320 research outputs found

    Exploration of robotic-wheel technology for enhanced urban mobility and city scale omni-directional personal transportation

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2008.Includes bibliographical references (leaves 50-52).Mobility is traditionally thought of as freedom to access more goods and services. However, in my view, mobility is also largely about personal freedom, i.e., the ability to exceed one's physical limitations, in essence, to become "more than human" in physical capabilities. This thesis explores novel designs for omni-directional motion in a mobility scooter, car and bus with the aim of increasing personal mobility and freedom. What links these designs is the use of split active caster wheel robot technology. In the first section, societal and technological impacts of omni-directional motion in the city are examined. The second section of the thesis presents built and rendered prototypes of these three designs. The third and final section, evaluates implementation issues including robotic controls and an algorithm necessary for real world omni-directional mobility.by Raul-David Valdivia Poblano.S.M

    A Tread/Limb/Serpentine Hybrid Robot: Toward Hypermobility in Deconstructed Environments

    Get PDF
    According to the Red Cross, an average of over 600 disasters and 100,000 associated deaths occur annually throughout the world. This frequency of disasters strains an already overburdened disaster response effort. In the first 48 hours of a rescue operation, it is estimated that a responder will get less than three hours of continuous sleep as they need to work at full force to set up the operation and begin work in the field. This leads to sleep deprivation during the most critical time for search and rescue of victims. Therefore, robots are greatly needed as a force multiplier in USAR response to reduce some of the burden and workload placed on the human rescue workers to make for a more efficient and effective response

    Recent developments in self-assembling multi-robot systems

    Get PDF
    Purpose of Review This review studies recent developments towards the physical design and control of self-assembling multi-robot systems. Recent Findings A wide range of novel robotic systems have been developed lately, for potential applications in terrestrial, aquatic, and aerospace environments. They increasingly make use of connectors which enable modules to join with each other at arbitrary points instead of discrete locations. Although the majority of contemporary algorithms are shape-driven, an increased focus on task-driven algorithms is observed. Summary Self-assembling multi-robot systems allow the same set of robots to adopt specific morphologies for different tasks. The requirements for robots to be able to connect to each other, locomote, and communicate have led to a wide range of physical designs realising different trade-offs. While algorithms are validated extensively in simulation, only a small portion are yet tested on real robotic platforms. Future research should investigate the real-world application of these systems, possibly aided by the introduction of standardised and open hardware

    Coordination of Lateral Vehicle Control Systems Using Learning-Based Strategies

    Get PDF
    The paper proposes a novel learning-based coordination strategy for lateral control systems of automated vehicles. The motivation of the research is to improve the performance level of the coordinated system compared to the conventional model-based reconfigurable solutions. During vehicle maneuvers, the coordinated control system provides torque vectoring and front-wheel steering angle in order to guarantee the various lateral dynamical performances. The performance specifications are guaranteed on two levels, i.e., primary performances are guaranteed by Linear Parameter Varying (LPV) controllers, while secondary performances (e.g., economy and comfort) are maintained by a reinforcement-learning-based (RL) controller. The coordination of the control systems is carried out by a supervisor. The effectiveness of the proposed coordinated control system is illustrated through high velocity vehicle maneuvers

    Locomation strategies for amphibious robots-a review

    Get PDF
    In the past two decades, unmanned amphibious robots have proven the most promising and efficient systems ranging from scientific, military, and commercial applications. The applications like monitoring, surveillance, reconnaissance, and military combat operations require platforms to maneuver on challenging, complex, rugged terrains and diverse environments. The recent technological advancements and development in aquatic robotics and mobile robotics have facilitated a more agile, robust, and efficient amphibious robots maneuvering in multiple environments and various terrain profiles. Amphibious robot locomotion inspired by nature, such as amphibians, offers augmented flexibility, improved adaptability, and higher mobility over terrestrial, aquatic, and aerial mediums. In this review, amphibious robots' locomotion mechanism designed and developed previously are consolidated, systematically The review also analyzes the literature on amphibious robot highlighting the limitations, open research areas, recent key development in this research field. Further development and contributions to amphibious robot locomotion, actuation, and control can be utilized to perform specific missions in sophisticated environments, where tasks are unsafe or hardly feasible for the divers or traditional aquatic and terrestrial robots

    An overview of waste materials for sustainable road construction

    Get PDF
    Untreated soil typically has low shear strength, swelling behavior, high compressibility and its characteristics were highly dependent on the environment. In general, such problematic soil will lead to severe damages in road construction industry such as bearing capacity failure, slope instability, and excessive settlement. Agricultural waste, construction waste, and municipal waste have recently gained considerable attention as a sustainable material in road construction application due to its availability, environmental friendly and low-cost materials. Therefore in this review, randomly distributed fiber reinforced soil and oriented distributed fiber reinforced soil will be extensively discussed based on the emerging trend. It further reviewed the feasibility of using waste materials as a reinforcement material for the road construction industry. The review also attempts to evaluate and compare the engineering properties of soil and sustainable materials in order to enhance soil performance as well as help to improve the environment affected by growing waste materials

    Multi-axle Vehicle Modeling and Stability Control: A Reconfigurable Approach

    Get PDF
    Multi-axle vehicles, such as trucks and buses, have been playing a vital role in trucking industry, public transportation system, and long-distance transport services. However, at the same time, statistics suggest more than one million lives are lost in road accidents each year over the world. The high adoption and utilization of multi-axle vehicles hold a significant portion of road accidents and death. To improve the active safety of vehicles, active systems have been developed and commercialized over the last decades to augment the driver's actions. However, unlike two-axle vehicles (e.g., passenger cars), multi-axle vehicles come in a rich diversity and variety to meet with many different transportation needs. Specifically, vehicle configurations are seen in different numbers of axles, numbers of articulations, powertrain modes, and active actuation systems. In addition, multi-axle vehicles are usually articulated, which makes the dynamics and control more complex and challenging as more instability modes appear, such as, trailer sway and jackknife. This research is hence motivated by an essential question: how can a universal and reconfigurable control system be developed for any multi-axle/articulated vehicle with any configuration? Leveraging the matrix approach and optimization-based techniques, this thesis developed a reconfigurable and universal modeling and control framework to this aim. Specifically, a general dynamics modeling that unifies any multi-axle and articulated vehicles in one formulation is developed in an intuitive manner. It defines the `Boolean Matrices' to determine any configuration of the articulation, the number of axles, and the active actuation systems. In this way, the corresponding dynamics model can be easily and quickly formulated when axles, articulations or actuators are added or removed. The general modeling serves to achieve the universality and reconfigurability in controller design. Therefore, a hierarchical, i.e., two-layer, control system is proposed. In the high layer, the optimization process of a model predictive control (MPC) calculates corrective Center of Gravity (CG) forces/moments, which are universal to any vehicle. The lower-level controller is achieved by a Control Allocation (CA) algorithm. It aims to realize the MPC commands by regulating the steering or torque (driving or braking) at each wheel optimally. In addition, the optimization takes into account real-time constraints, such as actuator limits, tire capacity, wheel slips, and actuators failure. Simulations are conducted on different vehicle configurations to evaluate control performance, reconfigurability, and robustness of the system. Additionally, to evaluate the real-time performance of the developed controller, experimental validation is carried out on an articulated vehicle with multiple configurations of differential braking systems. It is observed that the controller is very effective in dynamics control and has a promising reconfigurability when moving from one configuration to another
    corecore