2,274 research outputs found

    Internet of things (IoT) based adaptive energy management system for smart homes

    Get PDF
    PhD ThesisInternet of things enhances the flexibility of measurements under different environments, the development of advanced wireless sensors and communication networks on the smart grid infrastructure would be essential for energy efficiency systems. It makes deployment of a smart home concept easy and realistic. The smart home concept allows residents to control, monitor and manage their energy consumption with minimal wastage. The scheduling of energy usage enables forecasting techniques to be essential for smart homes. This thesis presents a self-learning home management system based on machine learning techniques and energy management system for smart homes. Home energy management system, demand side management system, supply side management system, and power notification system are the major components of the proposed self-learning home management system. The proposed system has various functions including price forecasting, price clustering, power forecasting alert, power consumption alert, and smart energy theft system to enhance the capabilities of the self-learning home management system. These functions were developed and implemented through the use of computational and machine learning technologies. In order to validate the proposed system, real-time power consumption data were collected from a Singapore smart home and a realistic experimental case study was carried out. The case study had proven that the developed system performing well and increased energy awareness to the residents. This proposed system also showcases its customizable ability according to different types of environments as compared to traditional smart home models. Forecasting systems for the electricity market generation have become one of the foremost research topics in the power industry. It is essential to have a forecasting system that can accurately predict electricity generation for planning and operation in the electricity market. This thesis also proposed a novel system called multi prediction system and it is developed based on long short term memory and gated recurrent unit models. This proposed system is able to predict the electricity market generation with high accuracy. Multi Prediction System is based on four stages which include a data collecting and pre-processing module, a multi-input feature model, multi forecast model and mean absolute percentage error. The data collecting and pre-processing module preprocess the real-time data using a window method. Multi-input feature model uses single input feeding method, double input feeding method and multiple feeding method for features input to the multi forecast model. Multi forecast model integrates long short term memory and gated recurrent unit variations such as regression model, regression with time steps model, memory between batches model and stacked model to predict the future generation of electricity. The mean absolute percentage error calculation was utilized to evaluate the accuracy of the prediction. The proposed system achieved high accuracy results to demonstrate its performance

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    A transition from manual to Intelligent Automated power system operation -A Indicative Review

    Get PDF
    This paper reviews the transition of the power system operation from the traditional manual mode of power system operations to the level where automation using Internet of Things (IOT) and intelligence using Artificial Intelligence (AI) is implemented. To make the review paper brief only indicative papers are chosen to cover multiple power system operation based implementation. Care is taken there is lesser repeatation of similar technology or application be reviewed. The indicative review is to take only a representative literature to bypass scrutinizing multiple literatures with similar objectives and methods. A brief review of the slow transition from the traditional to the intelligent automated way of carrying out power system operations like the energy audit, load forecasting, fault detection, power quality control, smart grid technology, islanding detection, energy management etc is discussed .The Mechanical Engineering Perspective on the basis of applications would be noticed in the paper although the energy management and power delivery concepts are electrical

    FedDP: A privacy-protecting theft detection scheme in smart grids using federated learning

    Get PDF
    In smart grids (SGs), the systematic utilization of consumer energy data while maintaining its privacy is of paramount importance. This research addresses this problem by energy theft detection while preserving the privacy of client data. In particular, this research identifies centralized models as more accurate in predicting energy theft in SGs but with no or significantly less data protection. Current research proposes a novel federated learning (FL) framework, namely FedDP, to tackle this issue. The proposed framework enables various clients to benefit from on-device prediction with very little communication overhead and to learn from the experience of other clients with the help of a central server (CS). Furthermore, for the accurate identification of energy theft, the use of a novel federated voting classifier (FVC) is proposed. FVC uses the majority voting-based consensus of traditional machine learning (ML) classifiers namely, random forests (RF), k-nearest neighbors (KNN), and bagging classifiers (BG). To the best of our knowledge, conventional ML classifiers have never been used in a federated manner for energy theft detection in SGs. Finally, substantial experiments are performed on the real-world energy consumption dataset. Results illustrate that the proposed model can accurately and efficiently detect energy theft in SGs while guaranteeing the security of client data

    Internet of Things for Sustainability: Perspectives in Privacy, Cybersecurity, and Future Trends

    Get PDF
    In the sustainability IoT, the cybersecurity risks to things, sensors, and monitoring systems are distinct from the conventional networking systems in many aspects. The interaction of sustainability IoT with the physical world phenomena (e.g., weather, climate, water, and oceans) is mostly not found in the modern information technology systems. Accordingly, actuation, the ability of these devices to make changes in real world based on sensing and monitoring, requires special consideration in terms of privacy and security. Moreover, the energy efficiency, safety, power, performance requirements of these device distinguish them from conventional computers systems. In this chapter, the cybersecurity approaches towards sustainability IoT are discussed in detail. The sustainability IoT risk categorization, risk mitigation goals, and implementation aspects are analyzed. The openness paradox and data dichotomy between privacy and sharing is analyzed. Accordingly, the IoT technology and security standard developments activities are highlighted. The perspectives on opportunities and challenges in IoT for sustainability are given. Finally, the chapter concludes with a discussion of sustainability IoT cybersecurity case studies
    • …
    corecore