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NEW FORMULATION FOR FINITE ELEMENT MODELING

ELECTROSTATICALLY DRIVEN MICROELECTROMECHANICAL

SYSTEMS

Ilya V. Avdeev, PhD

University of Pittsburgh, 2003

The increased complexity and precision requirements of microelectromechanical systems

(MEMS) have brought about the need to develop more reliable and accurate MEMS sim-

ulation tools. To better capture the physical behavior encountered, several finite element

analysis techniques for modeling electrostatic and structural coupling in MEMS devices have

been developed in this project. Using the principle of virtual work and an approximation

for capacitance, a new 2-D lumped transducer element for the static analysis of MEMS has

been developed. This new transducer element is compatible to 2-D structural and beam

elements. A novel strongly coupled 3-D transducer formulation has also been developed to

model MEMS devices with dominant fringing electrostatic fields. The transducer is compat-

ible with both structural and electrostatic solid elements, which allows for modeling complex

devices. Through innovative internal morphing capabilities and exact element integration

the 3-D transducer element is one of the most powerful coupled field FE analysis tools avail-

able. To verify the accuracy and effectiveness of both the 2-D and 3-D transducer elements a

series of benchmark analyses were conducted. More specifically, the numerically predicted re-

sults for the misalignment of lateral combdrive fingers were compared to available analytical

and modeling techniques. Electrostatic uncoupled 2-D and 3-D finite element models were

also used to perform energy computations during misalignment. Finally, a stability analysis

of misaligned combdrive was performed using a coupled 2-D finite element approach. The

analytical and numerical results were compared and found to vary due to fringing fields.
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1.0 INTRODUCTION

1.1 MICROELECTROMECHANICAL SYSTEMS

The fundamental theme of this dissertation is related to the modeling of microelectrome-

chanical systems (MEMS). It is therefore instructive to give a brief historical background and

definition of MEMS. MEMS started in 1959 with the talk that Richard Feynman gave at the

annual meeting of the American Physical Society at the California Institute of Technology

[1]. “There’s plenty of room at the bottom” was the name of that milestone presentation.

Feynman was the first researcher who saw the future of miniaturization and issues related

to practical realization of his ideas. His first “challenge” was: “I hereby offer a prize of

$1,000 to the first guy who can take the information on the page of a book and put it on

an area 1/25 000 smaller in linear scale in such manner that it can be read by an electron

microscope.” The challenge was offered as a high-school competition, because at that time

nobody had started that field [1]. The work, by T. Newman and R.F.W. Pease of Stan-

ford University, won the Feynman challenge in 1985. It took almost 26 years for technology

to develop enough to overcome the fabrication issues, that Feynman described in his talk:

lithography resolution, deposition, and characterization.

The second of Feynman’s “challenge” was: “I want to offer another price –...– of another

$1000 to the first guy who makes an operating electric motor – a rotating electric motor

which can be controlled from the outside and, not counting the lead-in wires, is only 1/64

inch cube.” The motor, created by McLellan, was shown in 1983 during the second milestone

Feynman’s talk at the Jet Propulsion Laboratory (JPL) [2]. Feynman delivered the speech

that actually started the MEMS field. He was among the first – if not the first – person who

proposed the use of semiconductor integrated technology to fabricate infinitesimal machines.
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The technology which is known as microelectromechanical systems (MEMS) in the

U.S.A., is called microsystems technology (MST) in Europe. According to Albert Pisano,

a former MEMS program manager of DARPA, “...the acronym for Microelectromechanical

Systems, MEMS, was adopted by a group of about 80 zealots at a crowded meeting in Salt

Lake City in 1989 called the Micro-Tele-Operated Robotics Workshop...” [3]. He was a part

of that group and recalls, that at the beginning, they “...constantly worried if any scholarly

journal would publish the papers we wrote. Sources of research funding were hard to find

and difficult to maintain. MEMS fabrication was itself a major issue, and the frequent topic

of conversation was about the nature, properties, and standardization of the polysilicon that

the pioneering researchers were using to demonstrate the early, elementary structures of the

day.” Since that time, MEMS has developed into a huge industry, research field and a mar-

ket around the world. By 1997, when there were 80 U.S. companies in the MEMS field, the

combined total world market of MEMS was approximately $2 billion [3]. The most conserva-

tive studies predict a world MEMS market in excess of $8 billion in 2003. The analysis and

forecast of U.S. MEMS markets are presented in Table 1 [3]. The reality has by far exceeded

the expectations of scientists and engineers. In fact, MEMS industry is not just a corner

stone of innovation in technology, but it also is a lunching pad for emerging technologies,

the most promising of which is nanotechnology.

The field of MEMS is relatively new, therefore there is no unique, widely accepted defi-

nition of MEMS. One of the broadest and probably the best definition was given by Maluf

in 2000 [3]. He defines MEMS as simultaneously “... a toolbox, a physical product, and a

methodology all in one:

• It is a portfolio of techniques and processes to design and create miniature systems;

• It is a physical product often specialized and unique to a final application – one can

seldom buy a generic MEMS product at the neighborhood electronic store;

• “MEMS is a way of making things,” reports DARPA. These ”things” merge the functions

of sensing and actuation with computation and communication to locally control physical

parameters at the microscale, yet cause effects at much grander scales...”
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Table 1: Analysis and forecast of U.S. MEMS markets (in millions of U.S. dollars)

Year Automotive Medical IT/Industrial Military/Aerospace Total

1994 255.7 129.5 438.3 49.1 872.5

1995 298.0 146.1 459.0 54.8 957.9

1996 355.0 164.4 492.8 62.2 1,074.3

1997 419.0 187.0 527.0 71.6 1,204.6

1998 491.5 216.7 575.3 79.6 1,363.1

1999 552.0 245.7 645.9 95.8 1,549.4

2000 645.7 291.3 733.3 110.7 1,781.0

2001 758.5 354.8 836.0 133.3 2,082.5

2002 879.6 444.7 995.1 156.9 2,476.3

2003 1,019 562.9 1,222 176.7 2,980.4

2004 1,172 716.0 1,514 202.7 3,604.5

3



The present and future applications of MEMS can be combined into several groups

(Table 2) [3]. There is a number of comprehensive reviews of MEMS applications, focusing

on the sensor and actuator systems by Ko [4], actuators by Fujita [5], polysilicon integrated

microsystems by Howe [6], IC microtransducers by Baltes [7], and general reviews by Bao

[8] and Fluitman [9]. The impact of MEMS technology on society is the subject of Bryzek’s

review [10]. The design future and present trends are covered in reviews of Senturia [11] and

Wachutka [12], [13].

1.2 ELECTROSTATICALLY DRIVEN MEMS TRANSDUCERS

Electrostatically driven MEMS transducers are the subject of this research project. This is

a practical choice, due to the domination of electrostatics over the other types of physical

domain, such as magnetics, thermodynamics, piezoelectricity or optics [3]. There are several

reasons why the coupling between electrostatics and mechanics is the “driving force” of

MEMS development:

• MEMS started borrowing technology from the semiconductor industry, where silicon is

the number one material [3]. The beauty of silicon, as a semiconductor material, is

that it can be used either as an insulator (intrinsic silicon) or as a conductor (doped

silicon). This property of the silicon, accompanied by its sufficient structural strength,

allows MEMS designers to use silicon in carrying out a variety of actuation and sensing

functions.

• Electrostatically driven actuators have short response time. Application and release of

forces take virtually the same time, in contrary to the thermo-actuation (fast in heating

and slow in cooling).

• Transducers are relatively easy to design, due to the well explored field of electrostatics.

There is a variety of simplified capacitor models, which can be applied to the design of

MEMS. Classical examples are parallel plate and comb capacitor models [14].

• Electrostatically driven transducers are less sensitive to environmental conditions than

others. Packaging and operating conditions are not as strict as for other transducers.
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The great number of applications (Table 2) requires a variety of methods and tools for de-

signing and analyzing MEMS devices. For the last decade, MEMS technology was developing

faster than simulation and analysis techniques. As a result, there is a lack of sophisticated

analysis tools to model physical behavior and response of the electrostatically driven trans-

ducers.

1.3 OBJECTIVES OF RESEARCH

The purpose of this research is to extend existing and develop new numerical techniques for

solving electromechanical problems in MEMS. The research will be focused on the following

six major topics:

• development of a 2-D lumped transducer finite element with a strong coupling between

rigid or deformable mechanical domains and slightly curved electrostatic fields, such as

developed in optical mirrors, switches, resonators, etc;

• development of a novel 3-D coupled field finite element for modeling MEMS with domi-

nating fringing electrostatic fields, such as combdrives, micromotors, etc.;

• testing of developed finite elements, comparing results of static electromechanical analy-

ses with experimental results available in literature and with other numerical techniques;

• development of a simplified analytical model of lateral combdrive structures to model

in-plane misalignments;

• development of an uncoupled FE technique for modeling in-plane combdrive misalign-

ments to account for fringing electrostatic fields;

• pull-in combdrive analysis using analytical and strongly coupled distributed models.

The new 2-D lumped transducer element will be a generalization of 1-D transducers. The

element will have a trapezoidal shape with four nodes and three degrees of freedoms per

each node. The most important condition to be satisfied is its compatibility with standard

plane structural elements. Electrostatic forces will be calculated within the element using

the principle of virtual work. The Newton - Raphson algorithm will be the basis for the
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nonlinear coupled field formulation. The element will be tested by comparing results of

static analysis with results obtained using other simulation techniques (sequential coupling,

1-D lumped model and distributed transducer models) and experimental data.

The new 3-D distributed tetrahedral transducer element will also be derived using the

principle of virtual work. The new element can be utilized for modeling 3-D coupled field

problems with dominating fringing fields, such as static analysis of combdrives, deflectable

3-D micromirrors, and micromotors. The 3-D element will provide mesh morphing during

a nonlinear analysis, making the element sufficiently faster than the sequential coupled FE

models, which uses external morphers or meshers.

In order test the new 3-D element, a simplified analytical model of a misaligned combdrive

can be constructed using a rigid model of fingers and certain assumptions regarding the

electrostatic field. The model can be used to investigate the influence of misalignment on the

combdrive driving force. A great deal of research has been focused on calculating unbalanced

forces and moments and finding conditions required for stability of static equilibrium states.

This is important from the designer perspective, because it sets the limits on applied voltage

and structural stiffness of the transducer. The simplified analytical model doesn’t account

for fringing field effects. The validity of the analytical model and inaccuracies brought

by simplifying assumptions need to be investigated. An uncoupled FE model has to be

generated. The electrostatic field energy, calculated using FEM allows forces and moments

to be obtained through the principle of virtual work. Sequentially coupled or distributed

transducer models can be utilized for stability analysis.

Prior to discussing the research topics, a literature review on state-of-the-art numerical

methods for the coupled field analysis will be conducted.
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Table 2: Examples of present and future application areas for MEMS

Commercial Applications Military Applications

Invasive and noninvasive biomedical sen-
sors

Inertial systems for munitions guidance
and personal navigation

Miniature biomedical analytical instru-
ments

Distributed sensors for asset tracking,
environmental and security surveillance

Cardiac management systems (e.g.,
pacemakers, catheters)

Weapons safing, arming, and fuzing

Drug delivery systems (e.g., insulin,
analgesics)

Integrated micro-optomechanical compo-
nents for identify-friend-or-foe systems

Neurostimulation Head- and night-display systems

Engine and propulsion control Low-power, high-density mass data stor-
age devices

Automotive safety, braking, and suspen-
sion systems

Embedded sensors and actuators for
condition-based maintenance

Telecommunication optical fiber compo-
nents and switches

Integrated fluidic systems for miniature
propellant and combustion control

Mass data storage systems Miniature fluidic systems for early detec-
tion of biochemical warfare

Electromechanical signal processing Electromechanical signal processing for
low-power wireless communication

Distributed sensors for condition-based
maintenance/monitoring struct. health

Active, conformable surfaces for dis-
tributed aerodynamic control of aircraft

Distributed control of aerodynamic and
hydrodynamic systems
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2.0 REVIEW OF BASIC TECHNIQUES FOR MODELING MEMS

The main focus of this literature review is the presentation of an overview of the research

that has been performed on the development and use of the finite element method (FEM) for

solving coupled field problems of electromechanics. The various methods and techniques of

coupled field simulation can be placed into four categories: uncoupled models, sequentially

coupled models, lumped or reduced order models and distributed coupled field models. The

following sub-sections provide brief descriptions of each of these categories and acknowledge

main contributors to each of them.

2.1 UNCOUPLED MODELS

Historically, uncoupling or decoupling was the first approach widely used by designers and

engineers for solving coupled field problem. Tang et al were the first to use decoupling for

the design of lateral polysilicon combdrive transducers in 1989 [15]. The way he uncoupled

the analysis was by calculating an electrostatic force developed in the combdrive using a

simplified analytical electrostatic model (neglecting fringing electrostatic fields). For more

than a decade, his model has been used for the design of combdrive actuators and res-

onators. This example is a classical representation of an uncoupled modeling technique. If

electromechanical coupled field problem allows one to simplify any of the two or more phys-

ical domains (usually electrostatic one) and to analytically calculate some of the coupled

parameters (usually electrostatic force), then this system can be effectively treated using un-

coupled modeling technique. With the development of powerful electrostatic packages using

finite element method (FEM) [16] or boundary element method (BEM) [17], the simplified
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analytical models were substituted with more accurate and representative numerical models.

The following are examples of how this technique was successfully applied to the various

MEMS applications.

Sangster and Samper in 1997 used the uncoupled technique to create 2-D and 3-D FE

electrostatic torque models of a double-stator wobble motor [18]. The electrostatic field was

calculated using commercially available FE-package Opera [19]. The torque produced by

an electrostatic field was obtained by integrating the electrostatic field product over the FE

mesh. The authors came to the conclusion that unless the motor was of a very low axial

height relative to its radius or exhibited a relatively large rotor-stator air gap, 3-D modeling

was generally unnecessary. Furthermore, an analytical approximation could be used rather

than the FE model if 5% torque prediction was acceptable.

Bonse in 1995 [20] applied the MAXWELL 2-D Field Simulator FE package [21] to

calculate capacitance of various position sensors. The authors used a mix of FEM simulations

and calculations based on the simplification of the electric field to accurately characterize

microsensors without having to build and test several prototypes.

The capacitance of the combdrive fingers with non-parallel (due to the particular deep

reactive ion etching process) side walls was calculated using both the MEMCAD package and

simplified analytical model by Tay et al in 1999 [22]. The authors adjusted Tang’s formula for

the driving electrostatic force in perfect combdrive [15] and came to the conclusion that both

analytical and simulated results were very close. Tay’s group were the first to suggest that

the effect of non-ideal cross section of the fingers must not be neglected in micromachined

sensors that are fabricated using deep reactive etching process.

FEM wasn’t just used for the simulation of the electrostatic domain. It was widely

used to optimize the shape of structural elements and to calculate natural frequencies and

generalized stiffnesses, which were later used as the parameters of lumped models of the

structural domain. Since 1994, Fischer used ANSYS to optimize the shape of torsional

micromirrors during deflection and to control their natural frequencies [23]. The FE stress

analysis of thin polysilicon plates was performed by Bistue in 1997 in order to design a

pressure microsensor [24]. The pressure-strain sensitivity was used to obtain the capacitance

of the plate. Resonant frequencies of the microaccelerometer were calculated using ANSYS
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5.4 by Li in 2001. Resonant frequencies were used to validate analytical formulation for

the design of the accelerometer. The uncoupled modeling technique has been the most

popular tool among the designers of MEMS for the last decade. Despite its popularity, this

approach can not be applied to the analysis of strongly coupled systems, such as deflectable

micromirrors, and micromotors. To overcome this shortcoming, the sequential coupling

method was developed.

2.2 SEQUENTIAL COUPLING

The sequential coupling method is also called a “weak coupling” or “load vector coupling”

[25]. The method is not just intuitively simple, but also relatively easy to implement. It al-

lows the combination of strength of single field simulators for solving coupled field problems.

In the case of electromechanics, electrostatic and structural solutions are obtained sequen-

tially. Interaction (coupling) between two domains occurs through the load vector, which

represents the electrostatic forces acting upon the boundaries of the structural elements.

The iterative process in this case is required to obtain a reasonable solution. Therefore, the

convergence of the iterative process becomes the main issue of the method.

Senturia et al was among the first people who suggested the sequential coupling architec-

ture of their computer-aided design system for microelectromechanical systems (MEMCAD)

[26] (Figure 1). Several years later, in 1995, CoSolve-EM program was developed et al [27]

based on that architecture. The sequential coupling was based on a relaxation scheme com-

bining a fast multipole-accelerated scheme for the electrostatic analysis (FASTCAP, [28])

with a standard FEM for the mechanical system analysis (ABAQUS, [29]). The approach

was later successfully used for modeling electrostatic curved electrode actuators [30] and

torsional micromirrors [31]. However, modeling pull-in effects and other bifurcations leaded

to unresolved convergence problems [30].

The approach proposed by Wachutka et al in 1999 [32] also followed the idea of using FE

codes for the mechanical and the electrical subproblems and coupling them through the com-

mon domain interfaces. The developed software combined BEM for modeling electrostatic

domain and FEM for modeling mechanical one. The iterative method followed a Gauss-
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Seidel-like relaxation scheme. The authors developed a novel technique for the treatment of

unstable regions of the operating area, such as snap-down (pull-in) effect [32], where none of

the usual solution schemes could converge. The homotopy method was used to tackle this

problem. The new approach was shown to solve a well-known torsional micromirror contact

problem [33].

Schroth et al in 1996 created a sequentially coupled scheme, which coupled ANSYS

with the lumped circuit PSpice simulator [34]. The iterative scheme was useful but had

convergence issues. The approach was used for the transient analysis of the electromechanical

system of a resonant beam force sensor. One of the important features of this approach is

that one can couple finite element with boundary element solutions, which is utilized in

Coventor [17] commercial package, for example.

The sequential coupling between electrical and mechanical FE physics domains for MEMS

analysis was also introduced in ANSYS 5.6 [35], [16] using the ESSOLV command macro.

ESSOLV allowed the most general treatment of individual physics domains. However, it

couldn’t be applied to small signal modal and harmonic analyses because a total system

eigen-frequency analysis required matrix coupling. Moreover, sequential coupling generally

converged slower than the other techniques if it converged at all.

2.3 LUMPED OR REDUCED ORDER MODELS

Lumped models are usually strongly coupled and are considered to be the fastest from the

convergence/solution time perspective. Moreover, they have the widest application range:

from the reduced order modeling of MEMS (Spice-type compatible models) to the modeling

distributed mechanical systems using lumped transducers.

One of the first strongly coupled transducer elements was introduced in ANSYS 5.6 [35],

[16] to eliminate the shortcomings of sequential coupling technique. Coupling between elec-

trostatic forces and mechanical forces was characterized by representing a microtransducer’s

capacitance as a function of the device’s mechanical degree of freedom (stroke) [36]. The

element stored electrostatic energy by converting it into mechanical energy and visa versa.

The element took on the form of a lumped element with voltage and structural DOFs as
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across variables and current and force as through variables. Input for the element consisted

of a capacitance-stroke relationship that could be derived from electrostatic field solutions.

The element could characterize up to three independent translation degrees of freedom at

any point to simulate three-dimensional coupling. Thus, the electrostatic mesh was re-

moved from the problem domain and replaced by a set of transducer elements hooked to the

mechanical and electrical model providing a reduced order modeling (ROM) of a coupled

electrostatic-structural system.

Even with the strongly coupled lumped transducers, convergence issues were experienced

when applied to the difficult hysteric pull-in and release analyses [27]. The cause of the

problem can be attributed to the negative total system stiffness matrix and can be resolved

in ANSYS 5.7 using the augmented stiffness method.

Fedder et al have been designing the lumped models of the surface micromachined mi-

croresonators [37] for several years. They have developed optimization-based synthesis algo-

rithms for designers of microresonators. The mechanical properties of the lumped transducers

were verified using the ABAQUS FE package [29].

Mehner et al reported in 2000 successful implementation of a methodology for auto-

matically generating reduced-order nonlinear dynamic macromodels from three-dimensional

physical simulations for the conservative-energy-domain behavior [38], [39] (Figure 2). The

macromodels were developed for a rapid circuit and system simulation of both non-stiffened

and stiffened mechanical structures.

Lumped models allow treatment of a diverse number of analysis types, including pre-

stressed modal and harmonic analyses. The Newton - Raphson nonlinear iteration converges

quickly and robustly with lumped models, but it is limited geometrically to problems where

the capacitance can be accurately described as a function of a single degree of freedom, usu-

ally the stroke of a comb drive. In a bending electrode problem, such as an optical switch, a

single lumped transducer can not be applied. Fortunately, when the gap is small and fringing

is insignificant, the capacitance between deforming electrodes can be practically modelled

by several capacitors connected parallel. The EMTGEN (Electro Mechanical Transducer

GENerator) command macro, introduced in ANSYS 5.7 can be applied to this case [40].
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2.4 STRONGLY COUPLED DISTRIBUTED MODELS

The newest and most sophisticated method of solving coupled field problems is a strongly

coupled distributed modeling technique. In this method, both the electrostatic and structural

domains are modelled using distributed elements, coupled through governing electromechan-

ical equations of equilibrium.

Aluru and White proposed to use the fastest numerical methods for treatment of each

domain [41]: accelerated boundary-element methods for 3-D electrostatic analysis and FEM

for the structural analysis. The nonlinear coupled system is solved using the Newton algo-

rithm. In their paper the advantages and disadvantages of the BEM vs. FEM techniques

for the static- and coupled field analysis are discussed. The FEM/FEM coupled approach,

developed by Schwarzenbach in 1994 [42] is criticized, because it will require the construction

of an exterior mesh for electrostatic analysis.

The first strongly coupled 2-D distributed element appeared in ANSYS 6.0 release [25].

In the ANSYS element no assumptions are made regarding the electrostatic field and the

capacitance-stroke relationship is not required. The principles of virtual work and conserva-

tion of energy are the basis of the element formulation, and the coupling of the electrostatic

degrees of freedom. The reaction “forces” are electrical charge and mechanical force. The FE

formulation of the transducer element follows standard Ritz – Galerkin variational principles

which ensures that it is compatible with regular finite elements.

Clearly, there is a lack of strongly coupled distributed modeling tools, especially for three-

dimensional analysis. A significant portion of this thesis pertains to the development of a

3-D finite element to couple the electrostatic and the structural domains. Such an element

could be very efficient for solving problems with dominant fringing fields.
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Figure 1: MEMCAD Architecture
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Figure 2: Overview of automated macromodeling process
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3.0 GENERALIZED 2-D LUMPED TRANSDUCER FINITE ELEMENT

3.1 OVERVIEW

Lumped one-dimensional transducer elements [35] are no longer effective for modeling devices

with complex geometrical configuration or where fringing electrostatic fields are dominant,

such as combdrives [43], electrostatic motors [18], and microgrippers [44]. There have been

several numerical methods proposed for the more accurate treatment of electro-mechanical

systems, such as hybrid finite/boundary element method [45], sequential physics coupling

[16], reduced order fully lumped technique [46], and distributed mechanical model with a

single one-dimensional transducer [35]. These methods are often difficult to use and require

extra meshing or morphing with simplifying assumptions.

The objective of this chapter is to develop a new strongly coupled lumped 2-D transducer

element that fills the gap between sequential coupling and lumped 1-D element capabilities.

The new strongly-coupled field transducer benefits from both sequential coupling and lumped

1-D approaches. The energy conservation and virtual work principles form the basis of the

coupled field element formulation.

3.2 ELECTROMECHANICAL ENERGY CONSERVATION PRINCIPLES

The strongly coupled formulation presented in the following chapters is based on electrome-

chanical energy conservation principles. The detailed review of these principles can be found

in [47]. Therefore, we limit ourselves to one representative example of a system that consists

of two anchored capacitor electrodes and a dielectric slab sliding between the electrodes,
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suspended with a spring (see Figure 3). The absolute permittivity of space between the elec-

trodes is denoted as ε0, and the permittivity of the slab is denoted as ε1. The displacement

of the slab (stroke) is denoted as x.

According to electromechanical energy conservation principle [47], the net flow of energy

into the lossless system (see Figure 3) is equal to the rate of change of energy stored in the

system:

dW ′
elec

dt
− dWmech

dt
=

dW ′
stored

dt
(3.1)

In (3.1), dW ′
elec is the differential electric energy input, dWmech is the differential mechanical

energy output, and dW ′
stored is the differential change in stored energy. The electric terminal

has the terminal variables voltage U and charge Q, and the mechanical terminal has the

terminal variable force f and displacement x. In terms of the terminal variables, (3.1)

becomes

U
dQ

dt
− f

dx

dt
=

dW ′
stored

dt
(3.2)

Multiplying both sides of (3.2) by dt we obtain:

dW ′
stored = UdQ− fdx (3.3)

The stored energy is a function of the state variables Q and x and therefore its differential

is equal to:

dWstored(Q, x) =
∂W ′

stored

∂Q
dQ +

∂W ′
stored

∂x
dx (3.4)

Comparing (3.3) and (3.4) we find the terminal force and voltage:

f = −∂W ′
stored

∂x
, U =

∂W ′
stored

∂Q
(3.5)

The stored energy consists of two components: electrostatic field energy, W ′
field(Q, x), and

mechanical spring energy, Wspring(x):

W ′
stored(Q, x) = W ′

field(Q, x) + Wspring(x) (3.6)
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We assume that the system is conservative. Therefore, for any given state of the system

(Q, x), the stored energy can be calculated by integrating (3.3) over any path on a state plane

that leads to that given state. Assuming linearity of the relationship between capacitor’s

charge and potential

Q = CU (3.7)

we have the following expression for the stored energy:

W ′
stored(Q, x) =

Q2

2C(x)
+

kx2

2
(3.8)

Plugging (3.8) into (3.5) we obtain:

f =
Q2C ′

x(x)

2C(x)2
− kx (3.9)

U =
Q

C(x)
(3.10)

For the dielectric slab system depicted in Figure 3, the capacitance is given by

C(x) =
t [ε1x + ε0(L− x)]

g
(3.11)

In (3.11), t is the electrode thickness, and g is the gap between the electrodes. For a fixed

value of charge, Q , a static equilibrium state xeq is a solution of the following non-linear

equation (f = 0)

kxeq =
Q2g

2t

ε1 − ε0

[ε1xeq + ε0(L− xeq)]
2 (3.12)

In the case of a fixed voltage, U , the equilibrium state has an explicit form:

xeq =
tU2

2gk
(ε1 − ε0) (3.13)

It should be noted that the same value of force, f , can be computed using a coenergy [47],

which is defined by:

Wfield(U, x) = UQ−W ′
field(Q, x) (3.14)
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Following the same logic as before we obtain the following expressions for the force and the

charge:

f =
∂(Wstored −Wspring)

∂x
, Q =

∂Wstored

∂U
(3.15)

For linear systems, coenergy is equal to energy. Nevertheless, forces calculated using (3.15)

and (3.5) are equal to the same value for either linear or non-linear systems [47], independent

of whether the energy or coenergy approached are employed.

3.3 GOVERNING NON-LINEAR FINITE ELEMENT EQUATIONS

The full FE model of an electromechanical system, most typically a MEMS device, consists

of classical mechanical elements (lumped or distributed) and transducer finite elements. The

mechanical elements are used to model the electrodes and suspension structure. They store

or dissipate mechanical energy (elastic and kinetic). The space between the electrodes (elec-

trostatic domain) is modelled with the transducers, that store electrostatic energy (magnetic

energy is neglected).

The transducers have a vector of electrical potentials, u, and a vector of structural

displacements, x, as nodal degrees of freedom. The reactions are the vector of electric

charges, q, and a vector of mechanical forces, f . In a standard electrostatic FE model the

mesh remains geometrically intact throughout the solution. In the transducer elements,

nodes move morphing the mesh. The vector of new (deformed) node coordinates, X, is

computed as the sum of the vector of original node coordinates, Xo, and the displacement

vector (X = Xo +x). Element quantities, such as energy and electric field, are now functions

of x and u.

The new transducer formulation is based on Ritz - Galerkin variational principles [25].

The total potential energy is a sum of electrostatic and mechanical energies

W ′(x,q) = W ′
elec(x,q) + Wmech(x) (3.16)
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Figure 3: Dielectric slab capacitor (illustration of energy formulation)

20



The energy change due to electric potential and displacement changes produces reactions

charges and mechanical forces. The vectors of nodal mechanical forces, f , and electric

charges, q, are calculated using energy conservation principle:

f(x,u) =
∂W (x,u)

∂x
=

∂Welec(x,u)

∂x
− ∂Wmech(x)

∂x
(3.17)

q(x,u) =
∂W (x,u)

∂u
=

∂Welec(x,u)

∂u
= C(x)u (3.18)

At the equilibrium state, these forces balance each other on the internal nodes of the trans-

ducer mesh and balance applied external forces on the external nodes (fext and qext). This

ensures the compatibility of the transducer elements with the regular mechanical elements.

In most practical cases, the system of equilibrium equations is linear from an electrical point

of view, but highly non-linear from a mechanical point of view. The non-linear system of a

coupled field equilibrium equations of statics is given by: f(x,u)

q(x,u)

 =

 fext

qext

 (3.19)

Equation (3.19) in a form of the Newton - Raphson method [48] is given by: Kxx(x,u) Kxu(x,u)

Kux(x,u) Kuu(x,u)

 ∆x

∆u

 =

 ∆f(x,u)

∆q(x,u)

 (3.20)

In (3.20), ∆x and ∆u are the increments of nodal displacements and potentials, ∆f(x,u)

and ∆q(x,u) are the out-of-balance nodal forces and charges, and the blocks of the tangent

stiffness matrix, K, are given by

Kxx(x,u) =
∂f(x,u)

∂x
=

∂2W (x,u)

∂x2
(3.21)

Kxu(x,u) =
∂f(x,u)

∂u
=

∂2W (x,u)

∂x∂u
(3.22)

Kux(x,u) =
∂q(x,u)

∂x
=

∂2W (x,u)

∂u∂x
(3.23)
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Kuu(x,u) =
∂q(x,u)

∂u
=

∂2W (x,u)

∂u2
= C(x) (3.24)

The mesh, including the structural domain and the air region, deform to reach force equi-

librium. The original nodes are constantly updated according to the electromechanical force

equilibrium. This procedure is highly non-linear and huge displacements are allowed for an

arbitrary uneven mesh. For the transient, modal or harmonic coupled field FE analysis, in

addition to the stiffness matrix given by (3.21) - (3.24), the mass and damping matrices of

the mechanical domain have to be calculated using standard mechanical FEM. The trans-

ducer element is also compatible to network electrical elements [40], which allows for static,

transient, modal, and harmonic network analyses.

3.4 TRANSDUCER ELEMENT ARCHITECTURE AND BASIC

ASSUMPTIONS

The generalized 2-D transducer element is designed for solving static electromechanical prob-

lems where electrostatic field lines are straight or slightly curved (i.e. fringing effects are

ignored) [49]. This class of problems includes but is not limited to micromirrors, micro-

grippers, RF switches and certain combdrive geometries (Figure 4). A structural domain is

modelled using either plane (strain or stress) or beam elements (Figure 5).

The new transducer links together two parallel or slightly tilted electrodes with the

potential difference denoted as V , providing a strong coupling between electrostatic and

mechanical domains. The electrostatic field, E, created by the electrodes is schematically

depicted in Figure 5. The transducer shares nodes with the mechanical finite element models

of both electrodes.

The schematic picture of the new transducer element in Figure 5 shows that the element

has a trapezoidal shape with two sides tangent to the surfaces of the electrodes. There are

three degrees of freedom per each node: horizontal component of displacement vector, Ux,

vertical component of displacement vector, Uy, and an electrostatic potential, V . Three

forces associated with each node are: horizontal component of mechanical force vector, fx,

vertical component of mechanical force vector, fy, and electrical charge, q (see Figure 5).
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For the sake of simplicity, we will assume that only nodes 1 and 2 are active, because in

a vast majority of applications, the mechanical and electrostatic degrees of freedom of the

ground (nodes 3 and 4) are fixed and equal to zero. Finally, it will be assumed that the top

electrode is equipotential, which means that V (1) = V (2) = V .

3.5 TRANSDUCER FINITE ELEMENT VECTORS AND MATRICES

After applying all the assumptions, the number of element degrees of freedom is reduced to

five. The vector of element unknowns is given by:

U(e) = [U (1)
x , U (1)

y , U (2)
x , U (2)

y , V ]T (3.25)

The transducer element stores only electrostatic potential energy. The element coenergy, We,

of an entire electrostatic domain (space between the electrodes) is computed by assembling

all transducer elements:

We =
NE∑
e=1

W (e)
e =

NE∑
e=1

V 2

2
C(e) (3.26)

In (3.26), NE is the number of transducer elements and C(e) is the element capacitance,

which is a function of element’s geometry. The element vector of nodal forces, F
(e)
e , produced

by changing electrostatic field is calculated using virtual work principle:

F(e)
e =

∂W
(e)
e

∂U(e)
=



∂W
(e)
e

∂U
(1)
x

∂W
(e)
e

∂U
(1)
y

∂W
(e)
e

∂U
(2)
x

∂W
(e)
e

∂U
(2)
y

∂W
(e)
e

∂V


=

V 2

2



∂C(e)

∂U
(1)
x

∂C(e)

∂U
(1)
y

∂C(e)

∂U
(2)
x

∂C(e)

∂U
(2)
y

∂C(e)

∂V


=



f
(1)
x

f
(1)
y

f
(2)
x

f
(2)
y

q


(3.27)

In order to compute F
(e)
e , we have to know the element capacitance, C(e). A tilted capacitor

model can be used to calculate C(e) [14]:

C(e) = C(e)(θ) ≈ εw

θ
ln

(
2g0 + Lθ

2g0 − Lθ

)
(3.28)
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(a) Courtesy of Sandia NL (c) Courtesy of UCB

(b) Courtesy of MIT (d) Courtesy of Sandia NL

Figure 4: Surface and bulk micromachined MEMS for 2-D analysis: (a) and (b) surface

micromachined MEMS; (c) and (d) bulk micromachined MEMS
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Figure 5: Two-dimensional lumped element model
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In (3.28), θ is the angle between the electrodes, ε is the space permittivity constant, w is

the electrode width (in a direction normal to this page), g0 is the average gap between two

electrodes, and L is the length of the ground (bottom) electrode. It is important to remember

that this model is derived from the assumption that the angle θ is small and, therefore, the

field lines are only slightly curved [50].

The expression for C(e), given by (3.28) can be rewritten in terms of element nodal

coordinates, x1, y1, x2, and y2:

C(e) = C(e)(x1, y1, x2, y2) = εw

(
x2 − x1

y2 − y1

)
ln

(
y2

y1

)
, y1 6= y2 (3.29)

C(e) = C(e)(x1, y1, x2, y2) = 2εw

(
x1 − x2

y1 + y2

)
, y1 = y2 (3.30)

The element nodal coordinates are the sum of original (non-deformed) coordinates and the

nodal displacements:

x1 = (x1)0 + U (1)
x , y1 = (y1)0 + U (1)

y , x2 = (x2)0 + U (2)
x , y2 = (y2)0 + U (2)

y (3.31)

Therefore, the differentials of the nodal coordinates are equal to the differentials of the nodal

displacements:

dx1 = dU (1)
x , dy1 = dU (1)

y , dx2 = dU (2)
x , dy2 = dU (2)

y (3.32)

Now, we can use the differentials of nodal coordinates to calculate the nodal forces (see

Appendix A), given by (3.27). For small displacements and voltage change (dxi, dyi and dVi,

i = 1, 2), we have:

f (i)
x = f

(i)
x0 + K(ij)

xx dxi + K(ij)
xy dyi + K(ij)

xv dVi (3.33)

f (i)
y = f

(i)
y0 + K(ij)

yx dxi + K(ij)
yy dyi + K(ij)

yv dVi (3.34)

q(i) = q
(i)
0 + K(ij)

vx dxi + K(ij)
vy dyi + K(ij)

vv dVi (3.35)

The forces given by (3.33)-(3.35) are the entries for a Newton - Raphson algorithm of solving

a non-linear problem [48]. In (3.33) - (3.35), the Newton - Raphson restoring forces from
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a previous equilibrium increment are denoted as f
(i)
x0 , f

(i)
y0 , and q

(i)
0 , while the components

of the tangent stiffness matrix are denoted as K
(ij)
q,r (q, r = x, y, u and i, j = 1, 2). These

components are given by:

K(ij)
xx =

∂f
(i)
x

∂xj

, K(ij)
xy =

∂f
(i)
x

∂yj

, K(ij)
xv =

∂f
(i)
x

∂Vj

K(ij)
yx =

∂f
(i)
y

∂xj

, K(ij)
yy =

∂f
(i)
y

∂yj

, K(ij)
yv =

∂f
(i)
y

∂Vj

K(ij)
vx =

∂q(i)

∂xj

, K(ij)
vy =

∂q(i)

∂yj

, K(ij)
vv =

∂q(i)

∂Vj

(3.36)

Thus, the transducer element is completely defined by the expressions for the element nodal

forces (3.33)-(3.35) and the expressions for a tangent stiffness matrix (3.36).

3.6 VERIFICATION PROBLEMS

3.6.1 Parallel plate capacitive transducer

In this section several problems will be solved to validate the new transducer element. As

a first example, we will compute a static equilibrium state of a parallel plate capacitive

transducer schematically, as shown in Figure 6. The transducer consists of two electrodes

separated by a gap that is a function of applied voltage and a stiffness of a suspending spring.

The problem has an analytical solution for rigid electrodes and a lumped spring without

accounting for fringing electrostatic fields. The top electrode is modelled as a flexible solid

body fixed at the top surface.

Two finite element models are used to compute a static equilibrium of the system: (1) 2-D

generalized transducer element model and (2) 1-D lumped transducer element, TRANS126

[40] (reference solution).

In the first model, the top electrode is meshed with plane stress two-dimensional quadri-

lateral elements [16] (see Figure 7). The Young’s modulus is 10 Pa and Poisson’s ratio is

equal to zero. A unit voltage is applied across the electrodes. The nonlinear static problem
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of electroelasticity is solved using a sparse FE solver [16]. The vertical displacement field is

depicted in Figure 8 for the first model and the second model in Figure 9.

The solution obtained using the new element converged two times slower than the ref-

erence solution (Figure 10). This can be attributed to the fact that the reference solution

was obtained using a one-dimensional lumped element (TRANS126). The vertical electrode

displacement (stroke) vs. the potential drop, V , is depicted in Figure 11. Both, the new

transducer element and the reference lumped element produce very close results (the differ-

ence is within 0.1% margin).

3.6.2 Clamped beam electrode bending

The second problem is considered to be a standard benchmark for coupled-field codes. The

problem was introduced by Gilbert et al in 1996 [51]. The experimental data was used to a

verify sequential coupling tool (CoSolve-EM). In this problem, a clamped-clamped charged

beam is suspended over a grounded substrate with the insolation contact layer deposited

on top (see Figure 12). The problem is defined by the following parameters: the free space

permittivity is 8.854 ·10−6 pF /µm, the beam length is 80 µm, the beam thickness is 10 µm,

the beam height is 0.5 µm, the air gap is 0.6 µm, the Young’s modulus (silicon) is 169.0

GPa, and the contact layer thickness is 0.1 µm.

Only a half of the beam is modelled due to symmetry. The air gap between the contact

layer and the beam is meshed with the new transducer elements (see Figure 13). The beam

is meshed with plane strain structural elements, PLANE45 [40]. The potential drop, V , is

applied between the beam and the ground. The maximum beam deflection (tip deflection)

is a function of V . The original and deformed mesh are depicted in Figures 14 and 15.

The results of the static analysis (tip displacement as a function of the potential drop)

are compared with the reference solution obtained using the sequential coupling technique

(ESSOLV) [40]. Comparison of the CPU time vs. the element size is depicted in Figure

16. It can be seen, that the solution time for the new element varies between five and ten

seconds for the element size varying between 0.5 µm and 4.0 µm. The ESSOLV solution

time, for the fastest case (element size 4.0 µm), is about 27 seconds, which is almost seven
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times longer than the new element solution time. Comparison of the converged (in terms of

the element size) ESSOLV tip deflection and the new element solution is shown in Figure

17. Considering the ESSOLV solution as a reference one (it is eventually the same as one

presented in [51]). The Figure 17 demonstrates the importance of the mesh sensitivity

analysis. The tip deflection varies from -0.067 µm to -0.0725 µm.

Finally, the hysteresis behavior of the beam is demonstrated in Figure 18. The tip

deflection increases when the potential increases until a bifurcation point is reached. When

V = 18V , the beam reaches an unstable equilibrium point. Increasing voltage carries the

system into the unstable solution and the beam snaps down to the contact layer (pull-in).

When the contact occurs, the attractive electrostatic force becomes sufficiently higher than

the repulsive structural force. Therefore, it takes much lower voltage (about 12V ) to release

the beam. The hysteresis behavior is well known and called pull-in/release phenomena.

Figure 18 shows that the new element produces results virtually indistinguishable from the

results obtained using ESSOLV ANSYS macro.

3.7 SUMMARY

A lumped 2-D transducer element formulation was developed in this chapter for modeling a

wide range of MEMS devices. The computer code was developed for the ANSYS platform

and benchmark problems were solved. A major assumption was made to neglect fringing

fields, which proved to be accurate and effective for the class of devices studied. The devel-

oped lumped element models were much faster than the sequential coupling models, and they

maintained the same level of accuracy. Based on the benchmark problems, hysteresis prob-

lems with contact can be effectively solved using the new element. It allows the modeling of

a great variety of real-world problems. However, for systems with dominant fringing fields,

such as combdrives, motors, mirrors, distributed coupled field models are still required.
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Figure 6: Parallel plate capacitive transducer (scheme)

Figure 7: Deformed mesh (first model – flexible top electrode)
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Figure 8: Vertical displacement field (solid elastic model)

Figure 9: Vertical displacement field (lumped spring model)
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Figure 10: Convergence of a nonlinear solution
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Figure 11: Vertical displacement of the top electrode vs. applied voltage
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Figure 12: Bending of a clamped beam with contact and hysteresis

Figure 13: Fragment of finite element model of the beam (structural and transducer ele-

ments)
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Figure 14: Deformed mesh (structural and transducer elements)

Figure 15: Fragment of the deformed mesh (structural and transducer elements)
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Figure 16: CPU time of the nonlinear solution vs. element size
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4.0 3-D STRONGLY COUPLED TETRAHEDRAL TRANSDUCER FINITE

ELEMENT

4.1 OVERVIEW

The increased functionality of MEMS fabrication and production techniques has lead to

the ability of creating devices and components with complex geometrical configurations.

These components require efficient FE modeling techniques to solve coupled electromechan-

ical problems. The lumped models are no longer applicable for devices, such as combdrives

or electrostatic motors, where fringing electrostatic fields are dominant. There have been

several numerical methods proposed for the treatment of electromechanical systems includ-

ing: FE or boundary element methods using sequential physics coupling; strongly coupled

but reduced order methods using fully lumped or mechanically distributed but electrically

lumped 1-D, multi-dimensional or modal-space transducers. All of these methods need some

extra meshing or morphing, introduce simplifying assumptions and may not be convenient

to use. This chapter introduces a distributed strongly coupled electromechanical transducer

finite element with internal morphing capability for full and accurate modeling the under-

lying physical phenomena. The new transducer can be used in a FE model with classical

lumped and/or solid mechanical elements. The element formulation follows similar logic to

the 2-D lumped element presented in Chapter 3.
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4.2 TRANSDUCER ELEMENT COENERGY

The transducer element’s potential energy (coenergy) is associated with the electrostatic

field. The coenergy of the whole system, Welec(x,u), is computed by assembling all trans-

ducer elements together and is given by

Welec(x,u) =
NT∑
i=1

W (i) =
1

2
uTC(x)u (4.1)

In (4.1), NT is the number of assembled transducers, x and u are the vectors of nodal

displacements and potentials, and C(x) is the system capacitance matrix. This is similar

to classical electrostatic FE capacitance matrix. The difference is that the transducers are

morphing, so that the capacitance matrix depends on nodal coordinates and displacements

[52].

The 3-D transducer element has a tetrahedral shape with the geometry fully defined by

coordinates of four nodes (see Figure 19). Each element node has four degrees of freedom:

three coordinates of a nodal displacement vector defined in a global Cartesian coordinate

system, ux, uy, and uz, and potential of electrostatic field, U . The electrostatic coenergy of

an individual transducer element, W (e), is given by:

W (e) =
1

2

∫
V

εE2dv =
1

2

∫
V

εgrad2Udv (4.2)

In (4.2), ε is the element permittivity (material property of the element), V is the element

volume, E is the electric field vector, and U is the electrostatic potential. For a linear tetrahe-

dral element with a constant permittivity the integral in (4.2) can be evaluated analytically

W (e) =
εV

2
grad2U =

εV

2

4∑
i=1

4∑
j=1

ni · nj

hihj

UiUj =
(
u(e)

)T
C(e)(x)u(e) (4.3)

In (4.3), hi are the tetrahedral altitudes, ni are the inner face normals, u(e) is the element

vector of nodal potentials, and C(e)(x) is the element capacitance matrix (see Figure 19).

Note, that in (4.3), the energy is a function of nodal potentials (scalars) and tetrahedral

geometry is invariant of the coordinate system.

38



l

i

j

khk
nk

{x,u}l

{x,u}i

{x,u}j

{x,u}k

z

x

y

eil

eij

Ak

Figure 19: Tetrahedral transducer element
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4.3 TRANSDUCER FINITE ELEMENT VECTORS AND MATRICES

The vectors of nodal generalized forces, f(x,u) and charges, q(x,u), are the assemblies of

element vectors, f (e)(x(e),u(e)) and q(e)(x(e),u(e)), where x(e) and u(e) are the element vectors

of nodal displacements and potentials. The element generalized forces are calculated using

the principle of virtual work by differentiating element’s coenergy (4.3) with respect to nodal

displacements and potentials:

f (e)(x(e),u(e)) =
∂W (e)(x(e),u(e))

∂x(e)
=

(
u(e)

)T ∂C(e)(x)

∂x(e)
u(e) (4.4)

q(e)(x(e),u(e)) =
∂W (e)(x(e),u(e))

∂u(e)
= C(e)(x)u(e) (4.5)

In order to calculate the derivatives of the element capacitance matrix, the derivatives of

the element normals (see Figure 19) must be determined. The normals are given by (see

Appendix B for details)

n1 =
e24 × e23

2A1

, n2 =
e13 × e14

2A2

, n3 =
e14 × e12

2A3

, n4 =
e12 × e13

2A4

(4.6)

In (4.6), eij is the edge vector with the origin in node i and the end in node j, and Ak is the

area of the k-th element side. Recalling the element volume (see Appendix C for details),

V =
h1A1

3
=

h2A2

3
=

h3A3

3
=

h4A4

3
(4.7)

The following expression for the element coenergy can be obtained

W (e) =
10∑
i=1

W
(e)
i (4.8)

where coenergy terms, W
(e)
i , are given by

W
(e)
1 =

(e24 × e23) · (e24 × e23)

72V
εU2

1 , W
(e)
2 =

(e13 × e14) · (e13 × e14)

72V
εU2

2 , (4.9)

W
(e)
3 =

(e14 × e12) · (e14 × e12)

72V
εU2

3 , W
(e)
4 =

(e12 × e13) · (e12 × e13)

72V
εU2

4 , (4.10)
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W
(e)
5 =

(e24 × e23) · (e13 × e14)

36V
εU1U2, W

(e)
6 =

(e24 × e23) · (e14 × e12)

36V
εU1U3, (4.11)

W
(e)
7 =

(e24 × e23) · (e12 × e13)

36V
εU1U4, W

(e)
8 =

(e13 × e14) · (e14 × e12)

36V
εU2U3, (4.12)

W
(e)
9 =

(e13 × e14) · (e12 × e13)

36V
εU2U4, W

(e)
10 =

(e14 × e12) · (e12 × e13)

36V
εU3U4 (4.13)

The vector of element nodal forces can now be presented in the following general form

f (e) =
10∑

k=1

∂W
(e)
k

∂x(e)
=

10∑
k=1

[
∂Gk(ε, eij, Un)

∂x(e)

1

V
− Gk(ε, eij, Un)

V 2

∂V

∂x(e)

]
(4.14)

In (4.14), xm is the m-th component of the element displacement vector (x(e)), and Gk are

the functions of element edge vectors (eij), permittivity (ε) and nodal potentials (Un). The

element vector of nodal charges is given by

q(e) = C(e)(x)u(e) =
10∑

k=1

∂W
(e)
k

∂u(e)
(4.15)

The blocks of element tangent stiffness matrix are calculated by differentiating element

vectors of nodal reactions and charges with respect to element vectors of nodal displacements

and potentials

K(e)
xx =

∂f (e)

∂x(e)
, K(e)

xu =
∂f (e)

∂u(e)
, K(e)

ux =
∂q(e)

∂x(e)
, K(e)

uu =
∂q(e)

∂u(e)
(4.16)

Note, that all element matrices and vectors are calculated analytically, i.e. avoiding numer-

ical integration and differentiating. In this case, the element is not just computationally

effective, but also extremely accurate in computing generalized nodal forces and charges.

Knowing the element vectors and matrices, the whole non-linear system of matrices and

vectors representing static equilibrium can be assembled and solved with iterative solvers

based on Newton - Raphson method.
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4.4 MESH MORPHING

An internal mesh morphing capability is an important feature of the developed transducer el-

ement that separates it from lumped transducers and models based on a sequential coupling.

Mesh morphing is a process of updating vectors of nodal displacements of the transducer ele-

ments during the solution of a non-linear problem. The number of elements remains constant

so that element continuity is maintained during mesh morphing. In the element, there are

out-of-balance mechanical forces acting upon each node. The interface nodes (nodes on the

surface of electrodes) generates the electrostatic force that deforms the mechanical structure.

Every inner node moves in a direction defined by the resulting out-of-balance force acting

upon the node. Structural stiffness of the transducer elements is inversely proportional to the

element volume, i.e. the bigger elements are softer than the smaller ones. This is extremely

important for modeling geometrical singularities such as sharp corners or edges. The mesh

must be refined around the singularities in order to capture strong electrostatic fields and

to accurately compute driving forces (see Figure 20). High forces, however, can “invert”

transducer elements if their structural stiffnesses are not big enough (see Figure 21). For

this reason, the structural stiffness of transducer elements are weighted based on their size.

The convergence speed and solution accuracy of the element during a non-linear solution

depends on many parameters, the most important of which are the convergence tolerance

(CT) and the morphing acceleration factor (MAF). The first parameter is a convergence

criterion used by an iterative Newton - Raphson solver. The second parameter is a factor

used to stiffen or soften all of the transducer elements. Increasing the morphing acceleration

factor produces a stiffer mesh, which could be necessary for strong singularities or small

displacements.
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Figure 20: Mesh refinement for accurate capturing singularities

Figure 21: Element inversion around singular point
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4.5 NUMERICAL EXAMPLES

4.5.1 Parallel-plate electromechanical transducer

As a first example to demonstrate the new element capabilities, we will compute a static

equilibrium state of a parallel plate capacitive transducer, which is schematically shown in

Figure 6 (see Chapter 3). The transducer consists of two electrodes separated by a gap that

is a function of applied voltage and a stiffness of a suspending spring. This problem has an

analytical solution for rigid electrodes and a lumped spring without accounting for fringing

electrostatic fields. The electrode displacement corresponding to the static equilibrium, ue

can be calculated by solving the following non-linear equation:

kue −
ε0V

2

2(g0 − ue)2
= 0 (4.17)

In (4.17), k is the spring stiffness, ε0 is a free space permittivity, g0 is the initial gap between

the electrodes, and V is the applied voltage. The rectangular electrodes have 1.0 µm side

length and are separated by a gap of 1.0 µm. The voltage of 0.5 V is applied to the

transducer. The rigid electrodes are modelled by constraining the interface nodes of the

transducer elements. The transducer element size is set to 0.5 µm. The FE model consists

of one hundred transducer elements and one spring element (184 total degrees of freedom).

The spring stiffness is 0.9765625 N/µm. In this case, the solution of equation (4.17) predicts

an equilibrium displacement of 0.2 µm.

The problem posed was then modelled using the new transducer element. A sample

predicted displacement of the 3-D transducer mesh is depicted in Figure 22. In Table 3,

the solution accuracy and speed are compared for different values of convergence tolerance

(morphing acceleration factor is equal to one – no acceleration). At a smaller value of the

tolerance, more iterations are required to converge, but the solution becomes more accurate.

This is an intuitively simple, but very important result. In Table 4, the solution accuracy

and speed are compared for different values of morphing acceleration factor (convergence

tolerance is equal to 0.00005 N). A smaller factor (softer mesh) leads to a faster convergence,

while a larger factor leads to a slower convergence. Note, that the accuracy essentially
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Table 3: Solution convergence speed and accuracy for various convergence tolerance (CT)

values

CT (N) Time (s) Iterations Displacement Error (%)

0.02000 2.84 7 0.16989 15.06

0.01000 3.19 9 0.18233 8.84

0.00500 3.71 12 0.19184 4.08

0.00200 4.28 15 0.19617 1.92

0.00100 4.79 18 0.19819 0.91

0.00050 5.34 21 0.19914 0.43

0.00025 5.99 24 0.19959 0.21

0.00005 6.97 30 0.19991 0.05

remains independent of the acceleration factor. To achieve more accurate solution, one must

therefore adjust the value of the convergence tolerance. The MAF can be further used to

speed up the convergence for a given accuracy. It should be noted that there is a bottom

MAF limit which can not be crossed without loosing the integrity of the transducer elements

(mesh becomes too soft). This limit varies for different problems and boundary conditions.

An “inversion” of transducer elements is used as an indicator that this limit has been reached.

4.5.2 Electrostatic torsion microactuator

The second example problem that will be used to verify the transducer element is an electro-

static torsion microactuator. The physical torsion microactuator [31] used for the following

example was fabricated using three photolithography steps made on a Si(001) substrate

composed of a 85-µm bulk, silicon 1-µm heavily boron-doped layer, and a 15-µm epitaxial

layer. Fabrication of the actuator was done in three steps [31]. The first step defines the

conducting elements (lines and plates), the second step defines the proof mass, and the third

step defines the springs. The epitaxial layer is etched out through reactive ion etching (RIE).
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Table 4: Solution convergence speed and accuracy for various morphing acceleration factor

(MAF) values

MAF Time (s) Iterations Displacement Error (%)

0.20 4.35 15 0.19990 0.05

0.25 4.51 16 0.19991 0.05

0.50 5.35 21 0.19992 0.05

1.00 6.97 30 0.19991 0.05

2.00 10.43 48 0.19990 0.05

4.00 17.16 85 0.19990 0.05

The electrodes controlling the angle were attached using indium bumps technology [31]. The

summary of the torsion microactuator parameters is presented in Table 5.

The finite element model of the microactuator is depicted in Figure 23. Solid ANSYS

elements (green) were used to model the micromirror and support beams. The 3-D transducer

elements (purple) were used to model air zones between the two driving electrodes. FE model

contains 5,207 transducer elements and 2,096 solid elements. Alternating current between

the electrodes allows the micromirror to turn around the supporting beam axis. Increasing

voltage leads to pull-in of the micromirror. The reported [31] theoretical and experimental

values of pull-in voltage, Vpin, and pull-in angle, θpin, are presented in Table 6. The results

obtained using the 3-D transducer model (Figure 23) are compared to the reported results

(Table 6). The FE results show very good agreement with the experimental data.

4.5.3 Combdrive electromechanical transducer

The final example problem to be solved with the new element is for a combdrive elec-

tromechanical transducer. The lateral combdrive transducer (see Figure 24) was originally

introduced in 1989 by Tang [15]. Since its introduction, little or no improvements have been

made to allow a designer to calculate the capacitance and driving force of a combdrive. The

original formula for a capacitance and a driving force are based on a simplified mathematical
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Figure 22: Displacement field (deformed transducer mesh)
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Table 5: Summary of the torsion microactuator parameters

Shear modulus G 73 GPa

Distance from axis of rotation to nearest electrode edge a1 430 µm

Distance from axis of rotation to farthest electrode edge a2 680 µm

Plate half width a3 700 µm

Initial gap between electrodes and substrate d 4.55 µm

Width of supportive beams w 31 µm

Thickness of supportive beams t 14 µm

Length of supportive beams L 400 µm

Length of micromirror plate and both electrodes b 1300 µm

Table 6: Comparison between reported (theoretical and experimental) and FE pull-in pa-

rameters for torsion microactuator

Theoretical Experimental FEA (3-D)

θpin 0.4042 0.385 0.397

Vpin 11.59 V 11.5 V 11.55 V
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Figure 23: Electrostatic torsion microactuator (FE model)

49



model which accounts for only an electrostatic field between the lateral surfaces of the comb-

drive fingers. It was assumed that the field lines are straight. The combdrive’s capacitance

and driving force have the following expressions:

C(u) =
2Nt(L0 + u)ε0

g
, F (u) =

V 2

2

dC(u)

du
=

Ntε0V
2

g
(4.18)

In (4.18), N is the number of comb fingers, L0 is the initial comb finger overlap, t is the elec-

trode thickness, g is the gap between the comb fingers, u is the stroke, ε0 is the permittivity,

and V is the applied voltage. Equation (4.18) ignores the field between the top/bottom and

the top/lateral fields, as well as the fringing electrostatic fields that develop in the corners

and edges of the comb fingers. To illustrate this point, consider the 2-D electrostatic FE

model of the combdrive, representing a cross-section of the 3-D combdrive (see Figure 25).

A voltage is applied between the rotor and stator that produces an electrostatic field with

the potential distribution depicted in Figure 25. This 2-D model accounts for fringing fields,

which are shown in Figure 26. The gap between the fingers is 4 µm, finger width is 4 µm,

finger thickness is 2 µm, and the size of the air region is 4 µm. Using a unit thickness in

a z-direction we are able to compute the capacitance, which is 25.994 pF. The theoretical

capacitance value, calculated using (4.18), is 8.854 pF, which is almost four times smaller

than the computed value.

Combdrive transducers are widely used in the circuit models of complicated sensors

and actuators. In order to determine a realistic value of the capacitance as a parameter

of such a network element, a 3-D models is required to accurately extract the capacitance

and calculate the driving force. The 3-D electrostatic FE combdrive model can be used to

extract the combdrive capacitance as a function of stroke (rotor displacement), which is an

important parameter of a combdrive lumped (network) element. To illustrate the modeling

capabilities of the element consider a combdrive with a finger length of 50 µm, an overlap

of 25 µm, a gap between fingers of 4 µm, a finger width of 4 µm, a finger thickness of 2 µm,

an air region size of 2 µm, and a spring stiffness of 10 N/µm. Utilizing the numerical (FE)

electrostatic model, the capacitance is found to be a linear function of stroke (see Table 7).

Using the data in Table 7, we can calculate a first-order derivative of capacitance with respect
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Table 7: Combdrive capacitance as a function of stroke

Stroke Capacitance

0.0 6.9096E-10

1.0 7.1264E-10

2.0 7.3498E-10

4.0 7.7896E-10

6.0 8.2285E-10

8.0 8.6686E-10

10.0 9.1082E-10

to the stroke (coefficient of linearity). The electrostatic force in this case is independent of

stroke and remains constant for a given value of applied voltage. For ε0 = 1 we have

Fe(V ) =
V 2

2

dC(u)

du
≈ 1.24V 2 (4.19)

Ut(V ) =
Fe(V )

k
=

1.24V 2

10
= 0.124V 2 (4.20)

Displacement values for various voltages are presented in Table 8.

As a final modeling exercise, we will use the tetrahedral transducer element to compute

the static equilibrium states of the combdrive for various values of the applied voltage.

A sample with its displacement field is shown in Figure 27. FE model contains 12,740

transducer elements. In the figure, it is important to note that the air region is now modelled

with the transducer elements. Boundary conditions play an important role in the modeling

and solution. The external nodes of the transducer mesh are free to move, while the boundary

is fixed in certain directions. The outside boundary (far-field) is fixed with respect to all

mechanical degrees of freedom. The interface nodes (nodes attached to the electrodes) are

allowed to slide along the electrodes as long as the electrode shape does not change. This

assumption is only possible for rigid mechanical structures. The potential distribution for a

given voltage is shown in Figures 28 and 29. In Figure 29, the air around the fingers (top and
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Table 8: Equilibrium displacement as a function of applied voltage

Voltage (V) Ut (Tang [15]) U3−D (3-D transducer) Uu (Uncoupled)

1.0 0.05 0.57 0.124

2.0 0.20 1.01 0.496

3.0 0.45 1.78 1.116

4.0 0.80 2.74 1.984

5.0 1.25 3.96 3.100

6.0 1.80 5.26 4.464

10.0 5.00 12.9 12.40

bottom) is not depicted. The values of equilibrium displacements (for ε0 = 1 and N = 1)

are shown in Table 8 for different voltages and compared to the traditional approach [15]

given by:

Ue =
Ntε0V

2

g0k
(4.21)

The difference in theoretical and FE results presented in Table 8 is due to the fringing

fields that are modelled in both 3-D transducer element and uncoupled FE models but are

ignored in a simplified analytical model [15]. This example demonstrates importance and

contribution of the 3-D transducer element developed in this Chapter.

The differences between the 3-D transducer and uncoupled FE results in Table 8 are

due to the fact that the force convergence tolerance were the same for all voltages. More

accurate results were obtained for higher voltages (see Table 8) for the prescribed convergence

tolerance value (order of 1.0 N). Figure 30 demonstrates that the difference in transducer and

uncoupled solutions can be decreased by decreasing the value of the convergence tolerance

(for the applied voltage of 4.0 V). A slight mismatch (due to morphing) between FE meshes

of the transducer and the uncoupled models also contributes to the difference between these

two solutions.
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4.6 SUMMARY

A distributed 3-D transducer element formulation was developed in this chapter for modeling

a wide range of MEMS devices. The elements accounts for fringing electrostatic fields and

the internal morphing capability of the element allows a designer to use the original mesh for

solving large displacement non-linear problems. The computer code was developed for the

ANSYS platform and several numerical examples were presented which show good agree-

ment with experimental data. The developed element is among the most sophisticated and

effective techniques of solving 3-D coupled field problems presently available for designers

and researchers working in the MEMS industry.
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Figure 24: Combdrive transducer (ANSYS solid model)
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Figure 25: Potential distribution between two fixed and one moving comb finger (2-D model

of the cross-section)
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Figure 26: Electrostatic field between two fixed and one moving comb finger (2-D model of

the cross-section)

56



Figure 27: Displacement field (combdrive layer shown)
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Figure 28: Potential distribution (full combdrive transducer model shown)
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Figure 29: Potential distribution (combdrive layer shown)
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5.0 MODELING IN-PLANE MISALIGNMENTS IN LATERAL

COMBDRIVE TRANSDUCERS

5.1 INTRODUCTION

5.1.1 Overview of combdrive transducers

Interdigitated finger (comb) transducers or “combdrives” have been successfully used in a

wide variety of sensors and actuators for more than a decade [15], [53]. Commercially pro-

duced combdrives can be fabricated into numerous finger shapes including straight, circular

and conical (see Figure 31). This chapter is particularly focused on the misalignments of

surface micromachined straight finger combdrives [43]. Straight finger combdrives (see Fig-

ure 32) are critical for the operation of RF microdevices, mechanical sensors, long-range

actuators and mechanical power transmitters [3]. Slight misalignment between a rotor (a

moving comb) and a stator (an anchored comb) can significantly degrade device performance.

Misalignments of the combdrives can be attributed to one or more of the following causes:

fabrication defects, asymmetric mechanical or potential distributions, non-uniform electric

properties of the silicon, and failure of electrical circuitry. One of the most important pa-

rameters in the design of MEMS devices is the pull-in voltage, which can be determined by

conducting a stability analysis of the static equilibrium [54], [55]. The pull-in effect must

be avoided because it causes stiction between the rotor and the stator. Stiction can lead to

an electrical shortage and ultimately device failure [3]. Thus, analyzing the pull-in effect as

related to combdrive misalignments is critically important, and therefore will be one of the

primary focuses of the present Chapter.

61



5.1.2 Misalignment classification

There are two general types of combdrive misalignments: (1) out-of-plane and (2) in-plane.

Curling of the comb fingers is the most common example of an out-of-plane misalignment.

Curling is usually caused by residual stresses and often develops in surface micromachined

combdrives [3]. The value of a combdrive’s capacitance and its driving electrostatic force can

be significantly reduced by curling. The curling effect, however, can be avoided by reducing

the aspect ratio (length/thickness) of the comb fingers. Other out-of-plane misalignments

in combdrives, such as asymmetry and non-parallel etching of combdrive fingers, have been

investigated in detail [56], [22]. These studies have shown that misalignments can gener-

ate large torsional motions [56], which can be used in micromirror applications, and can

significantly change the driving force [22].

Little information is currently available, however, on in-plane misalignments. The in-

plane misalignments not only decrease precision (by changing the value of the driving force),

but they can lead to structural instabilities and eventually device failure (the electrical

shortage). The stroke range of a misaligned combdrive becomes different from its original

design. For the purpose of better understanding in-plane misalignments, translational and

rotational static combdrive modes will be studied in this chapter. Both analytical and

numerical methods will be utilized to calculate the in-plane forces and the moments produced

by quasi-static electrostatic fields in the combdrive.

5.1.3 Numerical approach

The finite element method (FEM) can be used as a basic tool for coupled field numerical

simulations [16]. The most common method of analyzing MEMS devices is to solve the struc-

tural and electrostatic problems separately. This technique, often referred to as decoupling,

can be applied accurately for simple geometries, such as parallel plate capacitors or perfectly

aligned combdrives. Modeling combdrive misalignment effects in MEMS devices, however,

requires more sophisticated numerical techniques. Fringing fields associated with the edges

and corners of the combdrive fingers, for example, significantly contribute to the field en-

ergy and driving forces. Therefore, 2-D or 3-D distributed coupled-field finite elements are
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required to accurately capture the fringing field effects [25]. The multiple degrees of freedom

lumped coupled-field models are less accurate in this case. Generally, stability analysis of

the actuator equilibrium states (pull-in analysis) can be performed using either analytical or

numerical techniques [57], [58]. Closed-form analytical models and equilibrium solutions are

preferable if they can be constructed. However, such an approach is limited to a few simple

geometrical configurations. In this chapter, it will be shown that a closed-form solution can

be obtained for the pull-in voltage of only translationally misaligned combdrives. In this

chapter we will use a 2-D FE coupled-field approach that utilizes strongly coupled triangle

transducer elements [25]. Using this approach, several misalignment models will be analyzed

and the pull-in voltage will be determined as a function of several misalignment parameters.

5.2 ANALYTICAL MODELS OF COMBDRIVES WITH IN-PLANE

MISALIGNMENTS

5.2.1 Basic assumptions and approach

In this section, two analytical models for the in-plane misaligned combdrive are discussed: (1)

translational and (2) rotational. To simplify the geometry, only one pair of comb fingers will

be analyzed. It will be assumed that the rotor and stator are two equipotential electrodes

with a potential difference V , applied between them. The out of plane component (z-

component) of the electrostatic field will be ignored. The total electrostatic energy of the

comb, We, can be calculated using the following relationship:

We =
CcombV

2

2
=

Q2

2Ccomb

(5.1)

In (5.1), Ccomb is the total capacitance of the combdrive, and Q is the electric charge. As

illustrated in Figure 33, the total capacitance is a function of the tip capacitance, Ctip, the

lateral capacitances, Ctop and Cbot, and the fringing capacitance, Cfring:

Ccomb = Ctip + Ctop + Cbot + Cfring (5.2)
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The electrostatic energy stored in the tip, lateral and fringing electrostatic fields is pro-

portional to the respective terms in (5.2). In both the translational and rotational models

discussed in this section, it will be assumed from the comb geometry that Ctip << Ctop, Cbot.

This is due to the fact that finger overlap is usually much smaller than finger length. The

fringing electrostatic fields will also be ignored. In addition, it is assumed that the derivatives

of capacitances with respect to the comb displacements are negligible. Such an assumption

is important since electrostatic forces are directly proportional to these derivatives. In order

to justify these assumptions, the influence of the fringing fields will be determined using the

finite element method and then compared to the analytical results. The mechanical domain

of the combdrive can be represented by the system of linear springs shown in Figure 33. The

mechanical potential energy is given by

Wm =
kxx

2

2
+

kyy
2

2
+

kθθ
2

2
(5.3)

In (5.3), x is the stroke, y is the translational misalignment, θ is the rotational misalignment,

and kx, ky, and kθ are the stiffnesses of the springs. The combdrive structure is assumed to

be rigid, since the structural stiffness is usually much higher than the spring stiffnesses. The

total potential energy of the combdrive transducer is a combination of the electrostatic and

the mechanical energies:

W = We + Wm =
Q2

2(Ctop + Cbot)
+

kxx
2

2
+

kyy
2

2
+

kθθ
2

2
(5.4)

For a given value of the potential drop, V , or charge Q the energy of the electrostatic field

is a function of three generalized rigid body motion coordinates: x, y and θ. According to

the principle of virtual work, the generalized forces associated with these coordinates can be

calculated by [50]:

Mz(x, y, θ) = −∂W

∂θ
, Fx(x, y, θ) = −∂W

∂x
, Fy(x, y, θ) = −∂W

∂y
(5.5)

Physically, these generalized forces represents the total in-plane moment and two planar

components of the total force. They characterize the equilibrium between the attractive

electrostatic forces and the restoring mechanical forces produced by the springs. The comb-

drive is in the state of a static electromechanical equilibrium when all generalized forces
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(5.5) are equal to zero. The stability of an equilibrium state can be determined using the

potential energy function (5.4). If the equilibrium state corresponds to a local minimum of

W , then the equilibrium is stable; otherwise the equilibrium state will be unstable. In the

following sections two analytical models of the misaligned combdrive will be discussed.

5.2.2 Translational misalignment model

Consider the misaligned case when the comb fingers remain parallel to each other such that

there are no rotational misalignments. The total potential energy of the combdrive, W , is a

function of the misalignment parameter, y:

W (y) = −εwLV 2

2

[
1

g − y
+

1

g + y

]
+

kyy
2

2
(5.6)

In (5.6), L is the finger overlap, ε is the permittivity constant, and w is the thickness of

the combdrive in the direction of the substrate. The generalized misalignment force can be

calculated using (5.5):

F (y) = −dW (y)

dy
=

εwLV 2

2

[
1

(g − y)2
− 1

(g + y)2

]
− kyy (5.7)

The static equilibrium condition, F (y) = 0, is satisfied when:

2yg

(g − y)2(g + y)2
=

kyy

εwLV 2
(5.8)

The equation (5.8) has three solutions (equilibrium states):

y0 = 0, y1,2 = ±

√√√√g2 − V

√
2εgwL

ky

(5.9)

It is clear that for states y1,2 to exist the following condition must be satisfied:

g2 − V

√
2εgwL

ky

≥ 0 ⇒ V ≤
√

g3ky

2εwL
≡ VPI (5.10)

If the applied voltage is equal to VPI then there is only one equilibrium state:

y0 = y1 = y2 = 0 (5.11)
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The critical voltage, VPI , is often referred as the “pull-in voltage” [59]. Looking at the

stability of the obtained equilibrium states, the second derivative of the potential energy,

W (y), is given by:

d2W

dy2
= −εwLV 2

[
1

(g − y)3
+

1

(g + y)3

]
+ ky (5.12)

For the first equilibrium state, y = y0, we have:

d2W

dy2
(y=y0)

= −2εwLV 2

g3
+ ky (5.13)

From equation (5.13), it can be found that the second derivative of the total potential energy

is positive if V < VPI , negative if V > VPI and equal to zero if V = VPI . Only in the case

of V < VPI does the equilibrium state y = 0 remain stable (local minimum of the total

potential energy in Figure 34). When the voltage reaches or exceeds the pull-in value, the

equilibrium becomes unstable and any small perturbation of y leads to the fingers snapping

(pull-in).

It can be shown that for the second and the third equilibrium states (y1 and y2), the

second derivative of the potential energy is always negative, which indicates local maximums

of potential energy. This shows that the other two equilibrium states are unconditionally

unstable. The electrostatic force is higher than the restoring mechanical force if y exceeds y1

(see Figure 35), pulling the rotor towards the stator. The unstable equilibrium y1 represents

the maximum allowable misalignment before the pull-in. The value of y1 depends on the

stiffness, ky, and therefore can be controlled, as depicted in Figure 36.

5.2.3 Rotational misalignment model

In the rotational misalignment model, there are two misalignment parameters: small rota-

tional misalignment and translational misalignment. The tilted electrode model will be used

to calculate the lateral capacitance of the combdrive. In this approach, the tilted electrodes

(each lateral side of the comb finger) will be approximated with a set of infinitesimally small

plates parallel to the stator plate capacitors. It will also be assumed that the electrostatic
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field lines between lateral sides of the rotor and stator are parallel to each other and orthog-

onal to the stator, so that fringing fields will be neglected. Thus, the tilted capacitance is

calculated as an integral over the length of the finger overlap:

C(θ) =

∫ L

0

εwds

g(θ, s)
(5.14)

In (5.14) L is the length of the overlap, ε is the permittivity constant, w is the thickness

of the comb finger (thickness of a silicon layer) and θ is the misalignment angle. The gap

between the parallel plates of an infinitesimal capacitor with coordinate along the length of

the ground electrode (s) is given by:

g(θ, s) = g0 + [s− L

2
] sin θ (5.15)

where g0 is the average gap between the combdrive fingers. Substituting (5.15) into (5.14)

and integrating over the length we obtain the following expression for the tilted capacitance:

C(θ) =

∫ L

0

εwds

g0 + [s− L
2
] sin θ

=
εw

sin θ
ln

(
2g0 + L sin θ

2g0 − L sin θ

)
(5.16)

For small rotational misalignments (sin θ ≈ θ) the tilted capacitance can be approximated

by:

C(θ) ≈ εw

θ
ln

(
2g0 + Lθ

2g0 − Lθ

)
(5.17)

Equation (5.17) is extremely useful and popular among the designers of analog MEMS de-

vices. It is important to note that an identical mathematical result was obtained using a

circular arc approximation of the electrostatic field lines in [22].

To calculate the combdrive capacitance, the average gap, g0, is substituted with (g0 −

y−Lθ/2) and (g0 + y + Lθ/2) for the top and bottom lateral finger surfaces respectively. In

this case, we obtain the total capacitance as a function of misalignment coordinates:

C(y, θ) =
εw

θ
ln

[
(g0 − y)(g0 + y + Lθ)

(g0 + y)(g0 − y − Lθ)

]
(5.18)

Therefore, the total potential energy of the combdrive is:

W (y, θ) = −εwV 2

θ
ln

[
(g0 − y)(g0 + y + Lθ)

(g0 + y)(g0 − y − Lθ)

]
+

kyy
2

2
+

kθθ
2

2
(5.19)
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The moment and force equilibrium conditions are:

εg0wV 2

θ

[
1

g2
0 − (y + Lθ)2

− 1

g2
0 − y2

]
− kyy = 0 (5.20)

εwV 2

2θ2

(
− ln

[
(g0 + y + Lθ)(g0 − y)

(g0 − y − Lθ)(g0 + y)

]
+

2Lg0θ

g2
0 − (y + Lθ)2

)
− kθθ = 0 (5.21)

The obtained non-linear equilibrium equations (5.20) and (5.21) can only be solved numeri-

cally. Therefore, the total potential energy function (5.19) has to be evaluated to investigate

the stability of the numerical solution. It is important to note that similar pull-in analy-

sis was performed in [55] to model various beam actuators. These two dimensional pull-in

equations were solved using MATLAB and compared to FEM/BEM simulations provided by

the MEMCAD [55]. However, for actuators with complex geometries and dominant fringing

fields, the strongly coupled-field FE modeling can be a more effective method of solving

static equilibrium and pull-in problems [25].

5.3 UNCOUPLED FE MODELS

In this section, uncoupled finite element (FE) models of the combdrive are used to account

for fringing electrostatic fields. The primary goal of the FE models are to accurately com-

pute the potential energy of the electrostatic domain for a given potential difference between

the equipotential electrodes of the combdrive. The accuracy of the FE solution primarily

depends upon the characteristics of the FE mesh. The FE electrostatic models (see Figures

4 and 5) have been created using ANSYS/Multiphysics software [40]. As with the analytical

model, the generalized FE forces are calculated using virtual work [25]. Since the fingers

were assumed equipotential and rigid, only the electrostatic domain has been modelled. It

is important to note, however, that mechanical finite elements were still required to: 1) pre-

serve the combdrive shape during motion and subsequent mesh morphing of the electrostatic

domain and 2) model the lumped springs that were attached to the combdrives. The air

gap between the fingers was meshed using tetrahedral (3-D) and triangular (2-D) electro-

static elements with one degree of freedom per node (potential). The Laplace’s potential
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Table 9: Combdrive parameters for the uncoupled FE modeling

Model 1 Model 2

Initial gap: 5 µm Initial gap: 3 µm

Finger length: 100 µm Finger length: 80 µm

Finger overlap: 50 µm Finger overlap: 40 µm

Finger width: 5 µm Finger width: 4 µm

Finger thickness: 2 µm Finger thickness: 2 µm

Applied voltage: 36 V Applied voltage 4 V

equation was numerically solved using these elements while the combdrive was kinematically

constrained. The field energy was then calculated by integrating over all finite elements [40].

Two sets of the combdrive finger parameters were used for the simulation (Table 9).

Using the uncoupled FE models, the capacitance was determined as a function of rotation

angle. Examining the 2-D numerical and analytical force results, it was found that the

driving force (Fx) of the misaligned combdrive was significantly higher than the perfectly

aligned combdrive for both the rotational (see Figure 39) and translational misalignments

(see Figure 40). In fact, Figure 39 shows that as the combdrive angle increases, the driving

force nonlinearly increases with stroke. This can be particularly problematic for MEMS

devices that are designed to have a constant force with increasing stroke. Since both the

analytical and 2-D FE models produce similar results, it is evident that in-plane fringing

effects are not significant for the driving force. Examining Figure 41, the misalignment

forces, Fy, were found to be much larger than the driving forces. The large magnitude

of the misalignment forces can significantly affect combdrive performance. Moreover, the

moment (Mz) developed in the combdrive (Figure 42) can lead to serious stability problems.

The 3-D finite element results in Figures 9 and 10 indicate that the fringing 3-D fields add

significantly to both the misalignment force and moment. It is noteworthy to mention that

the combdrive capacitance computed using a 3-D FE model is much higher than the 2-D

capacitance, which is important to account for when using a combdrive with surrounding

circuitry.
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(a) Straight fingers (original) (b) Straight fingers (modif.)

(c) Curved fingers (d) Conical fingers

Figure 31: Typical geometries of the lateral in-plane combdrives
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Figure 32: Basic geometry of the lateral combdrive actuator
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Figure 33: Analytical 2-D model of the representative combdrive finger
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Figure 35: Electrostatic force as a function of the translational misalignment, y (µm)
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5.4 STRONGLY COUPLED FE MODELS

The uncoupled FE models used to calculate the forces and moments caused by misalignments

with fringing effects are incapable of solving the static equilibrium combdrive problem. A

new treatment is therefore necessary. In this section, a strongly-coupled 2-D FE model is in-

troduced that is based on a triangular (2-D) transducer [25]. The strongly-coupled FE model

allows the analysis of electrostatic and mechanical domains simultaneously. The transducer

element potential energy is stored in the electrostatic domain. The energy change is as-

sociated with the change of potential distribution in the system, which produces structural

reaction forces. The reaction “forces” are electrical charge, and mechanical forces, Fx and Fy.

The FE formulation of a transducer follows standard Ritz - Galerkin variational principles

which ensure that it is compatible with regular finite elements [16].

The goal of the coupled-field analysis is to determine the pull-in voltage and critical

misalignments. There are several methods of accomplishing this [59]. The current tech-

nique is based on a semi-automatic algorithm. The semi-automatic algorithm incrementally

increases the applied voltage until the non-linear FE solver diverges. After diverging, the in-

crementally applied voltage is bisected until the desired accuracy is reached. This technique

is beneficial because it can be widely applied to complicated geometries and an arbitrary

number of electrodes [25].

The translational misalignment was modelled using the coupled-field model and the re-

sults of the static simulation were compared to the analytical results. Figure 43 depicts the

pull-in voltage as a function of the spring stiffness (selected sensitivity parameter) for the

strongly coupled FE model and the analytical solution given by (5.10). As shown in the

figure, the analytical and FE results match very closely as the maximum difference between

the analytical and the FE curves are less than 5%. This difference can be attributed to the

fringing electrostatic fields modelled using FEM.
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5.5 SUMMARY

In this chapter, three techniques have been developed and utilized for the static simulation

of a misaligned combdrive: (1) analytical, (2) uncoupled 2-D/3-D FE models, and (3) cou-

pled FE models. The analytical model provided a closed-form solution for the forces and

moments produced by a combdrive’s electrostatic field. Despite ignoring fringing field ef-

fects in the combdrive, the analytical model showed that the driving force in a misaligned

combdrive was a non-linear function of stroke. In addition, the misaligned driving force

was determined to be substantially greater than a perfectly aligned combdrive. The un-

coupled finite element approach showed that fringing fields significantly contribute to the

capacitance of the combdrive. When compared to the two-dimensional analytical model,

including the three-dimensional fringing fields substantially increased the electrostatic forces

and moments that develop. Based on these results, it can be concluded that the accuracy of

the two-dimensional analytical models current utilized for combdrives can be improved by

including three-dimensional fringing field effects. As demonstrated in this chapter, one of

the best ways to accomplish this is to utilize the finite element method to evaluate fringing

field effects that can be implemented as correction factors in the analytical model.

In conjunction with determining the influence of the fringing fields, the stability of the

combdrive equilibrium states was studied using a one-dimensional model that included rota-

tional and lateral springs. In the model, the stiffness of the lateral spring was much smaller

than the rotational spring. Such a simplification allowed us to verify a coupled-field finite

element analysis technique for determining the pull-in behavior of the combdrive. Utilizing

this technique, the value of the critical voltage for the translational pull-in was found to be a

function of the geometrical properties of the combdrive and the structural properties of the

actuator. This critical voltage is important design parameters and should not be exceeded

during the operation of the combdrive to maintain stability over the designed operational

range. Unlike the electrostatic forces and moments, a comparison between the analytical and

coupled-field FE model showed that fringing fields have little effect on the pull-in voltage for

the combdrive geometry studied. Finally, the coupled field FE model also determined that

the coupling between the combdrive DOFs leads to a coupling of the pull-in parameters.
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Figure 37: 3-D electrostatic FE model of the combdrive finger used for energy computation
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Figure 38: Potential distribution of the electrostatic field representing fringing and tip fields

(2-D cross section)
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Figure 39: Normalized driving force as a function of the finger overlap (in µm) for three

different angular misalignments (Model 1)
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Figure 40: Normalized driving force as a function of vertical misalignment y (in µm) for

θ = 0 (Model 1)
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Figure 41: Generated by misalignment force as a function of misalignment y (in µm) for

θ = 0 (Model 2))
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Figure 43: Pull-in voltage as a function of spring stiffness
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6.0 CONCLUSIONS

6.1 CONTRIBUTIONS

Complex configurations of MEMS devices require the development of new and more efficient

finite element modeling techniques. The goal of this research was to develop novel numeri-

cal analysis techniques for solving coupled field electromechanical problems in MEMS. The

effects of combdrive misalignments on the performance of MEMS devices were specifically

addressed due to the lack of theoretical and numerical investigations available in this area.

In Chapter 3, a new generalized 2-D lumped transducer finite element was presented.

The element had strong coupling between rigid or deformable mechanical domains and elec-

trostatic domain that was characterized by slightly curved electrostatic fields. The element

is compatible with beam and 2-D plane elements. Based on energy conservation and the

principle of virtual work, the element formulation and finite element code were developed

for the transducer using ANSYS element technology and non-linear solvers. The developed

element was used to solve several representative benchmark problems that show its effective-

ness and accuracy in capturing fundamental coupled field effects such as pull-in and release.

Experimental and numerical results were used to verify element formulation. The 2-D trans-

ducer is a natural extension of 1-D lumped transducers widely used by designers. It requires

fewer elements and produces more accurate results for the coupled field problems without

significant fringing field effects.

A novel 3-D strongly coupled tetrahedral transducer finite element for modeling the quasi-

static behavior of analog electrostatic MEMS devices was presented in Chapter 4. This new

transducer element, which can be utilized for a broad range of micro-system applications

(i.e. combdrives, micromirrors, and electrostatic motors), is compatible with conventional
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electrostatic and structural 3-D finite elements. The element is capable of efficiently model-

ing interaction between deformable or rigid conductors that generate an electrostatic field.

Strong coupling between the electrostatic and mechanical domains allows the static element

formulation to be extended to transient and full harmonic analyses. Therefore, in many

respects, the element is the most sophisticated FEA tool available for modeling MEMS

problems where dominant fringing fields develop. The new technology is also very efficient

in determining the pull-in parameters of complicated multi-electrode microdevices.

Four important characteristics of the developed element formulation are: (1) the formula-

tion was derived from the energy conservation principles (general approach), (2) there was no

assumptions made regarding the electrostatic domain (modeling fringing fields), (3) all finite

element vector and matrices were analytically integrated (high accuracy), and (4) formula-

tion provides an internal morphing capability (no remeshing is required). Several numerical

examples were presented to verify element formulation and to identify the role of element

parameters in the non-linear solution process. Available experimental data and numerical

solutions were used as the references. The new element compared well with the experimental

data and provided solutions requiring more sophisticated experimental validation.

In Chapter 5, three techniques were developed and utilized for the static simulation of

a misaligned combdrive: (1) analytical, (2) uncoupled 2-D/3-D FE models, and (3) coupled

FE models. The analytical model provided a closed-form solution for the forces and moments

produced by a combdrive’s electrostatic field. Despite ignoring fringing field effects in the

combdrive, the analytical model showed that the driving force in a misaligned combdrive

was a non-linear function of stroke. In addition, the misaligned driving force was deter-

mined to be substantially greater than a perfectly aligned combdrive. The uncoupled finite

element approach showed that fringing fields significantly contribute to the capacitance of the

combdrive. When compared to the two-dimensional analytical model, the three-dimensional

fringing fields included in the uncoupled finite element approach substantially increased the

electrostatic forces and moments that developed.

In conjunction with determining the influence of the fringing fields, the stability of the

combdrive equilibrium states was studied using a one-dimensional model that included rota-

tional and lateral springs. In the model, the stiffness of the lateral spring was much smaller

86



than the rotational spring. Such a simplification allowed us to verify a coupled-field finite

element analysis technique for determining the pull-in behavior of the combdrive. Utilizing

this technique, the value of the critical voltage for the translational pull-in was found to

be a function of the geometrical properties of the combdrive and the structural properties

of the actuator. This critical voltage is an important design parameters and should not

be exceeded during the operation of the combdrive to maintain stability over the designed

operational range. Unlike the electrostatic forces and moments, a comparison between the

analytical and coupled-field FE model showed that fringing fields have little effect on the

pull-in voltage for the combdrive geometry studied. Finally, the coupled-field FE model also

determined that the coupling between the combdrive degrees of freedom (DOF) leads to a

coupling of the pull-in parameters.

6.2 SUGGESTIONS FOR FUTURE WORK

The developed formulation for static analysis can be extended to transient, modal, and

harmonic analyses. Since most of the inertia effects are associated with the mechanical

domain, minimal changes to the transducer formulation will be required when extending the

element to other domains. An automatic method for determining pull-in parameters can

also be developed. Such a method would allow designers to automatically solve optimization

problem using the space of design parameters.

The developed 2-D generalized lumped transducer element formulation can be extended

to lumped 3-D formulation based on plate/shell capacitance approximation. The 3-D cou-

pled field transducer element can be generalized to include magnetic, thermal, or acoustic

domains. The same energy principles as those used in this work should be used to construct

the most general coupled field element.

Finally, the coupled field technology developed in this work should be extended to model

nano-structures and nano-devices. Accomplishing this task will require incorporating atomic

and molecular interaction into solid modeling techniques and formulation.
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APPENDIX A

DERIVATIVES OF 2-D LUMPED CAPACITANCE

Capacitance of the 2-D lumped transducer element is given by

C(e)(x1, y1, x2, y2) = εw

(
x2 − x1

y2 − y1

)
ln

(
y2

y1

)
, y1 6= y2 (A.1)

First-order derivatives with respect to nodal coordinates are given by (y1 6= y2)

∂C(e)

∂x1

= −εw
1

y2 − y1

ln

(
y2

y1

)
(A.2)
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(
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) [
1
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− 1
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(A.4)
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(
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) [
1

y2 − y1

ln

(
y2
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− 1

y2

]
(A.5)

Second-order derivatives with respect to nodal coordinates are given by (y1 6= y2)

∂2C(e)

∂x2
1

=
∂2C(e)

∂x2
2

= 0 (A.6)

∂2C(e)

∂x1∂x2

=
∂2C(e)

∂x2∂x1

= 0 (A.7)
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∂2C(e)
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APPENDIX B

3-D TRANSDUCER ELEMENT NORMALS

The Cartesian coordinate system is defined by three normal axes: i, j, and k. The tetrahedral

transducer element normals are given by

n1 =
e24 × e23

2A1

=

∣∣∣∣∣∣∣∣∣
i i k

x4 − x2 y4 − y2 z4 − z2

x3 − x2 y3 − y2 z3 − z2

∣∣∣∣∣∣∣∣∣ (B.1)
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APPENDIX C

3-D TRANSDUCER ELEMENT VOLUME

The tetrahedral transducer element volume, V , is given by

V = −1

6

∣∣∣∣∣∣∣∣∣∣∣∣

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

x4 y4 z4 1

∣∣∣∣∣∣∣∣∣∣∣∣
(C.1)

First-order derivatives of the tetrahedral transducer element volume (C.1) with respect to

nodal coordinates are given by

∂V
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6
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