.

 

 

 

 

 

 

 

 

 

a vity 

 

or metals, both electrical and thermal conductivities employ free electrons in that metal. 

Other properties such as electron charge and the number of free electrons per unit volume 

ave influence. The thermal conductivity increases with the average particle 

velocity since it increases the forward transport of energy. However, the electrical 

The measured resistivity of the pure copper sample is 1.72 µΩ-cm, which validates the 

accuracy of this measurement because the published one is 1.7 µΩ-cm. The electrical 

resistivity of composite is 1.22 µΩ-cm, which is 30%

c

conductivity of composite is 8.2 x 107 Ω-1m-1, which is 40% 

24). 
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Figure 5.24: Electrical conductivity of composite and copper 

> 40 % increase 



conductivity decreases with particle velocity because the collisions hinder the electrons from 

transporting charge. Wiedemann-Franz Ratio or the Lorenz constant describes the ratio of 

thermal to electrical conductivity of metals:  
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28
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/1045.2 KW
K

L B Ω•=== −πκ

B

23eTσ                             (5.6) 

where K  is Boltzmann constant, e the electron charge, κ is the thermal conductivity and σ is 

the electrical conductivity. When considering the contribution of phonons, the Lorenz 

constant will differ slightly from its absolute value. For copper the number is 2.25 x 10-8 

WΩ/K2 at 20 °C. From this relation, we obtained that the thermal conductivity of composite 

/m-k at 20 °C (Figure 5.25), 40 percent better than pure copper (385 W/m-k).  

rom Figure 5.7, the predicted thermal conductivity of the composite is 842 W/m-k at the 

NT volume ction of 18%. Therefore, there is a big difference between the calculated 

ne and the predicted one. The reasons for this are:  

• The Wiedemann-Franz law doesn’t consider the contribution of the phonons, which 

dominat

• The dispersion of SWNTs is not good enough to mix the carbon nanotube with copper 

atoms. When using the s otubes, they are present in the 

solution as bundles (10-20 nanotube a bundle). There are limited amount of 

is 588 W

 

F

SW  fra

o

ed the heat conduction of SWNTs. 

urfactant to disperse the nan

aggregates in the electrolyte and as a result SWNT aggregates exist in the composite 

(Figure 5.26). This will decrease the conducts between copper atoms and SWNTs and 

decrease the overall thermal conductivity of the composite. 
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5.6 Conclusion

 

Cop r

were c current. SEM picture shows worm-shaped 

stru

morpho

SWNT

value o

by fou

using W

pe /SWNT nanocomposite was developed by electroforming process, where the SWNTs 

o-deposited with copper atoms with applied 

ctures on the composite surface, which are copper coated SWNTs comparing with the 

logy with pure copper surface. The density of the composite is 7.54 g/cm3 indicating a 

 volume fraction of 18%. This composite has a CTE of 4.7 x 10-6/°C, agreeing with the 

f 4.6 x 10-6/°C predicted by the Rule of Mixture. The electrical conductivity measured 

r point probe is 8.2 x 107 Ω-1m-1, suggesting the thermal conductivity is 588 W/m-k 

iedemann-Franz law. 
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Figure 5.25: Thermal conductivity of composite and copper 
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ith a better-matched CTE and much higher thermal conductivity, the composite developed 

ill be a promising substitution for the CuMo base plate used to spread the heat from SiC die 

r the Radar industry. The thermal conductivity of the composite is two times better than 

at of CuMo, whi llows it to move more heat from the SiC die when same boundary 

onditions applied. E of the composite is much closer to that of SiC (4.7/3.8=1.2) than 

at of CuMo (5.8/ ). This is extremely important to reduce the stress in the interface 

etween the base pl and the SiC die.  

owever, there is still room to make improvement to this composite material. First of all, the 

olume fraction of the SWNT i d to 20% to make a perfect 

TE match to the Si .6 Mpa as 

mulation results). This will increase the thermal conductivity of the composite too and helps 

to remove the heat more efficiently. methods and surfactants need to be 

searched to disperse the SWNT further in the electrolyte and consequentially better 

W

w

fo

th ch a

The

3.8=

ate 

c  CT

1.5th

b

 

H

v n the composite can be increase

C C and reduce the interfacial stress to a very low value (20

si

Second, better 

re

distribution in the composite. A dispersion and distribution to a single SWNT level will 

increase the thermal conductivity as well as decrease the CTE more efficiently.   

 



SWNT aggregates 

Figure 5.26: SWNT aggregates in the composite 
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CHAPTER 6 MICRO MECHANICAL TEST OF MICROFABRICATED 

MEMS MATERIALS 

 

6.1 Introduction

 

Although MEMS devices come in a wide variety of applications, the amount of different 

structural parts used in them is rather limited. Most micro devices consist of some basic parts, 

which re-occur throughout the field: cantilever beams (single side clamped, double side 

clamped), membranes (either closed at the sides to another structural member, or as a free 

floating plate), springs (often doubling as cantilever beams), hinges, etc. (Fig. 1). These 

elements often suffer from the same degradation or failure mechanisms, regardless of their 

application.  

 

Failure of MEMS elements depends on the environmental stressing conditions they are 

subjected to as well as the material of which they are made. Common degradation/failure 

mechanisms of MEMS include fracture (overload or fatigue), creep (stress), stiction 

(capillary forces, van der waals forces, electrostatic forces), wear and degradation of 

dielectrics [53,54], most of which are classified as mechanical failures. A way to avoid these 

failure is to avoid high stresses. Design for stresses well below (at least 2 and up to 5 times 

below) the ultimate strength (material’s properties). 
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owever, the material properties of structural parts are not at all well known, especially not 

in t or. 

Furthermore, different fabricatio ns will definitely influence the 

icrostructures and surface conditions that change the mechanical properties especially for 

thin structures. For example, rough surface is 

 design and simulation, in which it is usually assumed that the 

ect the similar structures made up thin films and 

 bulk process will have different mechanical properties. Sharpe et al. [88] claim that 

echanical properties. In turn, such 

easure the mechanical properties of microscale 

structures.  

H

hin film technology, where properties often differ from the macroscopic bulk behavi

n techniques and conditio

m

more liable to induce cracks. This produces 

uncertainties in MEMS

mechanical properties of MEMS materials are the same as those of their bulk materials, 

because of lack of experimental data on micro machined materials. Therefore it is very 

important to conductivity mechanical tests on micro machined (thin-filmed) samples to 

discover the mechanical behavior in the micro scale.  

 

In micro scale, the size of the specimen and the fabrication process definitely have effect on 

the material behaviors. It is reasonable to exp

from

there is no significant effect of specimen size on Young’s modulus; however the strength does 

increase somewhat as the total surface area of the test section decreases, which might reflect 

the fact that the larger specimens have more surface flaws. 

 

In particular, the successful fabrication and reliable operation of structures with feature sizes 

in the range 1 µm to 1 mm is strongly contingent on a sufficiently rigorous understanding of 

their length-scale dependent and process-dependent m

understanding requires the ability to m
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6.2 Literature Review

 

A set of standard test procedures defined by American Society for Testing Materials (ASTM) 

is used to identify mechanical properties, such as Young’s modulus, Poisson’s ration, and 

fracture strength in macro-scale. However, these standards are not completely appropriate for 

small MEMES specimens; nevertheless one can get guidance from them and design suitable 

test methods for micro-scale materials. 

 

Different testing methods have been proposed by researchers from different researches in 

icro-scale. Basically, we can categorize them into two groups: direct methods and inverse 

asurements of specimen’s overall elongation. Compared to other test methods, 

tensile test take advantage in its simplicity. The principal difficulty associated with this 

m

methods. Direct methods refer to those similar to the approaches of ASTM defines. Tensile 

test is a typical direct test. In inverse methods such as the membrane [50], bending [51] and 

similar tests, a model is constructed of the test structure. In the following paragraphs, we will 

go through some typical tests. 

 

6.2.1 Tension Test 

 

Given the dimensions of the beam, it is straightforward to obtain a stress–strain graph, and to 

extract Young’s Modulus, Poisson’s ratio and fracture strength in tension test. Axial force is 

applied to stretch the specimen, from which the stress can be calculated with the dimension of 

the specimen known. Strain is measured as the force is applied either directly or calculated 

from the me
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chnique is the handling and mounting of the test structures. In the case of brittle materials, 

fracture induced by gripping presen m. This method is also sensitive to 

isalignment between the specimen and the set-up.   

osity Ultraviolet (UV) light curable adhesive [90], or 

onnected with a pin and ring mechanism.  

 

6.2.2 Bending Test 

te

ts an additional proble

m

 

Figure 6.1 shows one configure of the tension test, where the specimen is fixed to the die at 

one end and gripped/glued/held at the other end. One end of specimen is fixed to the die, 

while the other end is gripped with an electrostatic probe [89], or glued to a 

force/displacement transducer using visc

c

 

 

 

 

 

 

Fixed

 Figure 6.1: One-end-fixing tensile test (ping on the left, and ring on the right) 

 

Compared with the direct tension test, testing by beam bending has the advantage of being 

simple. Bend test needs a smaller force than the tension test but yields a lateral deformation, 

which is large enough to be measured using an optical microscopy. Furthermore, this method 

is not affected by slight misalignment in the loading direction; the loading mechanism 



becomes relatively simple and easy to use. For a cantilever beam of length L, width b, and 

thickness h, the Young’s modulus is given by the expression [95] 

                                               (6.1) 

The fracture strength is given as [95] 

                                                               (6.2) 

where PF is the load at fracture. Figure 6.2 shows a bending test by [91], where the fracture 

strength of single-crystalline silicon (75–240

130 

 µm wide, 8–16 µm thick and 75–500 µm long) 

as measured. They pushed the silicon micro cantilevers down with a stylus. 

 

determine the biaxial modulus. An advantage of this approach is that tensile residual stress in 

w

 

 

Figure 6.2: Out-of-plane bending test by a stylus 

 

 

 

 

 

 

 

6.2.3 Membrane Test 

 

In membrane test, the membrane is pressurized and the deflection is measured then used to 



the membrane can be measured. For rectangular membranes (with thickness h and edge 

length 2a), the pressure–displacement relationship is given as 

                                         (6.3) 

The constant C1 and C2(ν) are determined using finite element analyses, and have values of 

3.45 and 2.48 for ν = 0.25, respectively [96]. In addition, the value of the Poisson’s ratio can 

be estimated by sequentially testing membrane

 

s with square and rectangular geometries. 

Walker et al [92] tested pressurized square membranes with the deflection measured by a 

stage-mounted microscope, as shown in Figure 6.3, to study the effect of hydrofluoric acid 

exposure on polysilicon.  

 

F

A 

Detail A 

igure 6.3: Schematic diagram of a membrane test 
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6.2.4 Resonant Test 

 

132 

Petersen et al [93] fabricated very small cantilever beams from insulating films deposited on 

silicon by selectively etching the silicon out from under the insulating layer in a very 

here ρ is the density. 

controlling manner. The beams are then vibrated electrostatically, and Young’s modulus was 

determined from the mechanical resonance frequency. Movements of the beam were detected 

by focusing a He-Ne laser on the tip of beam and positioning an aperture detector near the 

edge of the deflected beam as shown in Figure 6.4. For a cantilever beam of thickness h and 

length L, the fundamental resonant frequency is given by 

                                              (6.4)
 

w

 

 

 

 

 

 

 
Figure 6.4: Schematic diagram of a resonant test 
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6.2 est .5 Wafer Curvature T

 

The wafer curvature test has emerged as a popular technique for the evaluation of residual 

stresses in non-integrated, constrained, thin and thick structures, particularly, continuous 

films deposited on thick substrates. For small deformations, and when the film thickness (hf ) 

is much smaller than the thickness of the substrate (hs ), the magnitude of the residual stress 

in the film is given by the Stoney formula [94] 

                  (6.5) 

where κ is the curvature of the film–substrate composite (which can be measured using 

commercially available test stations), M is the biaxial m tes 

the substrate. It is important to note that the stress can be evaluated without any knowledge of 

es of the film. In general, the residual stress has many contributions 

cluding intrinsic (growth) stresses and stresses due to thermal mismatch. The identification 

f the relative importance of the different components requires further knowledge, especially 

f the coefficients of thermal expansion of the film and the substrate. 

6.2.6 Raman Spectroscopy 

his is an optical technique for the measurement of residual stresses and stress gradients in 

iamond-type materials (such as Si, SiC, Ge), which display a Stokes Raman spectrum that is 

nsitive to mechanical stresses [96]. This method has been extensively applied to silicon 

icroelectronics devices, facilitated by the availability of commercial microprobes. The 

odulus, and the subscript s deno

the mechanical properti

in

o

o

 

 

T

d

se

m
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sampling volumes can be as sm irtually no sample preparation 

quired. Figure 6.5 shows the Raman peak in single-crystal silicon in the absence of stress, 

 

 

 

 

 

 

 

 

 

 

 

6.2.6 Discussion 

 

Most of the abovementioned methods are indirect methods, whose accuracy may be 

questionable. Some of these methods like bending method involves an external force applied 

all as 1 µm3, and there is v

re

and indicates the expected direction of shift for tensile and compressive stresses. The 

interpretation of such shifts requires that the stress state be simple, and that the form of the 

stress tensor be known beforehand. For example, a uniaxial stress of 25 MPa in silicon 

corresponds to a spectral shift of about 0.05 cm−1, which can be detected with high-resolution 

instrumentation.  

 

Figure 6.5:Raman spectrum of stress-free single-crystal silicon. The expected shift

of the peak with uniaxial compressive and tensile stresses is indicated. 
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6.3 Methodology

to the test structure to induce deformation, which is measured by the specific instrument. 

Mechanical properties are calculated by using proper equations derived with assumptions and 

certain boundary conditions. This will definitely influence the accuracy of the testing results, 

especially for complex structures. Therefore, the direct method (tensile test) with simple 

boundary conditions and fully understood theories is highly preferred and standardized for 

measuring mechanical properties of materials.  

 

 

In this research, a direct (tensile) test for the mechanical properties of the electroplated nickel 

 SU-8 is used with an innovatively designed specimen. A MST 250 micro force tester 

igure 6.11) is employed to conduct the test, where the forces are applied by the tester and 

e corresponding displacements are recorded. The stress and strain are calculated out 

ccording to the specimen’s dimension. Finally, the stress-strain graph is plotted and 

echanical properties are extracted.  

ome c he 

ecim  to model the 

echanical response of the test structure, it is necessary to determine the boundary (support) 

conditions, the initial geometric con dimensions (metrology) of the test 

ructure. Each of these can introduce significant errors into the modeling process. 

&

(F

th

a

m

 

S ommon concerns need to be considered when designing the specimen as well as t

en holder because it determines the boundary conditions. In ordersp

m

dition, and the 

st
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trology can influence the strength. Depending 

n the test technique, the mechanical property of interest can be a strong function of the 

dimensional characteristics of the test ion to the small feature sizes inherent 

 MEMS, accurate metrology is complicated by restricted access to important structural 

aligned on the MTS 250 by using two axial alignment 

uiders (Figure 11). This method is suitable to a great variety of materials such as metals, 

esearchers 

ublished the tested value of the electroplated nickel is only about 20 to 30 GPa. For SU-8, 

the experimental data are sparse. Therefore, it is necessary to test the properties of these 

The boundary conditions need to be as simple as possible, which depends on the both the 

design and the fabrication process. The constraints imposed by the fabrication processe 

prevent easy characterization of the supports of microscale structures, some of which are 

related to the release process. Initial geometric conditions are also an important concern. 

MEMS structures are typically designed to be planar. However, residual stresses and stress 

gradients can lead to bending and buckling. Me

o

 structure. In addit

to

features.  

 

The specimen design considered all these parameters and avoided all the errors. The novel 

design of the specimen coupling with the specially designed specimen holder (Figure 6.6) 

defines very simple boundary conditions. The fabrication process assures the accuracy of the 

geometry of the specimen, which is 

g

plastics and composites. In this research, micro structured nickel and SU-8 were tested. 

 

The need to test the nickel (used in chapter 2,3,4) is initiated by the disagreement of the 

reported data. It is reported by many researchers that the Young ’ smodulus of the 

electroplated nickel is from 160 GPa to 230 GPa [52,55], however other r

p
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materials in micro scale based on the processing conditions with the testing process 

developed. However, this method is suitable to a great variety of materials such as metals, 

plastics and composites. 

 

6.4 Specimen Design

 

The tensile testing specimen is shown in Figure 6.6. For easy handling while keeping the 

specimen in micro scale, three micro beams are used in the specimen. The function of the ribs 

is to reinforce the pads so that allows most of the deformation occurring on the specimens. 

Finite element simulation shows that a uniform stress distribution (0.5% difference) in the 

ree specimens is achieved when a stretch is applied on the pads and 97.7% of the axial th

deformation occurs on the specimens (Figure 6.7).  

 

6.5 Specimen Fabrication

 

The nickel specimen is fabricated by two electroforming steps defined by SU-8 molds 

(Figure 6.8) in a watts type bath. A pulse current with average current density of 25 mA/cm2 

nd duty cycle of 50% is used, which gives a deposition rate of 15 µm/hr. The final fabricated a

structure is shown in Figure 6.5 with specimens’ thickness of 30 µm. The Su-8 molds and 

specimens (Figure 6.9) were fabricated following the process described in chapter 4. 
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                                       Iso view                                                   Top view 

Figure 6.6: Specimen holder and testing specimens with width of 90 µm, 40 µm 

and 90 µm respectively. 

Specimen

 

Pad 

Rib 

Figure 6.7: FEA simulation results of the deformation 
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Figure 6.8: SU-8 mold with thickness 75 µm for the fabrication of the test
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Figure 6.9: SU-8 specimen with thickness 75 µm. 
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6.6  Setup

Figure 6.10: SEM picture of nickel specimen 

Testing

 

When testing, the spe h specially designed 

gripers (Figure 6.11), which is aligned by the alignment guider. An axial force is used to 

stretch the specimen in different loading rate, which is controlled by a force mode or a 

displacement mode. The deformations and the axial forces are recorded automatically in data 

file.  

 

 

cimen is held on the MTS Tytron 250 tester wit
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6.7 Mechanical Testing Results

 

Then 

Figure 6.11: Testing system 

the stress and the strain can be calculated as follows: 

                                   A
P

=σ
                                                 (6.6) 



L
L∆

=ε
                                              (6.7) 

here P is the applied axial force, A is the total area of the cross section of the three beams, 

L is the total elongation of the specimen and L is the initial length of the specimen. The 

ress-strain graph can be plotted and the Young’smodulus and the tensile strength can be 

xtracted.  

6.7.1 Mechanical Properties of Nickel 

he testing results of three nickel specimens are shown in Figure  the fracture section 

 shown in Figure 6.13.Testing results of nickel show a typical metal behavior with Young’

odulus of 100 ± 10 GPa and fracture strength of 900±70 MPa. The fracture strain is found 
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∆
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sample-1 sample-2 sample-3

Figure 6.12: Electroformed nickel mechanical testing results 

200



to be 1.5 ± 0.25 percent. The ultimate strength is much higher than the values from the 

references. This is the design of the specimen avoids any stress concentr

 

6.7.2 Mechanical properties of SU-8 

 

The testing results of three SU-8 specimens are shown in Figure 6.14 and the fracture section 

is shown in Figure 6.15. The testing results of the SU-8 show a brittle behavior (Figure 6.15). 

The average value of Young’smodulus and fracture strength of SU-8 turn out to be 2.5±0.2 

GPa and 48±3 MPa, respectively. The ultimate strength is higher than the published value of 

34 Mpa form [56]. The Young’smodulus of 2.5 Gpa suggesting the specimen is more elastic 

due to no hard bake in the process.  

ations as well as the 

fabrication technique.  

Figure 6.13: SEM picture of the fracture section of nickel specimen 
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Figure 6.14: SU-8 mechanical testing results 

Figure 6.15: SU-8 fracture section 



145 

6.8 Conclusion

 

The mechanical properties of MEMS materials are extremely important for the performance 

f the MEMS devices. However, people cannot borrow material properties from bulk 

aterials to thin filmed structures because materials behave differently in micro scale. The 

rocessing methods also play an important role in the material properties. Therefore, it is 

ecessary to develop an accurate method to measure these properties. Direct (tensile) method 

 favorable in its simple boundary conditions and is fully understood. For this purpose, a 

irect mechanical test method for MEMS materials was developed with the cooperation of a 

TS Tytron Microforce Tester. The test method has advantages, in terms of direct test of 

icro samples with standard test frames, easy in micro sample handling with a novel 

spcimen and specimen ho or indirect methods. 

he tensile strength of electroformed nickel is about 900MPa, while tensile strength of SU-8 

is about 48 MPa. The test results validate the simulation results in Chapter 2, 3, 4.  

 

o

m

p

n
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d

M

m

a lders, in comparison to other existing direct 
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CHAPTER 7 CONCLUSIONS 

 process. 

etailed experiments were performed to optimize processing parameters in this dissertational 

research. UV-LIGA is cost effective, easy in access and safe. Micro mechanical systems with 

high-aspect-ratio and thick metallic structures have been developed by using UV-LIGA 

process, and electroformed nano structured nickel and copper/SWNT composite were used as 

functional materials. The developed micro mechanical devices include large flow rate robust 

microvales, the laminated micro heat exchanger and the square-shaped copper/SWNT nano 

composite heat spreader.  

 

 

UV-LIGA is an important process for the fabrication of micro devices in terms of easy access, 

cost effectiveness, environmental friendliness, and high precision. High aspect ratio metallic 

structures can be developed by using UV-LIGA process with high precision and relatively 

lost cost, which is critical for applications for extreme conditions such as a high-pressure 

environment. Conventional micro fabrication is either not capable of producing thick layers 

such as PVD or resulting in a bad sidewall profile such as etching where undercut (lateral 

etching) will occur. Although LIGA has been used to produce similar or better structures, the 

high cost both in equipment (such as x-Ray mask aligners) and consumables (such as masks 

and resists) largely limit its applications.  

 

A low stress defects (crack) free SU-8 process was developed for the UV-LIGA

D
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wo types of large flow rate robust passive micro check valve arrays have been designed, 

fabricated and tested for r  very important for space 

applications where payload is a critical concern. 

d the flow rate can be increased by increasing the 

ressure difference as indicated by Poiseuille’s law. Dynamic test showed that the micro 

tress. Continuous multiple-stepped micro molds fabrication and 

olding process were conducted. Final micro mechanical valves were received after 

removing the micro molds trapped. There is no any additional bonding process, such as 

T

obust hydraulic actuators, which are

 

The first set of microvalves was designed to use nano-structured nickel as the valve flap and 

single crystal silicon as the substrate for the inlet and outlet channels. The nickel valve flap 

was fabricated using UV-LIGA technology and the micro channels were fabricated using 

deep reactive ion etching. The fabricated microvalve weighs 0.2 gram, after packing with a 

novel valve stopper. Simulation showe the valve can support 10 Mpa both at open or closed 

state. The damped 1st mode frequency is 24.5 KHz, which makes it possible for the flap to 

work at 10 KHz without resonant damages. Static testing results showed a flow rate of 18 

cc/s at a pressure difference of 50 psi, an

p

valve was able to operate at up to 14kHz. This is great advantage in comparison to traditional 

mechanical valves, whose operations are limited to 500 Hz or less. The advantages of micro 

machined valves attribute to the scaling laws.  

 

The second set of micro mechanical valves developed is self-assembled solid metallic (nickel) 

valves, where both valve substrates for inlet and outlet channels and valve flap were made by 

electroformed nickel through UV-LIGA process. An improved nickel flap was employed in 

this valve to reduce the s

m
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c/s at a pressure difference of 90 psi and a 

ackward flow rate of 0.023 cc/s, which is negligible (0.13%). 

s been developed during this dissertational 

search for the heat spreading for high power electronics (HPE). The SWNTs were 

cutting and packaging involved. Each fabrication step was aligned under microscope during 

the fabrication process, thus it is a highly precise self-assembled process. Testing results 

show the valve has a forward flow rate of 19 c

b

 

Nano-structured nickel has also been used to develop laminated (sandwiched) micro 

cryogenic heat exchanger fabricated with the UV-LIGA microfabrication process. Micro 

patterned SU-8 molds and electroformed nickel have been developed to realize the 

sandwiched heat exchanger. The SU-8 mold (200µm x 200µm x50µm) array was 

successfully removed after nickel electroforming. The second layer of patterned SU-8 layer 

(200µm x 200µm x50µm, thermal insulating layer) was patterned and aligned on top of the 

electroformed nickel structure to form the laminated (sandwiched) micro heat exchanger. The 

fabricated sandwiched structure can withstand cryogenic temperature (77K) without any 

damages (cracks or delaminations). 

 

A novel copper/SWNT nano composites ha

re

successfully dispersed in the copper matrix to form the SWNT/Cu metal-matrix nano 

composite. The tested composite density is about 7.54 g/cm3, indicating that the SWNT 

volumetric fraction is 18%. SEM pictures show copper coated on SWNT (worm-shaped 

structure) dominates the composite surface. The measured CTE of the nanocomposite is 4.7 x 

10-6/°C, perfectly matching that of SiC die (3.8 x 10-6/°C). The thermal conductivity obtained 

from Wiedemann-Franz law is 588 W/m-K, 40% better than pure copper. These properties 
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power radar, and other HPE 

evices under developing. 

sting method for the testing of mechanical 

roperties in micro scale. Micro mechanical systems such as large flow rate micro valves, 

 

are extremely important for the heat spreader/exchanger to remove the heat from HPE 

devices (SiC dies). Meanwhile, the matched CTE will reduce the stress in the interface to 

prevent delaminations. Therefore, the naocomposite developed will be an excellent 

replacement material for the CuMo currently used in high 

d

 

A direct (tensile) test method was developed to test the mechanical properties of the materials 

involved in this research, including nickel and SU-8. Micro machined specimens were 

fabricated and tested on a MTS Tytron Micro Force Tester with specially designed gripers. 

The tested fracture strength of nanostructured nickel is 900±70 Mpa, which is much higher 

than published values. 

 

In summary, the author has successfully developed a low stress and crack free SU-8 process 

for UV-LIGA process and a direct (tensile) te

p

micro heat exchangers and copper/SWNT nanocomposite heat spreaders were developed 

using UV-LIGA process defined by SU-8 micro molds. The performance of these devices 

was tested and evaluated. To test the mechanical properties of the materials used in the 

research, micro tensile testing specimens were fabricated and characterized. The tested results 

validated the design and simulation results. This UV-LIGA compatible electroforming 

process can be easily applied to the fabrication of other MEMS devices, such as 

accelerometers and gyroscopes where a large mass is needed.  
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