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NEW FORMULATION FOR FINITE ELEMENT MODELING
ELECTROSTATICALLY DRIVEN MICROELECTROMECHANICAL
SYSTEMS

[lya V. Avdeev, PhD

University of Pittsburgh, 2003

The increased complexity and precision requirements of microelectromechanical systems
(MEMS) have brought about the need to develop more reliable and accurate MEMS sim-
ulation tools. To better capture the physical behavior encountered, several finite element
analysis techniques for modeling electrostatic and structural coupling in MEMS devices have
been developed in this project. Using the principle of virtual work and an approximation
for capacitance, a new 2-D lumped transducer element for the static analysis of MEMS has
been developed. This new transducer element is compatible to 2-D structural and beam
elements. A novel strongly coupled 3-D transducer formulation has also been developed to
model MEMS devices with dominant fringing electrostatic fields. The transducer is compat-
ible with both structural and electrostatic solid elements, which allows for modeling complex
devices. Through innovative internal morphing capabilities and exact element integration
the 3-D transducer element is one of the most powerful coupled field FE analysis tools avail-
able. To verify the accuracy and effectiveness of both the 2-D and 3-D transducer elements a
series of benchmark analyses were conducted. More specifically, the numerically predicted re-
sults for the misalignment of lateral combdrive fingers were compared to available analytical
and modeling techniques. Electrostatic uncoupled 2-D and 3-D finite element models were
also used to perform energy computations during misalignment. Finally, a stability analysis
of misaligned combdrive was performed using a coupled 2-D finite element approach. The

analytical and numerical results were compared and found to vary due to fringing fields.
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1.0 INTRODUCTION

1.1 MICROELECTROMECHANICAL SYSTEMS

The fundamental theme of this dissertation is related to the modeling of microelectrome-
chanical systems (MEMS). It is therefore instructive to give a brief historical background and
definition of MEMS. MEMS started in 1959 with the talk that Richard Feynman gave at the
annual meeting of the American Physical Society at the California Institute of Technology
[1]. “There’s plenty of room at the bottom” was the name of that milestone presentation.
Feynman was the first researcher who saw the future of miniaturization and issues related
to practical realization of his ideas. His first “challenge” was: “I hereby offer a prize of
$1,000 to the first guy who can take the information on the page of a book and put it on
an area 1/25 000 smaller in linear scale in such manner that it can be read by an electron
microscope.” The challenge was offered as a high-school competition, because at that time
nobody had started that field [1]. The work, by T. Newman and R.F.W. Pease of Stan-
ford University, won the Feynman challenge in 1985. It took almost 26 years for technology
to develop enough to overcome the fabrication issues, that Feynman described in his talk:
lithography resolution, deposition, and characterization.

The second of Feynman’s “challenge” was: “I want to offer another price —...— of another
$1000 to the first guy who makes an operating electric motor — a rotating electric motor
which can be controlled from the outside and, not counting the lead-in wires, is only 1/64
inch cube.” The motor, created by McLellan, was shown in 1983 during the second milestone
Feynman’s talk at the Jet Propulsion Laboratory (JPL) [2]. Feynman delivered the speech
that actually started the MEMS field. He was among the first — if not the first — person who

proposed the use of semiconductor integrated technology to fabricate infinitesimal machines.



The technology which is known as microelectromechanical systems (MEMS) in the
U.S.A., is called microsystems technology (MST) in Europe. According to Albert Pisano,
a former MEMS program manager of DARPA, “...the acronym for Microelectromechanical
Systems, MEMS, was adopted by a group of about 80 zealots at a crowded meeting in Salt
Lake City in 1989 called the Micro-Tele-Operated Robotics Workshop...” [3]. He was a part
of that group and recalls, that at the beginning, they “...constantly worried if any scholarly
journal would publish the papers we wrote. Sources of research funding were hard to find
and difficult to maintain. MEMS fabrication was itself a major issue, and the frequent topic
of conversation was about the nature, properties, and standardization of the polysilicon that
the pioneering researchers were using to demonstrate the early, elementary structures of the
day.” Since that time, MEMS has developed into a huge industry, research field and a mar-
ket around the world. By 1997, when there were 80 U.S. companies in the MEMS field, the
combined total world market of MEMS was approximately $2 billion [3]. The most conserva-
tive studies predict a world MEMS market in excess of $8 billion in 2003. The analysis and
forecast of U.S. MEMS markets are presented in Table 1 [3]. The reality has by far exceeded
the expectations of scientists and engineers. In fact, MEMS industry is not just a corner
stone of innovation in technology, but it also is a lunching pad for emerging technologies,
the most promising of which is nanotechnology.

The field of MEMS is relatively new, therefore there is no unique, widely accepted defi-
nition of MEMS. One of the broadest and probably the best definition was given by Maluf
in 2000 [3]. He defines MEMS as simultaneously “... a toolbox, a physical product, and a

methodology all in one:

e [t is a portfolio of techniques and processes to design and create miniature systems;

e [t is a physical product often specialized and unique to a final application — one can
seldom buy a generic MEMS product at the neighborhood electronic store;

e “MEMS is a way of making things,” reports DARPA. These ”things” merge the functions
of sensing and actuation with computation and communication to locally control physical

parameters at the microscale, yet cause effects at much grander scales...”



Table 1: Analysis and forecast of U.S. MEMS markets (in millions of U.S. dollars)

Year | Automotive | Medical | IT/Industrial | Military/Aerospace | Total
1994 255.7 129.5 438.3 49.1 872.5
1995 298.0 146.1 459.0 54.8 957.9
1996 355.0 164.4 492.8 62.2 1,074.3
1997 419.0 187.0 527.0 71.6 1,204.6
1998 491.5 216.7 575.3 79.6 1,363.1
1999 552.0 245.7 645.9 95.8 1,549.4
2000 645.7 291.3 733.3 110.7 1,781.0
2001 758.5 354.8 836.0 133.3 2,082.5
2002 879.6 444.7 995.1 156.9 2,476.3
2003 1,019 562.9 1,222 176.7 2,980.4
2004 1,172 716.0 1,514 202.7 3,604.5




The present and future applications of MEMS can be combined into several groups
(Table 2) [3]. There is a number of comprehensive reviews of MEMS applications, focusing
on the sensor and actuator systems by Ko [4], actuators by Fujita [5], polysilicon integrated
microsystems by Howe [6], IC microtransducers by Baltes [7], and general reviews by Bao
[8] and Fluitman [9]. The impact of MEMS technology on society is the subject of Bryzek’s
review [10]. The design future and present trends are covered in reviews of Senturia [11] and

Wachutka [12], [13].

1.2 ELECTROSTATICALLY DRIVEN MEMS TRANSDUCERS

Electrostatically driven MEMS transducers are the subject of this research project. This is
a practical choice, due to the domination of electrostatics over the other types of physical
domain, such as magnetics, thermodynamics, piezoelectricity or optics [3]. There are several

reasons why the coupling between electrostatics and mechanics is the “driving force” of

MEMS development:

e MEMS started borrowing technology from the semiconductor industry, where silicon is
the number one material [3]. The beauty of silicon, as a semiconductor material, is
that it can be used either as an insulator (intrinsic silicon) or as a conductor (doped
silicon). This property of the silicon, accompanied by its sufficient structural strength,
allows MEMS designers to use silicon in carrying out a variety of actuation and sensing

functions.

e Electrostatically driven actuators have short response time. Application and release of
forces take virtually the same time, in contrary to the thermo-actuation (fast in heating

and slow in cooling).

e Transducers are relatively easy to design, due to the well explored field of electrostatics.
There is a variety of simplified capacitor models, which can be applied to the design of

MEMS. Classical examples are parallel plate and comb capacitor models [14].

e Electrostatically driven transducers are less sensitive to environmental conditions than

others. Packaging and operating conditions are not as strict as for other transducers.



The great number of applications (Table 2) requires a variety of methods and tools for de-
signing and analyzing MEMS devices. For the last decade, MEMS technology was developing
faster than simulation and analysis techniques. As a result, there is a lack of sophisticated
analysis tools to model physical behavior and response of the electrostatically driven trans-

ducers.

1.3 OBJECTIVES OF RESEARCH

The purpose of this research is to extend existing and develop new numerical techniques for
solving electromechanical problems in MEMS. The research will be focused on the following

six major topics:

e development of a 2-D lumped transducer finite element with a strong coupling between
rigid or deformable mechanical domains and slightly curved electrostatic fields, such as
developed in optical mirrors, switches, resonators, etc;

e development of a novel 3-D coupled field finite element for modeling MEMS with domi-
nating fringing electrostatic fields, such as combdrives, micromotors, etc.;

e testing of developed finite elements, comparing results of static electromechanical analy-
ses with experimental results available in literature and with other numerical techniques;

e development of a simplified analytical model of lateral combdrive structures to model
in-plane misalignments;

e development of an uncoupled FE technique for modeling in-plane combdrive misalign-
ments to account for fringing electrostatic fields;

e pull-in combdrive analysis using analytical and strongly coupled distributed models.

The new 2-D lumped transducer element will be a generalization of 1-D transducers. The
element will have a trapezoidal shape with four nodes and three degrees of freedoms per
each node. The most important condition to be satisfied is its compatibility with standard
plane structural elements. Electrostatic forces will be calculated within the element using

the principle of virtual work. The Newton - Raphson algorithm will be the basis for the



nonlinear coupled field formulation. The element will be tested by comparing results of
static analysis with results obtained using other simulation techniques (sequential coupling,
1-D lumped model and distributed transducer models) and experimental data.

The new 3-D distributed tetrahedral transducer element will also be derived using the
principle of virtual work. The new element can be utilized for modeling 3-D coupled field
problems with dominating fringing fields, such as static analysis of combdrives, deflectable
3-D micromirrors, and micromotors. The 3-D element will provide mesh morphing during
a nonlinear analysis, making the element sufficiently faster than the sequential coupled FE
models, which uses external morphers or meshers.

In order test the new 3-D element, a simplified analytical model of a misaligned combdrive
can be constructed using a rigid model of fingers and certain assumptions regarding the
electrostatic field. The model can be used to investigate the influence of misalignment on the
combdrive driving force. A great deal of research has been focused on calculating unbalanced
forces and moments and finding conditions required for stability of static equilibrium states.
This is important from the designer perspective, because it sets the limits on applied voltage
and structural stiffness of the transducer. The simplified analytical model doesn’t account
for fringing field effects. The validity of the analytical model and inaccuracies brought
by simplifying assumptions need to be investigated. An uncoupled FE model has to be
generated. The electrostatic field energy, calculated using FEM allows forces and moments
to be obtained through the principle of virtual work. Sequentially coupled or distributed
transducer models can be utilized for stability analysis.

Prior to discussing the research topics, a literature review on state-of-the-art numerical

methods for the coupled field analysis will be conducted.



Table 2: Examples of present and future application areas for MEMS

Commercial Applications

Military Applications

Invasive and noninvasive biomedical sen-
SOTS

Miniature biomedical analytical instru-
ments

Cardiac management systems (e.g.,
pacemakers, catheters)

Drug delivery systems (e.g., insulin,
analgesics)

Neurostimulation

Engine and propulsion control

Automotive safety, braking, and suspen-
sion systems

Telecommunication optical fiber compo-
nents and switches

Mass data storage systems

Electromechanical signal processing

Distributed sensors for condition-based
maintenance/monitoring struct. health

Distributed control of aerodynamic and
hydrodynamic systems

Inertial systems for munitions guidance
and personal navigation

Distributed sensors for asset tracking,
environmental and security surveillance

Weapons safing, arming, and fuzing

Integrated micro-optomechanical compo-
nents for identify-friend-or-foe systems

Head- and night-display systems

Low-power, high-density mass data stor-
age devices

Embedded sensors and actuators for
condition-based maintenance

Integrated fluidic systems for miniature
propellant and combustion control

Miniature fluidic systems for early detec-
tion of biochemical warfare

Electromechanical signal processing for
low-power wireless communication

Active, conformable surfaces for dis-
tributed aerodynamic control of aircraft




2.0 REVIEW OF BASIC TECHNIQUES FOR MODELING MEMS

The main focus of this literature review is the presentation of an overview of the research
that has been performed on the development and use of the finite element method (FEM) for
solving coupled field problems of electromechanics. The various methods and techniques of
coupled field simulation can be placed into four categories: uncoupled models, sequentially
coupled models, lumped or reduced order models and distributed coupled field models. The
following sub-sections provide brief descriptions of each of these categories and acknowledge

main contributors to each of them.

2.1 UNCOUPLED MODELS

Historically, uncoupling or decoupling was the first approach widely used by designers and
engineers for solving coupled field problem. Tang et al were the first to use decoupling for
the design of lateral polysilicon combdrive transducers in 1989 [15]. The way he uncoupled
the analysis was by calculating an electrostatic force developed in the combdrive using a
simplified analytical electrostatic model (neglecting fringing electrostatic fields). For more
than a decade, his model has been used for the design of combdrive actuators and res-
onators. This example is a classical representation of an uncoupled modeling technique. If
electromechanical coupled field problem allows one to simplify any of the two or more phys-
ical domains (usually electrostatic one) and to analytically calculate some of the coupled
parameters (usually electrostatic force), then this system can be effectively treated using un-
coupled modeling technique. With the development of powerful electrostatic packages using

finite element method (FEM) [16] or boundary element method (BEM) [17], the simplified



analytical models were substituted with more accurate and representative numerical models.
The following are examples of how this technique was successfully applied to the various

MEMS applications.

Sangster and Samper in 1997 used the uncoupled technique to create 2-D and 3-D FE
electrostatic torque models of a double-stator wobble motor [18]. The electrostatic field was
calculated using commercially available FE-package Opera [19]. The torque produced by
an electrostatic field was obtained by integrating the electrostatic field product over the FE
mesh. The authors came to the conclusion that unless the motor was of a very low axial
height relative to its radius or exhibited a relatively large rotor-stator air gap, 3-D modeling
was generally unnecessary. Furthermore, an analytical approximation could be used rather

than the FE model if 5% torque prediction was acceptable.
Bonse in 1995 [20] applied the MAXWELL 2-D Field Simulator FE package [21] to

calculate capacitance of various position sensors. The authors used a mix of FEM simulations
and calculations based on the simplification of the electric field to accurately characterize

microsensors without having to build and test several prototypes.

The capacitance of the combdrive fingers with non-parallel (due to the particular deep
reactive ion etching process) side walls was calculated using both the MEMCAD package and
simplified analytical model by Tay et alin 1999 [22]. The authors adjusted Tang’s formula for
the driving electrostatic force in perfect combdrive [15] and came to the conclusion that both
analytical and simulated results were very close. Tay’s group were the first to suggest that
the effect of non-ideal cross section of the fingers must not be neglected in micromachined

sensors that are fabricated using deep reactive etching process.

FEM wasn’t just used for the simulation of the electrostatic domain. It was widely
used to optimize the shape of structural elements and to calculate natural frequencies and
generalized stiffnesses, which were later used as the parameters of lumped models of the
structural domain. Since 1994, Fischer used ANSYS to optimize the shape of torsional
micromirrors during deflection and to control their natural frequencies [23]. The FE stress
analysis of thin polysilicon plates was performed by Bistue in 1997 in order to design a
pressure microsensor [24]. The pressure-strain sensitivity was used to obtain the capacitance

of the plate. Resonant frequencies of the microaccelerometer were calculated using ANSYS



5.4 by Li in 2001. Resonant frequencies were used to validate analytical formulation for
the design of the accelerometer. The uncoupled modeling technique has been the most
popular tool among the designers of MEMS for the last decade. Despite its popularity, this
approach can not be applied to the analysis of strongly coupled systems, such as deflectable
micromirrors, and micromotors. To overcome this shortcoming, the sequential coupling

method was developed.

2.2 SEQUENTIAL COUPLING

The sequential coupling method is also called a “weak coupling” or “load vector coupling”
[25]. The method is not just intuitively simple, but also relatively easy to implement. It al-
lows the combination of strength of single field simulators for solving coupled field problems.
In the case of electromechanics, electrostatic and structural solutions are obtained sequen-
tially. Interaction (coupling) between two domains occurs through the load vector, which
represents the electrostatic forces acting upon the boundaries of the structural elements.
The iterative process in this case is required to obtain a reasonable solution. Therefore, the
convergence of the iterative process becomes the main issue of the method.

Senturia et al was among the first people who suggested the sequential coupling architec-
ture of their computer-aided design system for microelectromechanical systems (MEMCAD)
[26] (Figure 1). Several years later, in 1995, CoSolve-EM program was developed et al [27]
based on that architecture. The sequential coupling was based on a relaxation scheme com-
bining a fast multipole-accelerated scheme for the electrostatic analysis (FASTCAP, [28])
with a standard FEM for the mechanical system analysis (ABAQUS, [29]). The approach
was later successfully used for modeling electrostatic curved electrode actuators [30] and
torsional micromirrors [31]. However, modeling pull-in effects and other bifurcations leaded
to unresolved convergence problems [30].

The approach proposed by Wachutka et al in 1999 [32] also followed the idea of using FE
codes for the mechanical and the electrical subproblems and coupling them through the com-
mon domain interfaces. The developed software combined BEM for modeling electrostatic

domain and FEM for modeling mechanical one. The iterative method followed a Gauss-
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Seidel-like relaxation scheme. The authors developed a novel technique for the treatment of
unstable regions of the operating area, such as snap-down (pull-in) effect [32], where none of
the usual solution schemes could converge. The homotopy method was used to tackle this
problem. The new approach was shown to solve a well-known torsional micromirror contact
problem [33].

Schroth et al in 1996 created a sequentially coupled scheme, which coupled ANSYS
with the lumped circuit PSpice simulator [34]. The iterative scheme was useful but had
convergence issues. The approach was used for the transient analysis of the electromechanical
system of a resonant beam force sensor. One of the important features of this approach is
that one can couple finite element with boundary element solutions, which is utilized in
Coventor [17] commercial package, for example.

The sequential coupling between electrical and mechanical FE physics domains for MEMS
analysis was also introduced in ANSYS 5.6 [35], [16] using the ESSOLV command macro.
ESSOLV allowed the most general treatment of individual physics domains. However, it
couldn’t be applied to small signal modal and harmonic analyses because a total system
eigen-frequency analysis required matrix coupling. Moreover, sequential coupling generally

converged slower than the other techniques if it converged at all.

2.3 LUMPED OR REDUCED ORDER MODELS

Lumped models are usually strongly coupled and are considered to be the fastest from the
convergence/solution time perspective. Moreover, they have the widest application range:
from the reduced order modeling of MEMS (Spice-type compatible models) to the modeling
distributed mechanical systems using lumped transducers.

One of the first strongly coupled transducer elements was introduced in ANSYS 5.6 [35],
[16] to eliminate the shortcomings of sequential coupling technique. Coupling between elec-
trostatic forces and mechanical forces was characterized by representing a microtransducer’s
capacitance as a function of the device’s mechanical degree of freedom (stroke) [36]. The
element stored electrostatic energy by converting it into mechanical energy and visa versa.

The element took on the form of a lumped element with voltage and structural DOFs as
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across variables and current and force as through variables. Input for the element consisted
of a capacitance-stroke relationship that could be derived from electrostatic field solutions.
The element could characterize up to three independent translation degrees of freedom at
any point to simulate three-dimensional coupling. Thus, the electrostatic mesh was re-
moved from the problem domain and replaced by a set of transducer elements hooked to the
mechanical and electrical model providing a reduced order modeling (ROM) of a coupled
electrostatic-structural system.

Even with the strongly coupled lumped transducers, convergence issues were experienced
when applied to the difficult hysteric pull-in and release analyses [27]. The cause of the
problem can be attributed to the negative total system stiffness matrix and can be resolved
in ANSYS 5.7 using the augmented stiffness method.

Fedder et al have been designing the lumped models of the surface micromachined mi-
croresonators [37] for several years. They have developed optimization-based synthesis algo-
rithms for designers of microresonators. The mechanical properties of the lumped transducers
were verified using the ABAQUS FE package [29].

Mehner et al reported in 2000 successful implementation of a methodology for auto-
matically generating reduced-order nonlinear dynamic macromodels from three-dimensional
physical simulations for the conservative-energy-domain behavior [38], [39] (Figure 2). The
macromodels were developed for a rapid circuit and system simulation of both non-stiffened
and stiffened mechanical structures.

Lumped models allow treatment of a diverse number of analysis types, including pre-
stressed modal and harmonic analyses. The Newton - Raphson nonlinear iteration converges
quickly and robustly with lumped models, but it is limited geometrically to problems where
the capacitance can be accurately described as a function of a single degree of freedom, usu-
ally the stroke of a comb drive. In a bending electrode problem, such as an optical switch, a
single lumped transducer can not be applied. Fortunately, when the gap is small and fringing
is insignificant, the capacitance between deforming electrodes can be practically modelled
by several capacitors connected parallel. The EMTGEN (Electro Mechanical Transducer
GENerator) command macro, introduced in ANSY'S 5.7 can be applied to this case [40].
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2.4 STRONGLY COUPLED DISTRIBUTED MODELS

The newest and most sophisticated method of solving coupled field problems is a strongly
coupled distributed modeling technique. In this method, both the electrostatic and structural
domains are modelled using distributed elements, coupled through governing electromechan-
ical equations of equilibrium.

Aluru and White proposed to use the fastest numerical methods for treatment of each
domain [41]: accelerated boundary-element methods for 3-D electrostatic analysis and FEM
for the structural analysis. The nonlinear coupled system is solved using the Newton algo-
rithm. In their paper the advantages and disadvantages of the BEM vs. FEM techniques
for the static- and coupled field analysis are discussed. The FEM/FEM coupled approach,
developed by Schwarzenbach in 1994 [42] is criticized, because it will require the construction
of an exterior mesh for electrostatic analysis.

The first strongly coupled 2-D distributed element appeared in ANSYS 6.0 release [25].
In the ANSYS element no assumptions are made regarding the electrostatic field and the
capacitance-stroke relationship is not required. The principles of virtual work and conserva-
tion of energy are the basis of the element formulation, and the coupling of the electrostatic
degrees of freedom. The reaction “forces” are electrical charge and mechanical force. The FE
formulation of the transducer element follows standard Ritz — Galerkin variational principles
which ensures that it is compatible with regular finite elements.

Clearly, there is a lack of strongly coupled distributed modeling tools, especially for three-
dimensional analysis. A significant portion of this thesis pertains to the development of a
3-D finite element to couple the electrostatic and the structural domains. Such an element

could be very efficient for solving problems with dominant fringing fields.
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3.0 GENERALIZED 2-D LUMPED TRANSDUCER FINITE ELEMENT

3.1 OVERVIEW

Lumped one-dimensional transducer elements [35] are no longer effective for modeling devices
with complex geometrical configuration or where fringing electrostatic fields are dominant,
such as combdrives [43], electrostatic motors [18], and microgrippers [44]. There have been
several numerical methods proposed for the more accurate treatment of electro-mechanical
systems, such as hybrid finite/boundary element method [45], sequential physics coupling
[16], reduced order fully lumped technique [46], and distributed mechanical model with a
single one-dimensional transducer [35]. These methods are often difficult to use and require
extra meshing or morphing with simplifying assumptions.

The objective of this chapter is to develop a new strongly coupled lumped 2-D transducer
element that fills the gap between sequential coupling and lumped 1-D element capabilities.
The new strongly-coupled field transducer benefits from both sequential coupling and lumped
1-D approaches. The energy conservation and virtual work principles form the basis of the

coupled field element formulation.

3.2 ELECTROMECHANICAL ENERGY CONSERVATION PRINCIPLES

The strongly coupled formulation presented in the following chapters is based on electrome-
chanical energy conservation principles. The detailed review of these principles can be found
in [47]. Therefore, we limit ourselves to one representative example of a system that consists

of two anchored capacitor electrodes and a dielectric slab sliding between the electrodes,
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suspended with a spring (see Figure 3). The absolute permittivity of space between the elec-
trodes is denoted as €y, and the permittivity of the slab is denoted as €;. The displacement
of the slab (stroke) is denoted as x.

According to electromechanical energy conservation principle [47], the net flow of energy

into the lossless system (see Figure 3) is equal to the rate of change of energy stored in the

system:
dw, AWineer AW ea
eec — Store .1
dt dt dt (3:1)
In (3.1), dW/,. is the differential electric energy input, dW,,..; is the differential mechanical

energy output, and dW/ is the differential change in stored energy. The electric terminal

stored
has the terminal variables voltage U and charge (), and the mechanical terminal has the
terminal variable force f and displacement z. In terms of the terminal variables, (3.1)

becomes

dQ v AW
U= _ =~ VY stored 3.2
dt / d — dt (32)

Multiplying both sides of (3.2) by dt we obtain:

dw!

stored ~

= UdQ — fdx (3.3)

The stored energy is a function of the state variables ) and x and therefore its differential

is equal to:

aVvsltored
SortdQ +

store 4
O (3.4)

dWstored (Qa ZL')

Comparing (3.3) and (3.4) we find the terminal force and voltage:

8W’ __ storea aW/ __ storea

The stored energy consists of two components: electrostatic field energy, W}ield(Q, x), and

mechanical spring energy, Wi ing():
stored(Q $) W}ield(Q7 l’) + Wsprin9<x) (36)
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We assume that the system is conservative. Therefore, for any given state of the system
(@, z), the stored energy can be calculated by integrating (3.3) over any path on a state plane
that leads to that given state. Assuming linearity of the relationship between capacitor’s

charge and potential
Q=CU (3.7)

we have the following expression for the stored energy:

W/ 2 /{JZE2
= ——+— 3.8
stored<Q7 l‘) 20($) + 2 ( )
Plugging (3.8) into (3.5) we obtain:
Q*Cy(x)
- x —k 3.9
T=%cwe ™ (39)
Q
U=—— 3.10
) (3.10)
For the dielectric slab system depicted in Figure 3, the capacitance is given by
I —
Cla) = tleix + eo(L — )] (3.11)

g
In (3.11), ¢ is the electrode thickness, and g is the gap between the electrodes. For a fixed
value of charge, () , a static equilibrium state z, is a solution of the following non-linear

equation (f =0)

2 _
I I (3.12)

2t [ﬁlf’neq +eo(L — xeq)]Q

In the case of a fixed voltage, U, the equilibrium state has an explicit form:

tU?
Teg = 29—k(€1 —€) (3.13)

It should be noted that the same value of force, f, can be computed using a coenergy [47],

which is defined by:

Wriaa(U, ) = UQ — Wt 14(Q, ) (3.14)
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Following the same logic as before we obtain the following expressions for the force and the

charge:

f _ a(Wstoreda_ Wspm'ng)’ Q
X

. aVVstored
U

(3.15)

For linear systems, coenergy is equal to energy. Nevertheless, forces calculated using (3.15)
and (3.5) are equal to the same value for either linear or non-linear systems [47], independent

of whether the energy or coenergy approached are employed.

3.3 GOVERNING NON-LINEAR FINITE ELEMENT EQUATIONS

The full FE model of an electromechanical system, most typically a MEMS device, consists
of classical mechanical elements (lumped or distributed) and transducer finite elements. The
mechanical elements are used to model the electrodes and suspension structure. They store
or dissipate mechanical energy (elastic and kinetic). The space between the electrodes (elec-
trostatic domain) is modelled with the transducers, that store electrostatic energy (magnetic
energy is neglected).

The transducers have a vector of electrical potentials, u, and a vector of structural
displacements, x, as nodal degrees of freedom. The reactions are the vector of electric
charges, q, and a vector of mechanical forces, f. In a standard electrostatic FE model the
mesh remains geometrically intact throughout the solution. In the transducer elements,
nodes move morphing the mesh. The vector of new (deformed) node coordinates, X, is
computed as the sum of the vector of original node coordinates, X,, and the displacement
vector (X = X, +x). Element quantities, such as energy and electric field, are now functions
of x and u.

The new transducer formulation is based on Ritz - Galerkin variational principles [25].

The total potential energy is a sum of electrostatic and mechanical energies

W' (%, @) = Wepee (%, @) + Wineen (%) (3.16)
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(a) Schematic representation
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Figure 3: Dielectric slab capacitor (illustration of energy formulation)
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The energy change due to electric potential and displacement changes produces reactions
charges and mechanical forces. The vectors of nodal mechanical forces, f, and electric

charges, q, are calculated using energy conservation principle:

oW (x,u)  OWeee(x, 1) B OWneen(X)
f(x,u) = e I o (3.17)

oW (x,u OWepee(x, 1
g = ) _ Ml

= C(x)u (3.18)

At the equilibrium state, these forces balance each other on the internal nodes of the trans-
ducer mesh and balance applied external forces on the external nodes (f.,; and qe.). This
ensures the compatibility of the transducer elements with the regular mechanical elements.
In most practical cases, the system of equilibrium equations is linear from an electrical point
of view, but highly non-linear from a mechanical point of view. The non-linear system of a

coupled field equilibrium equations of statics is given by:

f(x,u f..
G || B (3.19)
(](X, 11) YQext
Equation (3.19) in a form of the Newton - Raphson method [48] is given by:
K..(x,u) K,,(x,u Ax Af(x,u
() Keu(xon) [ At .
K. (x,u) K, (x,u) Au Aq(x,u)

In (3.20), Ax and Au are the increments of nodal displacements and potentials, Af(x,u)
and Aq(x,u) are the out-of-balance nodal forces and charges, and the blocks of the tangent

stiffness matrix, K, are given by

Of(x,u) O?W (x,u)

K..(x,u) = o I (3.21)
_ of(x,u)  PW(x,u)
Ko (xou) = =20 = = 2 (3.22)
2
Ko (x,u) = 2460 _ W) (3.23)

ox  Oudx
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dq(x,u) _ O*W (x,u)

Ko (%, 1) = du du?

= C(x) (3.24)

The mesh, including the structural domain and the air region, deform to reach force equi-
librium. The original nodes are constantly updated according to the electromechanical force
equilibrium. This procedure is highly non-linear and huge displacements are allowed for an
arbitrary uneven mesh. For the transient, modal or harmonic coupled field FE analysis, in
addition to the stiffness matrix given by (3.21) - (3.24), the mass and damping matrices of
the mechanical domain have to be calculated using standard mechanical FEM. The trans-
ducer element is also compatible to network electrical elements [40], which allows for static,

transient, modal, and harmonic network analyses.

3.4 TRANSDUCER ELEMENT ARCHITECTURE AND BASIC
ASSUMPTIONS

The generalized 2-D transducer element is designed for solving static electromechanical prob-
lems where electrostatic field lines are straight or slightly curved (i.e. fringing effects are
ignored) [49]. This class of problems includes but is not limited to micromirrors, micro-
grippers, RF switches and certain combdrive geometries (Figure 4). A structural domain is
modelled using either plane (strain or stress) or beam elements (Figure 5).

The new transducer links together two parallel or slightly tilted electrodes with the
potential difference denoted as V', providing a strong coupling between electrostatic and
mechanical domains. The electrostatic field, F, created by the electrodes is schematically
depicted in Figure 5. The transducer shares nodes with the mechanical finite element models
of both electrodes.

The schematic picture of the new transducer element in Figure 5 shows that the element
has a trapezoidal shape with two sides tangent to the surfaces of the electrodes. There are
three degrees of freedom per each node: horizontal component of displacement vector, U,,
vertical component of displacement vector, U,, and an electrostatic potential, V. Three
forces associated with each node are: horizontal component of mechanical force vector, f,,

vertical component of mechanical force vector, f,, and electrical charge, g (see Figure 5).
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For the sake of simplicity, we will assume that only nodes 1 and 2 are active, because in
a vast majority of applications, the mechanical and electrostatic degrees of freedom of the
ground (nodes 3 and 4) are fixed and equal to zero. Finally, it will be assumed that the top
electrode is equipotential, which means that V() = V() = V.

3.5 TRANSDUCER FINITE ELEMENT VECTORS AND MATRICES

After applying all the assumptions, the number of element degrees of freedom is reduced to

five. The vector of element unknowns is given by:
o) _ 7)) 77(1) 772 772) T

The transducer element stores only electrostatic potential energy. The element coenergy, W,
of an entire electrostatic domain (space between the electrodes) is computed by assembling
all transducer elements:
W, = § W = 5 V—20<e> (3.26)
e=1 ’ 2

e=1

In (3.26), NE is the number of transducer elements and C®) is the element capacitance,

which is a function of element’s geometry. The element vector of nodal forces, FS), produced

by changing electrostatic field is calculated using virtual work principle:

awe Frel) T ]
oULD out) 1
(©)
W, ac(e) 1
QU U™ fz,(l )
owle X V2 f
() - e _ | awl® | Y | ace | — @ (3.27)
e oue oUu® 2 U *
aWE(E) 80(6) f(2)
ouy ouy Y
owl® Lol q
v | v | L .

In order to compute st), we have to know the element capacitance, C®. A tilted capacitor

model can be used to calculate C©) [14]:

© — @) s Yy (290 + LY
C© = cO(f) 0111(290_Le (3.28)
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Figure 4: Surface and bulk micromachined MEMS for 2-D analysis: (a) and (b) surface
micromachined MEMS; (c) and (d) bulk micromachined MEMS
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Figure 5: Two-dimensional lumped element model
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In (3.28), 6 is the angle between the electrodes, € is the space permittivity constant, w is
the electrode width (in a direction normal to this page), go is the average gap between two
electrodes, and L is the length of the ground (bottom) electrode. It is important to remember
that this model is derived from the assumption that the angle € is small and, therefore, the
field lines are only slightly curved [50].

The expression for O, given by (3.28) can be rewritten in terms of element nodal

coordinates, x1, ¥, T2, and ys:

Cc = C(e)(xlayhx%yQ) = €W ($2 — xl) In (%) , Y1 #F Y2 (3:29)
Y2 —W Y1
Ty —x
C) = C (w1, 1, 2,12) = 2ew (yi n yj) o M= (3.30)

The element nodal coordinates are the sum of original (non-deformed) coordinates and the

nodal displacements:
w1 = (z1)o+ UM,y = (y)o+ Uél)7 vy = (22)0+ UP, o= (1)o+ Uf) (3.31)

Therefore, the differentials of the nodal coordinates are equal to the differentials of the nodal

displacements:
doy =dU", dyy =dUS", dwy=dUP, dy,=dU (3.32)

Now, we can use the differentials of nodal coordinates to calculate the nodal forces (see
Appendix A), given by (3.27). For small displacements and voltage change (dz;, dy; and dV;,

i =1,2), we have:

70 = f(z + KW de; + K ”)dyz + K#qy, (3.33)
féi) f( i) + K ”)dl"l + K l])dyl + KZ%J)C[V; (3.34)
¢ =g + KDdw; + K{Ddy, + KDV, (3.35)

The forces given by (3.33)-(3.35) are the entries for a Newton - Raphson algorithm of solving
a non-linear problem [48]. In (3.33) - (3.35), the Newton - Raphson restoring forces from
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a previous equilibrium increment are denoted as fg%), fy(é), and q(()i), while the components
of the tangent stiffness matrix are denoted as Kéfﬂ) (¢,r = z,y,u and i,7 = 1,2). These

components are given by:

(i) (i) i
e’ e _ 0 ey _ Ofa”

K@) —

Tx GI]‘ ) Ty ay] ’ zv a‘/]

(1) (i) i)

i _ O iy _Of e _ 9N

e oz’ vy dy; ' ve aV;

o Oql o OqW o Oql)
K@) — K — 21 K@) — 221 3.36
v amj ) vy 8y] ) VU 8‘/3 ( )

Thus, the transducer element is completely defined by the expressions for the element nodal

forces (3.33)-(3.35) and the expressions for a tangent stiffness matrix (3.36).

3.6 VERIFICATION PROBLEMS

3.6.1 Parallel plate capacitive transducer

In this section several problems will be solved to validate the new transducer element. As
a first example, we will compute a static equilibrium state of a parallel plate capacitive
transducer schematically, as shown in Figure 6. The transducer consists of two electrodes
separated by a gap that is a function of applied voltage and a stiffness of a suspending spring.
The problem has an analytical solution for rigid electrodes and a lumped spring without
accounting for fringing electrostatic fields. The top electrode is modelled as a flexible solid
body fixed at the top surface.

Two finite element models are used to compute a static equilibrium of the system: (1) 2-D
generalized transducer element model and (2) 1-D lumped transducer element, TRANS126
[40] (reference solution).

In the first model, the top electrode is meshed with plane stress two-dimensional quadri-
lateral elements [16] (see Figure 7). The Young’s modulus is 10 Pa and Poisson’s ratio is

equal to zero. A unit voltage is applied across the electrodes. The nonlinear static problem
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of electroelasticity is solved using a sparse FE solver [16]. The vertical displacement field is
depicted in Figure 8 for the first model and the second model in Figure 9.

The solution obtained using the new element converged two times slower than the ref-
erence solution (Figure 10). This can be attributed to the fact that the reference solution
was obtained using a one-dimensional lumped element (TRANS126). The vertical electrode
displacement (stroke) vs. the potential drop, V, is depicted in Figure 11. Both, the new
transducer element and the reference lumped element produce very close results (the differ-

ence is within 0.1% margin).

3.6.2 Clamped beam electrode bending

The second problem is considered to be a standard benchmark for coupled-field codes. The
problem was introduced by Gilbert et al in 1996 [51]. The experimental data was used to a
verify sequential coupling tool (CoSolve-EM). In this problem, a clamped-clamped charged
beam is suspended over a grounded substrate with the insolation contact layer deposited
on top (see Figure 12). The problem is defined by the following parameters: the free space
permittivity is 8.854 -107% pF /um, the beam length is 80 wm, the beam thickness is 10 um,
the beam height is 0.5 pm, the air gap is 0.6 pum, the Young’s modulus (silicon) is 169.0
GPa, and the contact layer thickness is 0.1 pum.

Only a half of the beam is modelled due to symmetry. The air gap between the contact
layer and the beam is meshed with the new transducer elements (see Figure 13). The beam
is meshed with plane strain structural elements, PLANE45 [40]. The potential drop, V, is
applied between the beam and the ground. The maximum beam deflection (tip deflection)
is a function of V. The original and deformed mesh are depicted in Figures 14 and 15.

The results of the static analysis (tip displacement as a function of the potential drop)
are compared with the reference solution obtained using the sequential coupling technique
(ESSOLV) [40]. Comparison of the CPU time vs. the element size is depicted in Figure
16. It can be seen, that the solution time for the new element varies between five and ten
seconds for the element size varying between 0.5 um and 4.0 pm. The ESSOLV solution

time, for the fastest case (element size 4.0 um), is about 27 seconds, which is almost seven
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times longer than the new element solution time. Comparison of the converged (in terms of
the element size) ESSOLV tip deflection and the new element solution is shown in Figure
17. Considering the ESSOLV solution as a reference one (it is eventually the same as one
presented in [51]). The Figure 17 demonstrates the importance of the mesh sensitivity
analysis. The tip deflection varies from -0.067 pum to -0.0725 um.

Finally, the hysteresis behavior of the beam is demonstrated in Figure 18. The tip
deflection increases when the potential increases until a bifurcation point is reached. When
V' = 18V, the beam reaches an unstable equilibrium point. Increasing voltage carries the
system into the unstable solution and the beam snaps down to the contact layer (pull-in).
When the contact occurs, the attractive electrostatic force becomes sufficiently higher than
the repulsive structural force. Therefore, it takes much lower voltage (about 12V') to release
the beam. The hysteresis behavior is well known and called pull-in/release phenomena.
Figure 18 shows that the new element produces results virtually indistinguishable from the

results obtained using ESSOLV ANSYS macro.

3.7 SUMMARY

A Tumped 2-D transducer element formulation was developed in this chapter for modeling a
wide range of MEMS devices. The computer code was developed for the ANSYS platform
and benchmark problems were solved. A major assumption was made to neglect fringing
fields, which proved to be accurate and effective for the class of devices studied. The devel-
oped lumped element models were much faster than the sequential coupling models, and they
maintained the same level of accuracy. Based on the benchmark problems, hysteresis prob-
lems with contact can be effectively solved using the new element. It allows the modeling of
a great variety of real-world problems. However, for systems with dominant fringing fields,

such as combdrives, motors, mirrors, distributed coupled field models are still required.
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