1,003 research outputs found

    Power allocation in wireless multi-user relay networks

    Get PDF
    In this paper, we consider an amplify-and-forward wireless relay system where multiple source nodes communicate with their corresponding destination nodes with the help of relay nodes. Conventionally, each relay equally distributes the available resources to its relayed sources. This approach is clearly sub-optimal since each user experiences dissimilar channel conditions, and thus, demands different amount of allocated resources to meet its quality-of-service (QoS) request. Therefore, this paper presents novel power allocation schemes to i) maximize the minimum signal-to-noise ratio among all users; ii) minimize the maximum transmit power over all sources; iii) maximize the network throughput. Moreover, due to limited power, it may be impossible to satisfy the QoS requirement for every user. Consequently, an admission control algorithm should first be carried out to maximize the number of users possibly served. Then, optimal power allocation is performed. Although the joint optimal admission control and power allocation problem is combinatorially hard, we develop an effective heuristic algorithm with significantly reduced complexity. Even though theoretically sub-optimal, it performs remarkably well. The proposed power allocation problems are formulated using geometric programming (GP), a well-studied class of nonlinear and nonconvex optimization. Since a GP problem is readily transformed into an equivalent convex optimization problem, optimal solution can be obtained efficiently. Numerical results demonstrate the effectiveness of our proposed approach

    Multiobjective auction-based switching-off scheme in heterogeneous networks: to bid or not to bid?

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The emerging data traffic demand has caused a massive deployment of network infrastructure, including Base Stations (BSs) and Small Cells (SCs), leading to increased energy consumption and expenditures. However, the network underutilization during low traffic periods enables the Mobile Network Operators (MNOs) to save energy by having their traffic served by third party SCs, thus being able to switch off their BSs. In this paper, we propose a novel market approach to foster the opportunistic utilization of the unexploited SCs capacity, where the MNOs, instead of requesting the maximum capacity to meet their highest traffic expectations, offer a set of bids requesting different resources from the third party SCs at lower costs. Motivated by the conflicting financial interests of the MNOs and the third party, the restricted capacity of the SCs that is not adequate to carry the whole traffic in multi-operator scenarios, and the necessity for energy efficient solutions, we introduce a combinatorial auction framework, which includes i) a bidding strategy, ii) a resource allocation scheme, and iii) a pricing rule. We propose a multiobjective framework as an energy and cost efficient solution for the resource allocation problem, and we provide extensive analytical and experimental results to estimate the potential energy and cost savings that can be achieved. In addition, we investigate the conditions under which the MNOs and the third party companies should take part in the proposed auction.Peer ReviewedPostprint (author's final draft

    Traffic offloading in future, heterogeneous mobile networks

    Get PDF
    The rise of third-party content providers and the introduction of numerous applications has been driving the growth of mobile data traffic in the past few years. In order to tackle this challenge, Mobile Network Operators (MNOs) aim to increase their networks' capacity by expanding their infrastructure, deploying more Base Stations (BSs). Particularly, the creation of Heterogeneous Networks (HetNets) and the application of traffic offloading through the dense deployment of low-power BSs, the small cells (SCs), is one promising solution to address the aforementioned explosive data traffic increase. Due to their financial implementation requirements, which could not be met by the MNOs, the emergence of third parties that deploy small cell networks creates new business opportunities. Thus, the investigation of frameworks that facilitate the implementation of outsourced traffic offloading, the collaboration and the transactions among MNOs and third-party small cell owners, as well as the provision of participation incentives for all stakeholders is essential for the deployment of the necessary new infrastructure and capacity expansion. The aforementioned emergence of third-party content providers and their applications not only drives the increase in mobile data traffic, but also create new Quality of Service (QoS) as well as Quality of Experience (QoE) requirements that the MNOs need to guarantee for the satisfaction of their subscribers. Moreover, even though the MNOs accommodate this traffic, they do not get any monetary compensation or subsidization for the required capacity expansion. On the contrary, their revenues reduce continuously. To that end, it is necessary to research and design network and economic functionalities adapted to the new requirements, such as QoE-aware Radio Resource Management and Dynamic Pricing (DP) strategies, which both guarantee the subscriber satisfaction and maximization the MNO profit (to compensate the diminished MNOs' revenues and the increasing deployment investment). Following a thorough investigation of the state-of-the-art, a set of research directions were identified. This dissertation consists of contributions on network sharing and outsourced traffic offloading for the capacity enhancement of MNO networks, and the design of network and economic functions for the sustainable deployment and use of the densely constructed HetNets. The contributions of this thesis are divided into two main parts, as described in the following. The first part of the thesis introduces an innovative approach on outsourced traffic offloading, where we present a framework for the Multi-Operator Radio Access Network (MORAN) sharing. The proposed framework is based on an auction scheme used by a monopolistic Small Cell Operator (SCO), through which he leases his SC infrastructure to MNOs. As the lack of information on the future offered load and the auction strategies creates uncertainty for the MNOs, we designed a learning mechanism that assists the MNOs in their bid-placing decisions. Our simulations show that our proposal almost maximizes the social welfare, satisfying the involved stakeholders and providing them with participation incentives. The second part of the thesis researches the use of network and economic functions for MNO profit maximization, while guaranteeing the users' satisfaction. Particularly, we designed a model that accommodates a plethora of services with various QoS and QoE requirements, as well as diverse pricing, that is, various service prices and different charging schemes. In this model, we proposed QoE-aware user association, resource allocation and joint resource allocation and dynamic pricing algorithms, which exploit the QoE-awareness and the network's economic aspects, such as the profit. Our simulations have shown that our proposals gain substantial more profit compared to traditional and state-of-the-art solutions, while providing a similar or even better network performance.El aumento de los proveedores de contenido de terceros y la introducción de numerosas aplicaciones ha impulsado el crecimiento del tráfico de datos en redes móviles en los últimos años. Para hacer frente a este desafío, los operadores de redes móviles (Mobile Network Operators, MNOs) apuntan a aumentar la capacidad de sus redes mediante la expansión de su infraestructura y el despliegue de más estaciones base (BS). Particularmente, la creación de Redes Heterogéneas (Heterogenous Networks, HetNets) y la aplicación de descarga de tráfico a través del despliegue denso de BSs de baja potencia, las células pequeñas (small cells, SCs), es una solución prometedora para abordar el aumento del tráfico de datos explosivos antes mencionado. Debido a sus requisitos de implementación financiera, que los MNO no pudieron cumplir, la aparición de terceros que implementan redes de células pequeñas crea nuevas oportunidades comerciales. Por lo tanto, la investigación de marcos que faciliten la implementación de la descarga tercerizada de tráfico, la colaboración y las transacciones entre MNOs y terceros propietarios de células pequeñas, así como la provisión de incentivos de participación para todas las partes interesadas esencial para el despliegue de la nueva infraestructura necesaria y la expansión de la capacidad. La aparición antes mencionada de proveedores de contenido de terceros y sus aplicaciones no solo impulsa el aumento del tráfico de datos móviles, sino también crea nuevos requisitos de calidad de servicio (Quality of Service, QoS) y calidad de la experiencia (Quality of Experience, QoE) que los operadores de redes móviles deben garantizar para la satisfacción de sus suscriptores. Además, a pesar de que los operadores de redes móviles adaptan este tráfico, no obtienen ninguna compensación monetaria o subsidio por la expansión de capacidad requerida. Por el contrario, sus ingresos se reducen continuamente. Para ello, es necesario investigar y diseñar funcionalidades económicas y de red adaptadas a los nuevos requisitos, tales como las estrategias QoE-conscientes de gestión de recursos de radio y de precios dinámicos (Dynamic Pricing, DP), que garantizan la satisfacción del abonado y la maximización de la ganancia de operador móvil (para compensar los ingresos de los MNOs disminuidos y la creciente inversión de implementación). Después de una investigación exhaustiva del estado del arte, se identificaron un conjunto de direcciones de investigación. Esta disertación consiste en contribuciones sobre el uso compartido de redes y la descarga tercerizada de tráfico para la mejora de la capacidad de redes MNO, y el diseño de funciones económicas y de red para el despliegue y uso sostenible de las HetNets densamente construidas. Las contribuciones de esta tesis se dividen en dos partes principales, como se describe a continuación. La primera parte de la tesis presenta un enfoque innovador sobre la descarga subcontratada de tráfico, en el que presentamos un marco para el uso compartido de la red de acceso de radio de múltiples operadores (Multi-Operator RAN, MORAN). El marco propuesto se basa en un esquema de subasta utilizado por un operador monopólico de celda pequeña (Small Cell Operator, SCO), a través del cual arrienda su infraestructura SC a MNOs. Como la falta de información sobre la futura carga de red y las estrategias de subasta creaban incertidumbre para los MNO, diseñamos un mecanismo de aprendizaje que asiste a los MNO en sus decisiones de colocación de pujas. Nuestras simulaciones muestran que nuestra propuesta casi maximiza el bienestar social, satisfaciendo a las partes interesadas involucradas y proporcionándoles incentivos de participación. La segunda parte de la tesis investiga el uso de las funciones económicas y de red para la maximización de los beneficios de los MNOs, al tiempo que garantiza la satisfacción de los usuarios. Particularmente, diseñamos un modelo que acomoda una gran cantidad de servicios con diversos requisitos de QoS y QoE, tanto como diversos precios, es decir, varios precios de servicio y diferentes esquemas de cobro. En este modelo, propusimos algoritmos QoE-conscientes para asociación de usuarios, asignación de recursos y conjunta asignación de recursos y de fijación dinámica de precios, que explotan la conciencia de QoE y los aspectos económicos de la red, como la ganancia. Nuestras simulaciones han demostrado que nuestras propuestas obtienen un beneficio sustancial en comparación con las soluciones tradicionales y del estado del arte, a la vez que proporcionan un rendimiento de red similar o incluso mejor.Postprint (published version

    A Submodular Optimization Framework for Outage-Aware Cell Association in Heterogeneous Cellular Networks

    Get PDF
    In cellular heterogeneous networks (HetNets), offloading users to small cell base stations (SBSs) leads to a degradation in signal to interference plus noise ratio (SINR) and results in high outage probabilities for offloaded users. In this paper, we propose a novel framework to solve the cell association problem with the intention of improving user outage performance while achieving load balancing across different tiers of BSs. We formulate a combinatorial utility maximization problem with weighted BS loads that achieves proportional fairness among users and also takes into account user outage performance. A formulation of the weighting parameters is proposed to discourage assigning users to BSs with high outage probabilities. In addition, we show that the combinatorial optimization problem can be reformulated as a monotone submodular maximization problem and it can be readily solved via a greedy algorithm with lazy evaluations. The obtained solution offers a constant performance guarantee to the cell association problem. Simulation results show that our proposed approach leads to over 30% reduction in outage probabilities for offloaded users and achieves load balancing across macrocell and small cell BSs

    A low complexity resource allocation algorithm for multicast service delivery in OFDMA networks

    Get PDF
    Allocating and managing radio resources to multicast transmissions in Orthogonal Frequency-Division Multiple Access (OFDMA) systems is the challenging research issue addressed by this paper. A subgrouping technique, which divides the subscribers into subgroups according to the experienced channel quality, is considered to overcome the throughput limitations of conventional multicast data delivery schemes. A low complexity algorithm, designed to work with different resource allocation strategies, is also proposed to reduce the computational complexity of the subgroup formation problem. Simulation results, carried out by considering the Long Term Evolution (LTE) system based on OFDMA, testify the effectiveness of the proposed solution, which achieves a near-optimal performance with a limited computational load for the system

    Non-convex Optimization for Resource Allocation in Wireless Device-to-Device Communications

    Get PDF
    Device-to-device (D2D) communication is considered one of the key frameworks to provide suitable solutions for the exponentially increasing data tra c in mobile telecommunications. In this PhD Thesis, we focus on the resource allocation for underlay D2D communications which often results in a non-convex optimization problem that is computationally demanding. We have also reviewed many of the works on D2D underlay communications and identi ed some of the limitations that were not handled previously, which has motivated our works in this Thesis. Our rst works focus on the joint power allocation and channel assignment problem in the D2D underlay communication scenario for a unicast single-input and single-output (SISO) cellular network in either uplink or downlink spectrums. These works also consider several degrees of uncertainty in the channel state information (CSI), and propose suitable measures to guarantee the quality of service (QoS) and reliability under those conditions. Moreover, we also present a few algorithms that can be used to jointly assign uplink and downlink spectrum to D2D pairs. We also provide methods to decentralize those algorithms with convergence guarantees and analyze their computational complexity. We also consider both cases with no interference among D2D pairs and cases with interference among D2D pairs. Additionally, we propose the formulation of an optimization objective function that combines the network rate with a penalty function that penalizes unfair channel allocations where most of the channels are assigned to only a few D2D pairs. The next contributions of this Thesis focus on extending the previous works to cellular networks with multiple-input and multiple-output (MIMO) capabilities and networks with D2D multicast groups. We also present several methods to accommodate various degrees of uncertainty in the CSI and also guarantee di erent measures of QoS and reliability. All our algorithms are evaluated extensively through extensive numerical experiments using the Matlab simulation environment. All of these results show favorable performance, as compared to the existing state-of-the-art alternatives.publishedVersio
    corecore