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Abstract: In smart grids (SGs), the systematic utilization of consumer energy data while maintaining
its privacy is of paramount importance. This research addresses this problem by energy theft detection
while preserving the privacy of client data. In particular, this research identifies centralized models
as more accurate in predicting energy theft in SGs but with no or significantly less data protection.
Current research proposes a novel federated learning (FL) framework, namely FedDP, to tackle this
issue. The proposed framework enables various clients to benefit from on-device prediction with
very little communication overhead and to learn from the experience of other clients with the help
of a central server (CS). Furthermore, for the accurate identification of energy theft, the use of a
novel federated voting classifier (FVC) is proposed. FVC uses the majority voting-based consensus of
traditional machine learning (ML) classifiers namely, random forests (RF), k-nearest neighbors (KNN),
and bagging classifiers (BG). To the best of our knowledge, conventional ML classifiers have never
been used in a federated manner for energy theft detection in SGs. Finally, substantial experiments
are performed on the real-world energy consumption dataset. Results illustrate that the proposed
model can accurately and efficiently detect energy theft in SGs while guaranteeing the security of
client data.

Keywords: federated learning; smart grids; federated voting classifier; privacy protection; theft detection

1. Introduction

Smart grids (SG) are among the most important form of the Internet of Things (IoT)
network, which brings comfort to users with the easily managed production, dispensation,
and utilization of energy [1]. An SG provides unwavering quality, adaptability, and
proficiency of power systems to consumers [2,3]. With the auspicious development of
SG, it has extracted expanding consideration from states, ventures, and researchers. As
neoteric research indicated that the SG market increase from USD 23.8 billion in 2018
to USD 61.3 billion by 2023 [4]. SG can be enhanced further by integrating it with new
technologies such as machine learning (ML) cloud computing and fifth generation (5G)
cellular networks [5]. With the popularity of the IoT, appliances such as smart meters
(SMs) can produce an enormous amount of data [6]. Data-driven AI technologies could
benefit from this data to enhance the user experience with customized energy strategies.
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These technologies also enable the service providers (SPs) to better predict the power
consumption and increase profits [7].

Despite the conspicuous features of SMs, they endanger the user’s privacy [8,9]. For
instance, SPs can easily infer the consumer’s routines and daily lifestyle from the real-time
energy consumption data collected by SMs. Moreover, the knowledge of these trends even
results in crimes such as energy theft. In particular, client energy consumption data needs
to be transferred to the central server (CS) for knowledge extraction [10,11], which, as a
result, compromises the security and confidentiality of the user energy data. Previous
studies show significant annual financial losses due to energy theft, e.g., Canada faces a
loss of USD 100 million [12], USD 170 million are lost in the United Kingdom [13], and in
the United States, energy theft can cause losses yearly of USD 6 billion [14].

Federated learning (FL), also known as collaborative learning, is a novel ML approach
that trains the ML model over different devices. These devices hold different local data
samples and are placed at various locations. FL allows SPs to extract intuition from users’
data while enabling clients to keep their private data on their respective devices [15].
Figure 1 depicts the generic framework for the FL-enabled SGs. In this, only the parameters
of the ML model need to be shared with the CS while keeping the user data secure on
the trusted theft detection station (TDS). TDS downloads the parameters from CS and
performs training and evaluation of AI models using the local data. FL is an iterative
process that is repeated for a specific number of iterations or until a predefined accuracy is
achieved [16] or the loss of the ML model is minimized [17]. CS, instead of receiving all the
user data, only aggregates the parameters of the model from various TDS, which enables
collaborative learning.
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Figure 1. Federated learning enables smart grids networks for theft detection.

Despite the benefits of FL, it faces some basic challenges while implementing the ML
models. For instance, cutting-edge deep neural networks (DNN) have extensively been
used for identifying the energy theft in SGs. The problem with these models is that they
require significant computing resources that are not a viable option for resource-constrained
SGs. Additionally, these models have low accuracy and precision in energy theft detec-
tion [17–19]. Motivated by this, this research proposes the novel energy theft detection
model for SGs which has relatively high accuracy and can preserve consumer data.
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Contributions

The major contributions of this research are summed up below.

• First, a novel framework, federated data privacy (FedDP), is presented for energy theft
detection in SGs.

• Secondly, to improve the accuracy and to avoid bias of any single ML algorithm, an
ensemble learning classifier is proposed in a federated learning environment, named
the federated voting classifier (FVC).

• FVC can identify the energy theft in SGs, even in the presence of highly unbalanced
data, with an accuracy of 91.67%, which is a relatively better performance than the
existing techniques.

• Moreover, FVC can also significantly outperform other state-of-the-art algorithms in
terms of execution time when implemented on the same hardware.

More specifically, FedDP has significant characteristics. First, energy utilization data
from SMs are placed in TDSs that can preserve their privacy. Second, all TDSs can coopera-
tively train and evaluate the ML model by applying the FL in which only the parameters of
the ML model are shared with the CS for aggregation. FVC takes the consensus of tradi-
tional ML models, namely, random forests (RF), k-nearest neighbors (KNN), and bagging
classifiers (BG). Experiments on the real energy usage dataset show that FVC could surpass
the other advanced models concerning precision and log loss. The major contribution of
this research is illustrated in Figure 2 below.
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2. Literature Review

Reviewed literature in this section focuses on energy theft detection in SGs and
FL schemes.

2.1. Energy Theft in SGs

Energy theft is the primary concern in SGs, and therefore a significant amount of the
literature is based on proposing new ML models for this problem. To identify electricity
theft, Zheng et al. [20] presented the novel wide and deep convolutional neural network
(CNN). Moreover, a model established on the three gradients boosting was suggested
by Punmiya et al. in 2019 [21]. Their proposed model initially extracted the intrinsic
laws from the recorded energy utilization data. Later, the authors employed the gradient
boosting, categorical boosting, and light gradient boosting methods to accurately detect
the energy theft in smart grids. Results depict that the model has superior performance
when compared with other ML models. To better detect electricity theft in smart grids,
Li et al., 2019 [22] presented the three-stage models using ML and various statistical models
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to better detect electricity theft in smart grids. The authors found out that the proposed
technique can achieve high theft detection accuracy. These studies, however, focus on theft
sensing in the context of power consumption, and Ismail et al., 2020 [23] emphasized theft
detection in distributed power generation systems.

In addition to detecting electricity and power theft in SGs, the application of security
and privacy is also gaining traction. This is because the established networks need to follow
different laws and policies, such as the General Data Protection Regulation (GDPR) [24].
To this end, Yao et al. in 2019 [25] suggested the use of a CNN for detailed examination of
consumption data along with the implementation of homomorphic encryption to secure the
transmitting data. Furthermore, the use of functional encryption for information security
and a feedforward neural network was proposed by Ibrahim et al. [26] in 2021.

All the mentioned approaches can accurately perceive energy theft in SGs, but this is
at the cost of the privacy of user data. In other words, all the user data is sent to the central
entity for analysis, which causes huge computational overheads and network congestion.
Although some studies use encryption to protect the data before transmitting, this require
additional computations at the edge node in IoT. As compared to the existing solutions, the
proposed FedDP framework employs FL to amplify the privacy and security of consumers’
data. Moreover, this research develops the novel FVC algorithm that can exceed the existing
solutions for theft detection in SGs.

2.2. Applications of Federated Learning

The majority of the research focuses on applying encryption algorithms to the users’
raw data, which is too arduous and laborious to implement [27]. To address this issue,
recent studies have used FL to collectively train and test ML models while keeping data
private on the trusted nodes. Only the specification of the ML algorithms is shared with the
server, which can notably reduce the security and computational problems in centralized
ML [28]. In [29], Li et al. exerted FL to examine the unusual actions of the user. In
contrast, Sater et al. in [30] reduced the response delay using FL to detect anomalies in
smart buildings. Moreover, a multi-layer perceptron (MLP) model was proposed in a
federated manner for medical devices [31]. A federated CNN framework for wearable
medical devices was presented by Chen et al. in 2020 [18]. In addition, Liu et al. proposed
the attention-based long short-term memory (LSTM) for industrial IoT [32]. Furthermore,
the security of FL in the application process was investigated by Li et al. [33] in 2020.
However, the authors concentrated on malicious third parties rather than the security of
customers’ information.

2.3. Federated Learning in Smart Grids

Despite the advantages of FL in IoT, it has not been completely explored for distributed
energy theft detection. For instance, Liu et al. [34] in 2022 proposed an FL-enabled frame-
work for understanding the different patterns of power utilization in smart grids. Moreover,
the use of FL in collaboration with edge cloud in SGs was proposed by Su et al. [17] in 2021.
Only recently, a novel FedDetect approach was introduced by Wen et al. [19]. The authors
proposed temporal convolutional networks (TCN) to distinguish between normal energy
usage and energy theft in SGs. The problem with these DNN models is that they require
high computational power and have an enormous number of parameters. These models
also require a huge amount of data for training. Moreover, these models are less precise,
have high training time, and may not be practicable in resource-constrained IoT networks.
This study presents the novel FVC that can accurately and precisely detect theft in SGs
environments with less computational overhead.

3. Methodology

In this subsection, the fundamental ideas of the proposed FedDP architecture are intro-
duced. Mainly, the FedDP model is explained, and the proposed FVC model is elaborated.
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3.1. System Model

As described earlier, federated data privacy (FedDP) aims to design a privacy-preserving
FL framework that can exploit ML classifiers to identify energy theft in a distributed fashion.
FL is the platform that supports ML classification algorithms over multiple decentralized
clients that hold the local data samples. This provides data privacy by enabling on-device
prediction without sharing the complete data. Moreover, for predicting the energy theft in
SGs, FedDP proposes a voting classifier in a federated manner. The voting classifier is an
ensemble learning classification model that operates by taking the consensus of the different
ML classification models to predict the final class.

FedDP is a two-tier framework that has two major constituents.

(1) Theft detection station (TDS): A TDS can obtain real-time data on energy utilization
from the group of SMs in its vicinity. This research assumes that (1) the wired or
wireless connection between SM and TDS is secure. (2) TDS are low-powered devices
but have sufficient storage and processing power that can store the data along with
the training of the ML model. (3) Each TDS can automatically infer the data label
that associates with previous data of an SM with electricity thievery. (4) TDS can
also securely communicate with CS for the exchange of the ML model parameters.
In FedDP, TDS is considered a federated client. During the training stage, TDSs
download the model parameters (e.g., weights in the neural networks and number of
neighbors, Leaf_size, etc., in KNN) from the server and evaluate them using local data.

(2) Central server (CS): It is the initialization of the FL process and is responsible for
broadcasting default parameters and learning models to all TDS. In the FL process,
the CS can receive the model parameters, accumulate them, and can broadcast the
improved parameters to all TDSs.

3.2. Privacy-Preserving FedDP

As the energy-related data of each user is limited, TDS pivot on the assortment of large,
best quality data from SMs. In each training round of TDS, it can determine Xtrain ∈ X for
training the global classification model CM. Additionally, Xtrain can be represented by the
collection of input samples corresponding with their respective label {xt, yt}Xtrain

t=1 , where xt is
the single SM record and yt is its corresponding label (i.e., theft or no theft). A fundamental
task of any ML model is to learn the mapping of input samples to output labels and the
specification of CM, which predicts the yt relative to xt while increasing the accuracy or
mitigating the loss [17]. floss identifies the difference between the predicted and true labels of
each training instance {xt, yt}. For all samples in X, floss is the mean loss of all instances in
Xtrain. Therefore, for each TDS, the overall loss is the mean prediction loss of all instances in
Xtrain. The notations used in this paper are listed in Glossary.

L(CM) =
1

Xtrain

Xtrain

∑
t=1

floss(xt; CM) (1)

The major purpose of the FL is to find the most advantageous parameters of the ML
model that lessen the global loss function.

CM∗ = argminCM(L) (2)

FedDP proposes a novel framework for collaborative learning of TDS. It has various
phases that are elaborated below and illustrated in Figure 3.
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Phase 1: In phase 1 of FedDP, CS initializes CM with any parameters that are necessary
for the training of the ML model. Moreover, CS also disseminates these specifications to
all the participating clients, i.e., TDS. Once each TDS receives the parameters from CS,
the local model is trained on the local heterogeneous dataset to generate a new set of
model parameters.

Phase 2: Once θ(T), a set of TDSs, has updated local parameters, then these character-
istics are sent to CS for aggregation. CS executes the federated aggregation algorithm that
computes the average of parameters received from individual TDS. In this way, a global
and more accurate model is developed. The job of CS is to allow collective learning in
such a way that each TDS learns from the experience of other detection stations and learns
to build an accurate machine learning model. This enables the ML model to continually
evolve and update itself.

Phase 3: Subsequently, CS transmits the aggregated parameters to each participating
TDS, so that TDS again trains and evaluates CM on its local data by integrating these
updated parameters. After the third phase in FedDP, the federated process again continues
for a specific number of iterations.

3.3. Predictive Methods

Several classification algorithms are used to predict the energy theft in the network.
These models are trained and evaluated on the training and test data. This research
proposes a voting-based ensemble of RF, KNN, and BG in a federated manner. To the
best of our knowledge, conventional ML algorithms have never been used in FL. These
classifiers are briefly described below.

3.3.1. Random Forest (RF)

RF was inspired by decision-tree learning and was first proposed by Breiman in
2001 [35] as a classifier. It consists of an abundance of tree-structured classifiers so that
each tree depends on the value of individualistic and same arbitrary vectors. In contrast,
each tree chooses the most successive class in the dataset. In RF, every node is divided by
utilizing the best attributes among the subspace of features, picked at random for that node.
This technique is vigorous and performs well when contrasted with other regularly used
ML models. However, its execution depends on identifying several trees to develop and
the quantity of contenders arbitrarily selected at each stage. Generally, the user specifies
the number of trees in RF, and this can be done by starting from a low number and slowly
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increasing it. This study uses 10 trees to train the RF model. Moreover, the model uses the
Gini index to split the whole dataset to create the subset of data for each tree.

3.3.2. k-Nearest Neighbors

The k-nearest neighbors (KNN) classification technique was proposed by Cover et al.
in [36]. It is a classification method that classifies the test data by looking at the nearby
set of predicted samples. Two choices should be remembered while executing the KNN.
First, the value of k determines that many neighbors ought to be viewed to characterize
the test sample and the distance metric to evaluate the distance between the test sample
and previously classified samples (i.e., train samples). This study uses 3 as the value of k,
and the Euclidean distance function calculates the interspace between Xtrain and Xtest. To
optimize the memory utilization, leaf_size is set to 5. These values are taken on test and trial
basis. If Eij denotes the distance between ith and jth datapoint and aik and ajk constitutes
the values of the kth variable for sample i and j, respectively, then Euclidean distance can
be given as:

Eij =

√
∑

i

(
aik − ajk

)2
(3)

3.3.3. Bagging Classifier (BG)

In 1996, Breiman [37] first presented bagging predictors as a model for creating dif-
ferent indicators and utilizing them to make accumulated predictors. It is an ensemble
model, that aims to boost further the strength and accuracy of the machine learning model.
It accumulates the mean over the variations while predicting a numerical result and does
a vote when predicting a class. The essential concept of the bagging classifier is that it
generated many “weak learners” and utilized them to construct “strong learners”. It builds
numerous decision trees (DTs) that are weak learners and merges them to produce a strong
learner. Each tree gives the decision in favor of a class, and the last expectation of the new
class is acquired by the class that has the most votes. Using the decision tree in the bagging
classifier shows that our dataset has a high disparity among classes. So, DTs offer good
behavior by weighting the outputs of the trees and lessening the variance of the dataset
and avoiding over-fitting. This study uses the ensemble of 10 DTs that can cast the vote of
the majority class to give the final prediction.

3.4. Proposed FVC Algorithm

This research proposes a novel federated voting classifier (FVC) for energy theft
detection. FVC is an ensemble technique that combines various ML models to make one
optimal predictive model. The ensemble model combines the output of different ML
models, regarding them as the “committee” of multiple decision-makers. FVC is similar
to the bagging classifier, with the main difference being that the bagging classifier uses
an ensemble of decision trees. In contrast, FVC takes the vote of RF, KNN, and BG, as
shown in Figure 4. Every classifier in the voting classifier is run independently on the
training data, and FVC uses the majority consensus of all the models in FVC. For example,
let the individual model, RF, KNN, and BG in FVC be given by CLi and their corresponding
predictions are specified by yi, yj, and yk, respectively. Moreover, ŷxtest represents the final
prediction of the FVC model, then the consensus of FVC can be given by:

ŷXtest(CMFVC) = argmaxCLi(Xtest) (4)
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FVC is trained on each client on the local data partitioned into Xtrain and Xtest. Fur-
thermore, an evaluation of the FVC model is performed on the TDS. After that, each client
sends model parameters to the server to execute the aggregation of parameters from each
TDS. These rounds are computed multiple times and optimized model CM∗ is achieved.

4. Methodology
4.1. Computing Platform

To evaluate this research, FedDP is implemented by creating virtual FL clients and
servers on the same machine. The system used has an Intel i7-6700 CPU with 8GB RAM.
Regarding training and testing FL models, this research uses the Windows operating
system, and flower [38] is used as a federated framework.

4.2. Dataset Description

Dataset used in this research is from State Grid Corporation of China (SGCC) [25],
which recorded the energy utilization of 42,372 customers for 1035 days. SGCC data is
binary data having labels theft or no theft. The dataset is divided randomly so each TDS
can have a different dataset. This research divides the data set so that 80% of data are for
training the ML model, and 20% of data are for testing the model.

4.3. Evaluation Metrics

Numerous performance metrics could be used to evaluate the ML model. To measure
the execution of the various models, this research uses accuracy, precision, and F-measure.
These criteria are measured based on standard indicators, true positive (TP), true negative
(TN), false positive (FP), and false negative (FN). For example, TP and TN decide the
absolute number of accurately characterized tests, whereas FP and FN show the count
where the ML model has been misclassified. Then accuracy, precision, f_measur, and s recall
are given by:

accuracy =
TP + TN

TP + TN + FP + FN
(5)

precesion =
TP

TP + FP
(6)

f _measure =
2 ∗ TP

2 ∗ TP + FP + FN
(7)

recall =
TP

TP + FN
(8)
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This study also utilizes log loss and root-mean-squared error (RMSE) as performance
criteria. If yi represents the true label, p(yi) is the predicted probability of that respective
label, and ŷi is the predicted class for ith sample, and ntest are the sample count in Xtest,
then log loss and RMSE can be given by:

llog = − 1
ntest

ntest

∑
i

ỹi . log(p(yi)) + (1− yi) . log(1− p(yi)) (9)

RMSE =

√√√√ntest

∑
i

(ŷi − yi)
2

ntest
(10)

Moreover, to illustrate the computation overhead of various ML models, federated
time (FT) is used, which is the total time taken by one FL round [39].

FT = T( f ci) + T(CS) + T(average) (11)

where f ci is the ith federated client, T( f ci) is the complete time taken by any client, T(CS)
dis the time the server takes to communicate with the participating clients, and T(average)
represents the entire time taken for implementation of the FL averaging method.

5. Results and Discussion

The experimental setup for this study is aimed to substantiate the proposed model
and measure its efficacy to the existing state-of-the-art schemes. In addition, the results are
also compared with the centralized voting classifier (VC) by considering the performance
measures discussed in Section 4.3.

5.1. Comparison with Centralized Voting Classifier

To compare the results of the FVC and centralized voting classifier, five clients are
considered, each having an individualistic dataset. Five experiments are performed using
five rounds of federated communication and in each test, and the last round’s performance
is reported. Accuracy, precision, F-measure, and recall are shown in Tables 1–4, respectively.
In each of the comparisons, centralized voting classifiers have higher performance but
with significant data privacy issues as all the data needs to be transferred to the CS. In
comparison, FVC can achieve almost the same performance while assuring data privacy.

Table 1. Comparison of accuracy between different clients and centralized model.

After 5
Rounds of FL Client 1 Client 2 Client 3 Client 4 Client 5 Centralized

Test 1 91.44 91.58 91.42 91.06 91.33 92.08
Test 2 91.25 91.61 91.41 91.05 91.35 91.91
Test 3 91.31 91.44 91.37 91.19 91.64 91.97
Test 4 91.56 91.51 91.39 91.33 91.54 91.91
Test 5 91.53 91.67 91.12 91.12 91.59 91.81
Avg 91.42 91.56 91.34 91.15 91.49 91.93
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Table 2. Comparison of precision between different clients and centralized model.

After 5
Rounds of FL Client 1 Client 2 Client 3 Client 4 Client 5 Centralized

Test 1 88.78 88.68 88.77 87.81 88.00 90.75
Test 2 88.00 88.75 88.63 88.07 87.86 90.45
Test 3 88.26 88.19 88.46 88.40 89.02 90.57
Test 4 89.32 88.22 88.49 88.99 88.47 90.41
Test 5 89.16 89.03 87.45 88.10 88.80 90
Avg 88.70 88.57 88.36 88.27 88.43 90.43

Table 3. Comparison of f_measure between different clients and centralized model.

After 5
Rounds of FL Client 1 Client 2 Client 3 Client 4 Client 5 Centralized

Test 1 84.43 88.63 87.92 87.69 88.47 89.93
Test 2 88.04 88.86 88.03 88.25 88.31 89.16
Test 3 88.15 88.51 88.41 88.02 88.43 89.29
Test 4 88.49 88.21 88.05 88.24 88.17 89.19
Test 5 88.47 88.72 87.98 87.54 88.59 89.12
Avg 87.51 88.58 88.07 87.94 88.39 89.33

Table 4. Comparison of recall between different clients and centralized model.

After 5
Rounds of FL Client 1 Client 2 Client 3 Client 4 Client 5 Centralized

Test 1 91.44 91.58 91.42 91.06 91.33 91.84
Test 2 91.25 91.61 91.41 91.05 91.35 91.87
Test 3 91.31 91.44 91.37 91.19 91.64 91.97
Test 4 91.56 91.51 91.39 91.33 91.54 91.90
Test 5 91.53 91.67 91.12 91.12 91.59 91.83
Avg 91.41 91.56 91.34 91.15 91.49 91.88

Additionally, an illustration of the voting classifier on a central server and FVC in
terms of log loss and RMSE is illustrated in Figures 5 and 6, respectively. It is noticeable
that centralized voting classifiers have comparatively less loss, but all of the data needs
to be sent to CS in a centralized model, which compromises privacy. Moreover, different
clients have varying log loss and RMSE, which shows that each TDS has a different dataset.
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5.2. Comparison with Other State-of-the-Art Models

Finally, the comparison of previous state-of-the-art models is given in this section.
The accuracy, precision, F-measure, and recall findings are expressed in Table 5, whereas
Figures 7 and 8 illustrate the log loss and RMSE. Two federated clients (i.e., TDSs) and
one federated round are considered for these experiments. The neural networks used in
this research in a federated manner are simple recurrent neural networks (RNN), simple
long-short term memory (LSTM), and simple gated recurrent units (GRU). Each model
used one input layer, one RNN/LSTM/GRU layer with 64 neurons and “tanh” as an
activation function. These neural networks also have one output layer with “sigmoid”
as an activation function. Moreover, results of FVC are also compared with the previous
literature; specifically, FedCNN was proffered by Chen et al. [18] for abnormal detection
in wearable health, FedMLP was presented by Schneble et al. [31] for identification of
abnormalities in computer programs, and FedTCN was used by Wen et al. [19] for energy
theft detection. It can be seen from Table 4 that the accuracy, precision, and F-measure of
FVC are the highest among all the models. In addition, Figures 7 and 8 illustrate that the
proposed FVC approach has the lowest log loss and RMSE.

Table 5. Comparison of previous literature with FVC in terms of accuracy, precision, F-measure,
and recall.

Models Accuracy Precision F-Measure Recall

FedTCN [19] 91.54 83.79 87.50 91.28

FedCNN [18] 91.31 83.86 87.17 91.05

FedMLP [31] 89.14 86.37 87.48 89.14

Fed Simple RNN 91.50 83.73 87.45 88.10

Fed Simple LSTM 91.53 88.38 87.86 90.10

Fed Simple GRU 90.87 86.63 87.92 88.56

FVC 91.67 89.03 88.72 91.67
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Computation Overhead

This section compares computation overhead in terms of federated time (Equation (10))
of FVC with earlier research. It can be seen from Figure 9 that two clients and one round
of communication between server and client is the fastest in FedMLP, but this model is less
accurate (Table 4). Although the federated time for FVC is approximately 35 s, it is acceptable
as it provides the highest accuracy and lowest loss.
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6. Conclusions

This study investigates how to identify energy theft in SGs while ensuring the privacy
of users’ data. A novel federated framework, FedDP, is proposed that uses traditional
ML algorithms to predict energy theft behaviors. FedDP first ensures the privacy of data
sensed by the SMs, and to enable collaborative learning, a server-based approach is used
to aggregate the parameters of the ML classifier with the computational overhead of
approximately 35 s. This overhead is significantly better when compared with state-of-the-
art models. Current research also proposes the use of a novel federated voting classifier
(FVC) to detect energy theft while using the real-world dataset, accurately. Comparative
results demonstrate that the proposed FVC performed better when compared with other
models. Results show that FVC has the highest accuracy and precision of 91.67% and 89.03,
respectively, when compared with the existing models. Moreover, slight improvements can
also be seen in terms of F_measure and recall (Table 5). The efficacy of the FVC classifier
was also estimated using RMSE and log loss. Results illustrate that the FVC has the lowest
loss (i.e., 0.2884 RMSE and log loss of 0.5050). In future work, we may also want to include
the security schemes to protect the parameters when they are exchanged between server
and client. Moreover, it is also possible for CS to learn user behavior from the parameters it
receives. To avoid this, the parameters could be encrypted using homomorphic encryption
so that the CS cannot even look at the parameters.
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Glossary

f ci ith federated client
floss Loss function of CM for a data sample
ntest Total number of samples in testing data
p(yi) Predicted probability of the ith label
CM Classification model
CM∗ Classification model with optimal parameters
Eij Euclidean distance between ith and jth data point
FT Total execution time of the federated process
L Overall loss of each TDS
T(average) Time taken by the averaging algorithm running on the server
T(CS) Time taken by the server for communication
T( f ci) Time taken by ith federated client
X Whole dataset
Xtest Testing dataset on each client
Xtrain Training dataset on each client
θ(T) Set of TDSs
ŷi Predicted class for the ith sample
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