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In cellular heterogeneous networks (HetNets), offloading users to small cell base stations (SBSs) leads to a degradation in signal
to interference plus noise ratio (SINR) and results in high outage probabilities for offloaded users. In this paper, we propose a
novel framework to solve the cell association problem with the intention of improving user outage performance while achieving
load balancing across different tiers of BSs. We formulate a combinatorial utility maximization problem with weighted BS loads
that achieves proportional fairness among users and also takes into account user outage performance. A formulation of the
weighting parameters is proposed to discourage assigning users to BSs with high outage probabilities. In addition, we show that
the combinatorial optimization problem can be reformulated as a monotone submodular maximization problem and it can be
readily solved via a greedy algorithm with lazy evaluations. The obtained solution offers a constant performance guarantee to the
cell association problem. Simulation results show that our proposed approach leads to over 30% reduction in outage probabilities
for offloaded users and achieves load balancing across macrocell and small cell BSs.

1. Introduction

In recent years, wireless cellular networks are evolving
towards increasing heterogeneity to cope with the expo-
nential growth of mobile devices and data traffic. With
the proliferation of low power base stations (BSs), such as
picocells and femtocells, heterogeneous networks (HetNets)
can significantly boost network capacity by providing more
radio resources and allowing more aggressive frequency
reuse. HetNets with dense deployments of transmission
points promise large gains in area spectral efficiency and are
envisioned as one of the key technologies to achieve 1000x
increase in data rates in future 5G wireless communication
systems [1].

The dense deployment of small cell BSs (SBSs) makes cell
association quite challenging. Conventional schemes such as
max signal to interference plus noise ratio (SINR) association,
where users are simply associated with the strongest BS in
terms of received signal strength, do not work well under

the HetNets scenarios. Due to the massive difference in
transmission power of SBSs and macrocell BSs (MBSs), this
scheme leads to severe load imbalance and renders the small
cells underutilized [2]. Hence novel cell association schemes
that can proactively offload users to small cells need to be
developed to achieve load balancing among MBSs and SBSs.

However, offloading users to small cells can bring unde-
sired consequences. In a HetNet scenario where SBSs are
cochannelly deployed with MBSs, offloaded users suffer
from strong interference from the MBS which leads to a
degradation in SINR. In fast fading channels this degradation
in user SINR results in a higher probability of outage,
which occurs when the instantaneous SINR falls below a
given threshold. This will greatly degrades the user Quality
of Service (QoS) experiences. Therefore, it will be desired
that we take outage performance into consideration when
devising cell association schemes.

Cell association in the context of HetNets has received
much recent attention. In [3], several popular approaches

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2016, Article ID 4567625, 11 pages
http://dx.doi.org/10.1155/2016/4567625



2 Mathematical Problems in Engineering

are highlighted to cope with the load balancing problem
in HetNets. A practical and simple method is Cell Range
Expansion [4], which applies a predetermined bias to the
received reference signal power from the small cells in order
to extend their coverage area. Although this method is simple
to implement, it is difficult to prescribe the optimal bias
values. Another approach is to adopt a game theoretical
framework, which allows decentralized solutions. For exam-
ple, in [5] the cell association problem is modeled as a
noncooperative game and a distributed learning algorithm
is developed to find a suboptimal user association. Fur-
thermore, the authors of [6] formulate the user association
problem as a many to one matching game with externalities
and an iterative deferred acceptance algorithm is developed
to find a stable matching. However, these methods aim to
find the solutions that achieve Nash equilibrium or stable
outcomes but they do not necessarily yield optimal solutions.
Another popular approach is to adopt a utility optimization
framework and leverage optimization techniques. In such
a framework cell association can be studied along with
other resourcemanagement schemes such as frequency reuse,
beamforming, power control, and resource allocation. There
exist awide variety of choices for the utility functions.A linear
programming (LP) problem with respect to cell association
is formulized in [7] to maximize average user throughput.
In [8] a joint optimization problem over beam forming
vectors and user scheduling is proposed to maximize overall
network throughput. Another joint optimization problem
over cell association and power control is formulized in [9]
to maximize system throughput and reduce overall energy
consumption. However, these problem formulations do not
directly encourage load balancing. To achieve load balancing
we can choose a problem formulation with objective func-
tions that promote fairness among users. Such fairness would
encourage offloading users to less congested small cells. For
example, max-min fairness objective function is chosen in
[10] to achieve fairness through joint cell association and
power control. A more popular choice is a broad class of
utility functions referred to as 𝛼-fairness utilities [11, 12],
where 𝛼 is a tunable fairness parameter to achieve different
tradeoffs between network throughput and user fairness.

The optimization over cell association is in essence a
combinatorial optimization problem due to the requirement
that each user must be assigned to a single BS. A straightfor-
ward way is to circumvent this constraint and assume that
users can be simultaneously associated with multiple BSs.
The relaxation in constraints results in a convex optimization
problem. In [13] the relaxed optimization problem with
proportional fairness utility is solved via Lagrangian dual
decomposition. A coordinate descend method is used to
solve the dual problem in [14]. A dynamic cell association
scheme and range extension algorithm are proposed in [15].
In [16] the relaxed optimization problem is extended to
HetNets with massive MIMO BSs. However, the result is a
fractional solution and multiple BSs association is difficult
to implement. Moreover, the obtained solution is upper
bounded. Instead of relaxing the constraints, a recent work
[17] shows that the combinatorial cell association problem
can be reformulated as a submodular maximization problem

with matroid constraint and can be solved efficiently using
greedymethodswith low complexity.Theobtained solution is
an integer solution and provides a constant factor approxima-
tion for the problem. The result is extended to more general
cases of 𝛼-fairness utility functions in [18].

To alleviate the QoS degradation for offloaded users, cell
association can be studied alongside other techniques such as
power control and intercell interference coordination (ICIC)
using Almost Blank Subframes (ABS) [19–21]. For example,
enhanced ICIC (eICIC) is usually used in combination with
CRE to help offloading traffic to small cells and reduce
interference for offload users. Macrocell BSs can be muted
on ABS subframes and a high bias value can be applied to
SBSs so as to attract more users, which are immune to the
strong intercell interference from macrocells. Determining
the optimal ABS density is crucial as macrocell BSs stop
transmission in ABS subframes. A high ABS density benefits
small cell users but causes performance degradations for
macrocell users. A low ABS density may not be enough to
mitigate interference for offloaded users. However, jointly
determining the optimal cell-specific bias and ABS density is
shown to be intractable [22].Moreover, the eICIC schemes do
not address intratier interference between neighboring small
cells. As HetNets are expected to become increasingly dense,
interference between small cells may become a dominating
factor [23]. Another approach for interference management
is to jointly optimize user association and BS transmission
powers [24]. The resulting optimization problem is a joint
optimization problem subject to QoS constraints such as
minimum SINR or rate constraints. The joint optimization
problem is usually solved in an alternating fashion. However,
this approach has some limitations. The joint optimization
problem has a high computational complexity. When dealing
with the QoS constraints this complexity can rapidly increase
and the feasibility of the solution is difficult to guarantee.
Furthermore implementing power control or ICIC requires
extensive cooperation among all BSs in HetNets.

In addition, few researches on cell association address the
outage performance in fast fading channels. A recent work
[25] considers the outage as the event of the instantaneous
rate falling below a threshold and formulizes a joint optimiza-
tion problem over cell association and resource allocation.
The joint optimization problem is then decomposed into two
subproblems: user association subproblem subject to long
term QoS constraints and rate-based outage minimization
subproblem over resource allocation. Since rate is a combi-
nation of allocated resources and spectral efficiency, the rate-
based outage probability is minimized by allocating an opti-
mal number of resource blocks to users. Both subproblems
are combinatorial optimization problems and they are relaxed
to convex optimization problems and then solved iteratively
using an alternating optimization approach. Although their
method reduces rate-based outage probabilities for offload
users, the degradation in SINR is not addressed as the rate-
based outage can always be alleviated by allocating more
resources.

This paper addresses the cell association problemwith the
aim of achieving load balancing and alleviating QoS degra-
dation for offloaded users. We intend to improve the outage
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performance for offloaded users with the absence of other
techniques such as power control and ICIC. To do so we need
to determine whether a user should be offloaded and then
choose the proper candidate BS for offloading. Hence it is
desirable to devise a load balancing scheme that takes into
consideration the QoS performance such as outage, along
with the loads of BSs. Towards this end, we summarize our
contributions as follows:

(i) We propose a novel problem formulation for load
balancing that incorporate both loads of BSs and
outage performance of user-BS links. We adopt the
log utility as the system wide utility and propose a
weighted split term formulation by assigning a set of
weights to the cost incurred by the loads of BSs. The
weight is defined as a barrier function with respect
to outage probability. Such a problem formulation
inherits the load balancing capabilities of the utility
maximization framework and discourages assigning
users to a small cell with a high probability of outage.

(ii) For the formulated problem we first prove that the
underlying utility function is a normalized nonmono-
tone submodular function. We then show that the
nonmonotone submodular maximization problem
can be reformulated into a monotone submodular
maximization problem and approximated by a greedy
algorithm. The greedy algorithm has a low computa-
tional complexity and is useful for densely deployed
HetNets with a large number of users and BSs.

(iii) Finally, we compare our results with the log utility
maximization scheme and the baseline max SINR
scheme via extensive simulation over a two-tier Het-
Net topology and highlight the significant reduction
in outage performance for the offloaded users.

In general we present a user QoS aware cell association
framework that takes into account base station transmission
power levels, base station loads, and user outage perfor-
mance. We show that making user association decisions
aware of QoS requirements benefitsHetNet users. Our results
provide a way to combat SINR degradation for offloaded
users in a scenario where ICIC and power control are not
employed.

The rest of this paper is organized as follows. The system
model is presented in Section 2. We formulate our maxi-
mization problem in Section 3. In Section 4 we analyze the
submodularity of the utility maximization problem in a set
function form. The two-stage greedy algorithm is presented
in Section 5. Numeral results are presented in Section 6 and
Section 7 concludes the paper.

2. System Model

We consider a multitier downlink HetNet consisting ofMBSs
and a set of SBSs of various types. We consider the coverage
area as a finite Euclidean plane with𝑁 users and𝑀 BSs. Let
𝑈 = {1, . . . , 𝑁} denote the set of users and 𝐵 = {1, . . . ,𝑀}
denote the set of BSs. Each BS 𝑗 ∈ 𝐵 has a fixed transmission
power 𝑃𝑗. A frequency reuse factor of 1 is assumed. We also

assume that SBSs are densely deployed across the coverage
area so that the HetNet is interference limited.

For each user 𝑖 ∈ 𝑈, the power received from BS 𝑗 is
given by 𝐺𝑖𝑗𝐹𝑖𝑗𝑃𝑗 where 𝐺𝑖𝑗 models the large scale fading
components including path loss, shadowing, and antenna
gains, and 𝐹𝑖𝑗 represents the small scale fading component,
which models Rayleigh fading. Hence 𝐹𝑖𝑗 is an exponentially
distributed random variable and we assume it has a unit vari-
ance. Note that 𝐺𝑖𝑗 remains constant during cell association
phase.The received power is also an exponentially distributed
random variable with mean value:

𝐸 [𝐺𝑖𝑗𝐹𝑖𝑗𝑃𝑗] = 𝐺𝑖𝑗𝑃𝑗. (1)

In an interference limited HetNet, SINR is reduced to
signal to interference ratio (SIR). The instantaneous SIR seen
from BS 𝑗 is given by

SIR𝑖𝑗 =
𝐺𝑖𝑗𝐹𝑖𝑗𝑃𝑗

∑𝑘∈𝐵/𝑗 𝐺𝑖𝑘𝐹𝑖𝑘𝑃𝑘

. (2)

Cell association is assumed to be carried out over a large
time scale compared to the channel fluctuations [13]. Thus
fast fading is averaged out and the SIR remains as a constant
during the entire association time.The constant SIR, denoted
as SIR, is referred to as the long term SIR and given by [22]

SIR𝑖𝑗 =
𝐺𝑖𝑗𝑃𝑗

∑𝑘∈𝐵/𝑗 𝐺𝑖𝑘𝑃𝑘

. (3)

Accordingly, the long term spectral efficiency for user 𝑖
served by BS 𝑗, denoted as 𝑠𝑖𝑗, is also a function of the long
term SIR, which is written as [22]

𝑠𝑖𝑗 = log2 (1 + SIR𝑖𝑗) = log2 (1 +
𝐺𝑖𝑗𝑃𝑗

∑𝑘∈𝐵/𝑗 𝐺𝑖𝑘𝑃𝑘

) . (4)

The long term rate for user 𝑖 served by BS 𝑗, denoted as
𝑟𝑖𝑗, is given by

𝑟𝑖𝑗 = 𝑦𝑖𝑗𝑠𝑖𝑗, (5)

where 𝑦𝑖𝑗 denotes the portion of resources allocated by BS 𝑗
to user 𝑖. Specifically, with an equal resource allocation policy,
we can rewrite 𝑟𝑖𝑗 as

𝑟𝑖𝑗 =

𝑠𝑖𝑗

∑𝑖∈𝑈 𝑥𝑖𝑗

, (6)

where 𝑥𝑖𝑗 ∈ {0, 1}, (𝑖, 𝑗) ∈ 𝑈 × 𝐵 is a binary indicator that
denotes whether or not user 𝑖 is associated with BS 𝑗. To
enforce a single BS association for each user, we have

∑

𝑗∈𝐵

𝑥𝑖𝑗 = 1, ∀𝑖 ∈ 𝑈. (7)

The utility maximization framework for the load bal-
ancing problem involves finding the appropriate set of {𝑥𝑖𝑗}
that maximize the aggregate utilities of user rate 𝑟𝑖𝑗. Clearly
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such a framework does not involve the dynamics of channel
fluctuation and the related outage performance. The outage
event occurs when the instantaneous SIR at user 𝑖 served
by BS 𝑗 falls below a given threshold 𝛾th. Let 𝑃out𝑖𝑗 denote
the outage probability for user 𝑖 served by BS 𝑗. In an
interference limited network with Rayleigh fading channels,
the probability of outage is given in [26] and is written as

𝑃
out
𝑖𝑗 = Prob (SIR𝑖𝑗 ≤ 𝛾

th
) = 1 − ∏

𝑘∈𝐵/𝑗

𝜆𝑖𝑘

𝜆𝑖𝑘 + 𝛾
th
𝜆𝑖𝑗

, (8)

where 𝜆𝑖𝑗 = 1/𝐸[𝐺𝑖𝑗𝐹𝑖𝑗𝑃𝑗] = 1/𝐺𝑖𝑗𝑃𝑗 is a constant during
cell association phase. Note that the deterioration in average
received power 𝐺𝑖𝑗𝑃𝑗 leads to an increase of the outage
probability 𝑃out𝑖𝑗 and vice versa. When users are offloaded
to small cells, they suffer from severe degradations in SINR
and higher probabilities of outage. Therefore, we should
discourage offloading users to a small cell with a high
probability of outage.

We note that the above system model corresponds to
a worst case scenario where MBSs and SBSs are cochan-
nelly deployed and interference mitigation schemes are not
employed. In such cases cell association needs to be devised
in order to balance traffic loads as well as alleviate SINR
degradations for offloaded users without the use of ICIC and
power control schemes. The system model corresponds to
a HetNet scenario with Single-Input-Single-Output (SISO)
configuration. With massive MIMO enabled small cells, the
scenario is much different since massive MIMO leads to
an increased spectral efficiency and interference seen by a
user includes not only the intercell interference but also the
intracell interference which is dependent on the channel
coefficients of all the antenna of a BS. Interference may also
behave differentlywith advanced beamforming [27].We leave
that topic for future research.

3. Problem Formulation

We adopt the log function as the utility for the load balancing
problem. It has been shown in [13] that, with the log utility,
the optimal resource allocation policy is equal allocation.
Therefore, the aggregate utility function is given by

∑

𝑖∈𝑈

∑

𝑗∈𝐵

𝑥𝑖𝑗 log (𝑠𝑖𝑗) − ∑
𝑗∈𝐵

(∑

𝑖∈𝑈

𝑥𝑖𝑗) log(∑
𝑖∈𝑈

𝑥𝑖𝑗) , (9)

which is a split term formulation. The first term is an
assignment cost with respect to user spectral efficiency, and
the second term is a penalty term with respect to BS loads.
The solution is obtained by solving the following optimization
problem [13, 14, 17, 20–22]:

max
𝑥

∑

𝑖∈𝑈

∑

𝑗∈𝐵

𝑥𝑖𝑗 log (𝑠𝑖𝑗) − ∑
𝑗∈𝐵

(∑

𝑖∈𝑈

𝑥𝑖𝑗) log(∑
𝑖∈𝑈

𝑥𝑖𝑗)

s.t. 𝑥𝑖𝑗 ∈ {0, 1}

∑

𝑗∈𝐵

𝑥𝑖𝑗 = 1.

(10)

It can be seen from (10) that each user-BS pair (𝑖, 𝑗) is asso-
ciated with a penalty log(∑𝑖∈𝑈 𝑥𝑖𝑗). Assigning users to more
congested BSs triggers a larger penalty. Hence the optimal
solution always discourage selecting a highly congested BS
for user 𝑖. As the MBS is usually much more congested than
the SBSs, the optimal solution will then offload some users to
less congested SBSs. However, the penalty is only dependent
on BS loads and does not involve the outage performance.
We can deduce that in some cases the optimal solution will
assign users to an underutilized BS with low SIR and a high
probability of outage. We show an example of such instances.

Consider a simple network consisting of two BSs 𝐵 =

{𝑗, 𝑘}. Without loss of generality we assume the load of BS 𝑗,
denoted as 𝐿𝑗, is much larger than the load of BS 𝑘, denoted
as 𝐿𝑘.We also assume that for user 𝑖 the received signal power
from BS 𝑘 is weak compared to the power of signals from
BS 𝑗. Thus we have 𝐿𝑗 ≫ 𝐿𝑘 and SIR𝑖𝑗 ≫ SIR𝑖𝑘. Since
the optimization problem (10) is a linear programming (LP)
problemwith respect to association indicators𝑥𝑖𝑗, the optimal
solution will choose the user-BS pair with a larger weight
which is denoted as log(𝑠𝑖𝑗/∑𝑖∈𝑈 𝑥𝑖𝑗). Therefore, the optimal
solution will assign user 𝑖 to BS 𝑘 if

log(
𝑠𝑖𝑘

𝐿𝑘

) > log(
𝑠𝑖𝑗

𝐿𝑗

) . (11)

Substituting (4) into (11) we have

SIR𝑖𝑘 > (1 + SIR𝑖𝑗)
𝐿𝑘/𝐿𝑗

− 1. (12)

We can see from (12) that if 𝐿𝑗 ≫ 𝐿𝑘 we have 𝐿𝑘/𝐿𝑗 → 0

and (1 + SIR𝑖𝑗)
𝐿𝑘/𝐿𝑗

→ 1. This indicates that (12) is satisfied
once SIR𝑖𝑘 > 0. Thus the optimal solution may assign user
𝑖 to BS 𝑘 with a very low SIR, resulting in a high outage
probability. If BS 𝑗 is a heavily congested MBS and BS 𝑘
is a heavily underutilized SBS, we end up with high outage
probabilities for users offloaded to the SBS.

The above example shows that the utility maximization
framework itself cannot provide satisfactory QoS guarantees
for offloaded users. To address this problem the utility
maximization problem can be reformulated into a joint
optimization problemover cell association and other network
resources management schemes such as power and inter-
ference control. However, the joint optimization problem is
more difficult to solve and the solution is more difficult to
implement.

In order to address the QoS degradation for offloaded
users, we need to incorporate user outage performance
with our problem formulation. When the outage constraint
dictates that the outage probability for a user must be
lower than a threshold, the cell association scheme needs to
guarantee that a user must be assigned to a BS which satisfies
the constraint. Without power control this combinatorial
optimization with outage constraint is very difficult to solve
and possibly infeasible due to limited solution spaces.We also
note that the SINR based outage probability is given by a per
link basis and we have to guarantee that a usermust be served
by a single BS. This is different from the rate-based outage
event in [25] because when evaluating outage in a rate basis
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we can safely assume a user can be associated with multiple
BSs and the rate for this user is the sum of rates frommultiple
links as it is in [25]. For SINR based outage this cannot be the
case. Hence we do not relax the combinatorial optimization
problem into a convex one. In order to find a feasible
solution for this combinatorial problem with constraints we
propose a split term formulation with weighted loads that
incorporates user outage performance. The intention of the
problem formulation is to discourage assigning users to BSs
with high outage probabilities. Towards this end, we note
that the penalty term in (10) is only dependent on BS loads.
To incorporate user outage performance, we assign a set of
outage-dependent weighting parameters 𝛽𝑖𝑗 to BS loads. We
define 𝛽𝑖𝑗 as

𝛽𝑖𝑗 =
1

1 − 𝑃
out
𝑖𝑗

(13)

and the optimization problem is reformulated as

max
𝑥

∑

𝑖∈𝑈

∑

𝑗∈𝐵

𝑥𝑖𝑗 log (𝑠𝑖𝑗)

− ∑

𝑗∈𝐵

(∑

𝑖∈𝑈

𝑥𝑖𝑗) log(𝛽𝑖𝑗∑
𝑖∈𝑈

𝑥𝑖𝑗)

s.t. 𝑥𝑖𝑗 ∈ {0, 1}

∑

𝑗∈𝐵

𝑥𝑖𝑗 = 1.

(14)

We can see from the split term problem formulation
(14) that each user-BS pair (𝑖, 𝑗) is now associated with a
weighted penalty that depends not only on the load of BS 𝑗,
but also on the weighting parameter 𝛽𝑖𝑗. It can be seen from
definition (13) that 𝛽𝑖𝑗 is monotone increasing with 𝑃out𝑖𝑗 . In
fact, we can see that 𝛽𝑖𝑗 ≥ 1 always holds which indicates that
any selection of heavily congested BSs is always penalized.
If 𝑃out𝑖𝑗 → 0 then we have 𝛽𝑖𝑗 → 1. Then the formulated
problem (14) is identical to the utility maximization problem
(10). Since 𝑃out𝑖𝑗 → 0 indicates that no outage events occur, we
preserve the load balancing formulation of (10). However, if
𝑃
out
𝑖𝑗 → 1we have 𝛽𝑖𝑗 →∞.Then any choice of (𝑖, 𝑗) pair with

large outage probability is heavily penalized. Substituting
(13) into (14) we have the triple term formulation of the
optimization problem as

max
𝑥

∑

𝑖∈𝑈

∑

𝑗∈𝐵

𝑥𝑖𝑗 log (𝑠𝑖𝑗) − ∑
𝑗∈𝐵

(∑

𝑖∈𝑈

𝑥𝑖𝑗) log(∑
𝑖∈𝑈

𝑥𝑖𝑗)

− ∑

𝑖∈𝑈

∑

𝑗∈𝐵

𝑥𝑖𝑗 log (𝛽𝑖𝑗)

s.t. 𝑥𝑖𝑗 ∈ {0, 1}

∑

𝑗∈𝐵

𝑥𝑖𝑗 = 1,

(15)

where the last term is analogous to the log barrier function
[28] with respect to outage probability 𝑃out𝑖𝑗 . Compared with

the nonweighted optimization problem (10) we note that the
only difference between (15) and (10) is that we have replaced
log(𝑠𝑖𝑗) with log(𝑠𝑖𝑗) − log(𝛽𝑖𝑗).

In practice in order to avoid computation of division by
zero we define 𝛽𝑖𝑗 as

𝛽𝑖𝑗 =
1

1 − 𝑃
out
𝑖𝑗 + 𝜀

, (16)

where 0 < 𝜀 ≪ 1 is a constant with a small value. Then as
𝑃
out
𝑖𝑗 → 1 we have 𝛽𝑖𝑗 → 1/𝜀.
The reformulated problem (15) is a combinatorial opti-

mization problem. It is shown in [3, 18] that the sum log
utility maximization problem (10) is NP hard. If there exists
an optimal polynomial time algorithm for (15), we can solve
(10) in polynomial time by replacing the constant log(𝑠𝑖𝑗)
with log(𝑠𝑖𝑗) − log(𝛽𝑖𝑗). Hence (15) is also NP hard. To
solve the problem we adopt the submodular maximization
approach proposed in [19], which is used to solve the log
utility maximization problem (10) and extended to 𝛼-fairness
utility maximization in [18]. The benefit of submodular opti-
mization is that it yields a discrete solution on cell association,
which is more practical to implement than the fractional
solution obtained through relaxed convex optimization.

4. Submodular Function Maximization

Weproceed to analyze the submodularity of the reformulated
problem (15). Towards this end, the objective function in
(15) is interpreted as a set function. Let L ⊆ 2

𝑉 denote a
collection of subsets of 𝑉 so that the (𝑖, 𝑗) pairs in the subsets
have mutually distinctive users. We define a ground set 𝑉 =
{(𝑖, 𝑗) : 𝑖 ∈ 𝑈, 𝑗 ∈ 𝐵} which consists of all possible user-BS
associations. We use | ⋅ | to denote the cardinality function.
Let G denote the selected (𝑖, 𝑗) pairs for the cell association.
Clearly G ∈ L. We use a ground set 𝑉(𝑗) = {(𝑖, 𝑗) : 𝑖 ∈ 𝑈}
to denote all the possible user-BS association for a given BS 𝑗.
Similarly, we use another ground set 𝑉(𝑖) = {(𝑖, 𝑗) : 𝑗 ∈ 𝐵} to
denote all the possible user-BS association for a given user 𝑖.

We first give some basic definitions for submodular set
functions [29].

Definition 1. A set function 𝑓 : 2𝑉 → R is submodular if for
every 𝐴 ⊆ 𝐵 ⊆ 𝑉 and 𝑎 ∈ 𝑉 \ 𝐵 it holds that

𝑓 (𝐴 ∪ {𝑎}) − 𝑓 (𝐴) ≤ 𝑓 (𝐵 ∪ {𝑎}) − 𝑓 (𝐵) , (17)

and it is modular if it holds that

𝑓 (𝐴 ∪ {𝑎}) − 𝑓 (𝐴) = 𝑓 (𝐵 ∪ {𝑎}) − 𝑓 (𝐵) . (18)

Definition 2. A set function 𝑓 : 2𝑉 → R is a normalized set
function if𝑓(⌀) = 0where⌀ denotes the empty set. Further,
it is monotone if, for every 𝐴 ⊆ 𝐵 ⊆ 𝑉, 𝑓(𝐴) ≤ 𝑓(𝐵).

We now rewrite the objective function of (15) into a set
function form. Note that 𝑠𝑖𝑗 and 𝛽𝑖𝑗 are all constants in cell
association. Let V ∈ G denote a selected user-BS pair and
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define its weight function 𝑤𝛽(V) = log(𝑠𝑖𝑗) − log(𝛽𝑖𝑗); we can
rewrite (15) as

max
G⊆L

∑

V∈G
𝑤𝛽 (V) − ∑

𝑗∈𝐵

󵄨
󵄨
󵄨
󵄨
󵄨
G ∩ 𝑉

(𝑗)󵄨󵄨
󵄨
󵄨
󵄨
log (󵄨󵄨󵄨󵄨

󵄨
G ∩ 𝑉

(𝑗)󵄨󵄨
󵄨
󵄨
󵄨
)

s.t. 󵄨
󵄨
󵄨
󵄨
󵄨
G ∩ 𝑉

(𝑖)󵄨󵄨
󵄨
󵄨
󵄨
= 1.

(19)

Proposition 3. The objective function in (19) is a submodular
set function.

Proof. It can be easily verified that 𝑔(G) = ∑V∈G 𝑤𝛽(V) is a
modular function since for every 𝐴 ⊆ 𝐵 ⊆ G and 𝑎 ∈ G \ 𝐵 it
always holds that

𝑔 (𝐴 ∪ {𝑎}) − 𝑔 (𝐴) = 𝑤𝛽 (𝑎) = 𝑔 (𝐵 ∪ {𝑎}) − 𝑔 (𝐵) . (20)

Moreover, it has been proven in [17] that −|G| log |G| is
submodular. Due to the fact that submodularity is preserved
under restriction and the objective function in (19) is amutual
sum of submodular functions andmodular functions, we can
conclude that the objective function in (19) is a submodular
set function.

Corollary 4. The objective function in (19) is a normalized
nonmonotone submodular set function.

Proof. We adopt the convention that 0 log 0 = 0. Then we
have 𝑓(⌀) = 0 for the objective function. Hence it is a
normalized set function. Furthermore, as the weight𝑤𝛽(V) =
log(𝑠𝑖𝑗)− log(𝛽𝑖𝑗) is not nonnegative, we can conclude that the
objective function in (19) is nonmonotone.

Therefore, the optimization problem (19) is a nonmono-
tone submodular maximization problem with equality con-
straints on a partition matroid. We now reformulate (19)
into a monotone submodular maximization problem with
inequality constraints on a partition matroid.

We first revisit the optimization problem (15) andwe have
the following proposition.

Proposition 5. The optimization problem (15) is equivalent to

max
𝑥

∑

𝑖∈𝑈

∑

𝑗∈𝐵

𝑥𝑖𝑗 (𝐾 + log (𝑠𝑖𝑗) − log (𝛽𝑖𝑗))

− ∑

𝑗∈𝐵

(∑

𝑖∈𝑈

𝑥𝑖𝑗) log(∑
𝑖∈𝑈

𝑥𝑖𝑗)

𝑠.𝑡. 𝑥𝑖𝑗 ∈ {0, 1}

∑

𝑗∈𝐵

𝑥𝑖𝑗 = 1,

(21)

where𝐾 is a constant with any arbitrary value.

Proof. From the integer constraint ∑𝑗∈𝐵 𝑥𝑖𝑗 = 1 we can see
that it always holds that

∑

𝑖∈𝑈

∑

𝑗∈𝐵

𝑥𝑖𝑗 = 𝑁. (22)

Hence the newly added term ∑𝑖∈𝑈∑𝑗∈𝐵 𝑥𝑖𝑗𝐾 = 𝐾𝑁 is a
constant. We can conclude that (21) is equivalent to (19).

We can now rewrite (21) into a set function form. Let V ∈
G and𝑤𝛽,𝐾(V) = 𝐾+ log(𝑠𝑖𝑗) − log(𝛽𝑖𝑗); we have the following
proposition.

Proposition 6. The submodularmaximization problem (19) is
equivalent to

max
G⊆L

∑

V∈G
𝑤𝛽,𝐾 (V) − ∑

𝑗∈𝐵

󵄨
󵄨
󵄨
󵄨
󵄨
𝐺 ∩ 𝑉

(𝑗)󵄨󵄨
󵄨
󵄨
󵄨
log (󵄨󵄨󵄨󵄨

󵄨
𝐺 ∩ 𝑉

(𝑗)󵄨󵄨
󵄨
󵄨
󵄨
)

𝑠.𝑡.

󵄨
󵄨
󵄨
󵄨
󵄨
𝐺 ∩ 𝑉

(𝑖)󵄨󵄨
󵄨
󵄨
󵄨
≤ 1,

(23)

if 𝐾satisfies

𝐾 > 𝑁 log𝑁 − (𝑁 − 1) log (𝑁 − 1)

−min(𝑖,𝑗) {log 𝑠𝑖𝑗} − log 𝜀.
(24)

Proof. Since 𝛽𝑖𝑗 ≤ 1/𝜀, we can see that if (24) holds then it
holds that

𝐾 > 𝑁 log𝑁 − (𝑁 − 1) log (𝑁 − 1)

−min(𝑖,𝑗) {log 𝑠𝑖𝑗 − log𝛽𝑖𝑗} .
(25)

We note that the only difference between (15) and (10) is
that we have replaced log(𝑠𝑖𝑗) with log(𝑠𝑖𝑗) − log(𝛽𝑖𝑗). For the
nonweighted load optimization problem (𝛽𝑖𝑗 = 1) it has been
shown in [17] that it is monotone submodular if

𝐾 > 𝑁 log𝑁 − (𝑁 − 1) log (𝑁 − 1)

−min(𝑖,𝑗) {log 𝑠𝑖𝑗} .
(26)

Hence we can deduce that the objective function in (23) is
also monotone submodular.The optimal solution to (23) will
always assign a user to a BS 𝑗 ∈ 𝐵, since assigning a user to a
BS always brings positive gains.Hence it holds that |G∩𝑉(𝑖)| >
0. Therefore, the optimal solution of (23) satisfies |G∩𝑉(𝑖)| =
1. We can conclude that (23) is equivalent to (19).

The reformulated problem (23) is a monotone submodu-
lar maximization problem subject to a partitionmatroid con-
straint. For monotone submodular maximization problems,
we can leverage the greedy algorithm [29] which provides a
near-optimal solution.The greedy algorithm yields an integer
solution to cell association, which guarantees a single BS
association for each user.

5. The Greedy Algorithm with
Lazy Evaluations

In this section we consider approximating the submodular
maximization problem (23) through a greedy algorithm.
The greedy algorithm starts with an empty set G0, and in
𝑖th iteration it adds the element V that maximize the gain
Δ(V|G𝑖−1) = 𝑓({V} ∪ G𝑖−1) − 𝑓(G𝑖−1) where 𝑓(G) denote
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(1) Initialize: Define ground set 𝑉, setG = ⌀, 𝑘 = 𝑁. Set {𝜌(V) : V ∈ 𝑉} to∞.
(2) Repeat
(3) Sort {𝜌(V)} in descending order and return the list 𝑉󸀠.
(4) for V ∈ 𝑉󸀠

Δmax ← 0.
if 𝜌(V) ≥ Δmax
Compute Δ(V | G) = 𝑓({V} ∪G) − 𝑓(G).
𝜌(V) ← Δ (V |G ).
Δmax ← max {Δmax, Δ (V | G)}.

else
break

End if
End for

(5) Determine V ∈ argmax
V∈𝑉
{𝜌(V)} and the corresponding user 𝑖. Find {V1 : (𝑖, 𝑘) | 𝑘 ∈ 𝐵}

(6) UpdateG = G ∪ {V}, 𝑉 = 𝑉 \ {V1}, 𝑘 = 𝑘 − 1 and update {𝜌(V) : V ∈ 𝑉}
(7) Until 𝑘 = 0.
(8) Output G.

Algorithm 1: The greedy algorithm with lazy evaluations.

the objective function in (23). Catering to the partition
matroid constraint |G ∩ 𝑉

(𝑖)
| ≤ 1, once an element V ∈

𝑉 is selected we need to remove all (𝑖, 𝑗) pairs that share
the same user with V from the ground set 𝑉. Furthermore,
due to the monotonicity of the submodular function, we
can speed up the greedy process through lazy evaluations
[23]. The submodularity of the objective function in (23)
guarantees that the incremental gains from any element V ∈
𝑉 are monotonically nonincreasing during the iterations of
the algorithm; that is, Δ(V | G𝑖) ≥ Δ(V | G𝑗), 𝑖 <

𝑗. The greedy algorithm maintains a list of upper bounds
𝜌(V) on the incremental gains sorted in decreasing order.
Initially 𝜌(V) is set to∞ and updated with Δ(V | G0) at first
iteration. In 𝑖th iteration, we have the solution setG𝑖−1 and the
updated ground set 𝑉 from the previous iteration. Instead of
computingΔ(V | G𝑖−1) for every V ∈ 𝑉, the algorithm extracts
the first element {V} from the ordered list and then updates
the corresponding bound 𝜌(V) with the real gain Δ(V | G𝑖−1)
for current iteration. It then proceeds to evaluate the next
element V󸀠 from the ordered list and if 𝜌(V󸀠) ≤ 𝜌(V) then
Δ(V | G𝑖−1) ≥ 𝜌(V

󸀠
) = Δ(V󸀠 | G𝑗) ≥ Δ(V

󸀠
| G𝑖−1), 𝑗 < 𝑖 − 1,

∀V󸀠 ∈ 𝑉\{V}.The element with themaximal incremental gain
in current iteration is identified and the algorithm can now
proceed to the next iteration without computing Δ(V󸀠 | G𝑖−1)
for the remaining V󸀠 ∈ 𝑉. The algorithm stops only if every
user is associated with a BS. The algorithm is described in
Algorithm 1.

It can be seem from Algorithm 1. that in each iteration a
user is assigned to a serving BS. Hence the greedy algorithm
terminates after 𝑁 iterations. The computational complexity
is only dependent on the number of users and the complexity
is low. Therefore, it is useful in scenarios with dense HetNets
deployment with a large number of users and BSs. It is well
known that for the monotone submodular maximization
problem the greedy algorithm provides a 1 − 1/𝑒 (or equiva-
lently 0.631) approximation [29]. Since the submodular max-
imization problem (23) is equivalent to (19) and the objective

function of (23) is the sum of the objective function of (19)
and a constant, we have the following proposition.

Proposition 7. Let G be the solution obtained via the greedy
algorithm and G∗ be the optimal set for the submodular
optimization problem (21). Let𝑓(⋅) be the objective submodular
function of (21). Then we have

𝑓 (G) ≥ 0.631 × 𝑓 (G
∗
) . (27)

Hence we can conclude that the greedy algorithm yields a
near-optimal solution, which provides a performance guaran-
tee for the user association problem. For dense HetNets with a
large number of users and BSs, the greedy algorithm is useful
for its low computational complexity and near-optimality.

6. Numerical Results

We conduct our simulations in MATLAB over a two-tier
HetNet topology. The coverage area is limited to a Euclidean
plane with the size 1000m× 1000m.The numbers of macro-
cell BSs, small cell BSs, and users are fixed to {1, 10, 100},
respectively. The transmission power of the macrocell BS
and small cell BSs are fixed to {50, 30} dbm, respectively. We
assume the location of the macro-BS is fixed at the center of
coverage area. All the small cell BSs and users are uniformly
and independently distributed across the coverage area. Path
loss with a fixed path loss factor of 4 and the Rayleigh fading
with unit variance are used tomodel the channel power gains.
Thermal noise is neglected.

Figure 1 depicts the user associations under various asso-
ciation schemes in one simulated two-tier HetNet. Figure 1(a)
shows the user associations for the max SINR scheme. Since
users are assigned to the strongest BS, we can see from
Figure 1(a) that the majority of the SBSs are lightly loaded
and some of the SBSs that are placed near the macro-BS
do not serve any users at all. The loads across the macro-
BS and SBSs are heavily imbalanced and the macro-BS is



8 Mathematical Problems in Engineering

0 100 200 300 400 500 600 700 800 900 1000
0

100
200
300
400
500
600
700
800
900

1000

x coordinate (m)

y
 co

or
di

na
te

 (m
)

Macro BS

SBS 1

SBS 2

SBS 3

SBS 4
SBS 5

SBS 6

SBS 7

SBS 8

SBS 9
SBS 10

(a) Max SINR scheme
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(b) Log utility maximization
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(c) Log utility maximization with weighted loads

Figure 1: A visual illustration of user associations under different association scheme. The simulated HetNet consists of 1 macro-BS, 10
SBSs, and 100 users. The outage threshold is 0 dB. The dark solid lines denote associations with the macro-BS and green dashed lines denote
associations with SBSs.

heavily congested. The majority of user population is still
associated with the macro-BS. Figure 1(b) shows the user
associations obtained for the log utility maximization prob-
lem (11). Since the utility maximization framework penalizes
associations with heavily loaded BSs, quite a few users
previously associated with the macro-BS are now offloaded
to SBSs, including some users adjacent to the macro-BS.
However, those offloaded users adjacent to the macro-BS
will suffer from strong cross-tier intercell interference, which
leads to high outage probabilities. Figure 1(c) shows the users
associations obtained via the greedy algorithm for the utility
maximization problem with weighted loads proposed by this
paper. Since the penalty is dependent on both BS loads and
outage probabilities, we can see that some of the previously
offloaded users are now reassigned to the macro-BS or other
SBSs with higher received power in order to improve outage
performance for those users.This shows the tradeoff between
load balancing and outage performance.

Figure 2 shows the percentage of user population associ-
ated SBSs versus numbers of SBSs under different association
schemes. The simulation is done over 200 different realiza-
tions of a two-tier HetNet. Both the log utility association

and our weighted load association can offload more users
to SBSs compared with max SINR association. In log utility
association scheme more than 20% of user population is
offloaded from the macro-BS to SBSs, compared with max
SINR scheme. However, in weighted load association scheme
the percentage of offloaded user population is reduced. This
is because the penalty on outage now discourages assigning
users to some SBSs with high outage probabilities. Hence
some users previously offloaded to SBSs in log utility scheme
are now reassigned to the macro-BS in order to improve
outage performance. This also shows the tradeoff between
outage performance and load balancing.

Figure 3 shows the cumulative distributive functions
(CDFs) of user long termSIRs for the simulatedHetNet. It can
be seen fromFigure 3 that in the log utility association scheme
about 40% of the user population suffer from degradations in
SIR compared with the max SINR scheme. The degradation
in SIR is more severe for the offloaded cell edge users with
low SIR. When these users are offloaded to SBSs they suffer
from strong interference from the macro-BS resulting in
further degradation in SIR. Subsequently these users suffer
from high outage probabilities due to the SIR degradation.
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Figure 2: Percentage of user population associated with SBSs versus
numbers of SBSs under different association schemes. The outage
threshold is 0 dB.
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Figure 3: The CDFs of user long term SIRs in a two-tier HetNet
consisting of 1 macro-BS, 10 SBSs, and 100 users. The outage
threshold is 0 dB.

This shows the negative impact of offloading users to SBSs.
However, under our weighted load association scheme, this
SIR degradation has been largely alleviated and we can see
that now about 20% of the user population suffers from
degradations in SIR comparedwith themax SINR association
scheme. Furthermore, for the offloaded users the magnitude
of the SIR degradation is reduced by almost 50 percent
compared with the log utility association scheme.This shows
that our proposed approach alleviate the SIR degradations for
offloaded users.

Figure 4 shows the system outage performance versus dif-
ferent outage thresholds under various association schemes.
Similar to [21], we define the system outage probability
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Figure 4: System outage probabilities versus SIR thresholds in a
two-tier HetNet with 1 macro-BS, 10 SBSs, and 100 users.

𝑃
out as the worst outage probability over all users, 𝑃out =

max𝑖∈𝑈𝑃
out
𝑖 . It can be seen that under log utility association

scheme, the system outage probability remains high over a
wide range of SIR thresholds. The system outage probability
under max SINR association scheme is halved compared
with the log utility association scheme. With our weighted
load association scheme, there is a 30 percent decrease in
the system outage probabilities compared with the log utility
association scheme.This shows the benefit of devising associ-
ation schemes that can incorporate user outage performance.

7. Conclusions

In this paper, we consider the cell association problem in the
context of downlink HetNets. In order to alleviate the SINR
degradation and outage deterioration for offloaded users,
we propose a split term problem formulation with weighted
BS loads that incorporates user outage performance. We
propose a formulation of the weighting parameters that
penalizes the selections of user-BS pairs with high outage
probabilities. Moreover, we show that the resulting combi-
natorial optimization problem can be reformulated into a
monotone submodular maximization problem and can be
approximated via a greedy algorithm with lazy evaluations.
The greedy algorithm has a low computational complexity
and is useful in densely deployed HetNets. The obtained cell
association scheme guarantees single BS association for each
user. Simulation results show that our proposed method pre-
serves the offloading capabilities of the log utility association
schemewhile significantly reducing user outage probabilities.
Our approach strikes a tradeoff between load balancing and
outage performance and is useful for improving user QoS
experiences in HetNets.
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