3,262 research outputs found

    Self-supervised Learning of Interpretable Keypoints from Unlabelled Videos

    Get PDF
    We propose KeypointGAN, a new method for recognizing the pose of objects from a single image that for learning uses only unlabelled videos and a weak empirical prior on the object poses. Video frames differ primarily in the pose of the objects they contain, so our method distils the pose information by analyzing the differences between frames. The distillation uses a new dual representation of the geometry of objects as a set of 2D keypoints, and as a pictorial representation, i.e. a skeleton image. This has three benefits: (1) it provides a tight `geometric bottleneck' which disentangles pose from appearance, (2) it can leverage powerful image-to-image translation networks to map between photometry and geometry, and (3) it allows to incorporate empirical pose priors in the learning process. The pose priors are obtained from unpaired data, such as from a different dataset or modality such as mocap, such that no annotated image is ever used in learning the pose recognition network. In standard benchmarks for pose recognition for humans and faces, our method achieves state-of-the-art performance among methods that do not require any labelled images for training.Comment: CVPR 2020 (oral). Project page: http://www.robots.ox.ac.uk/~vgg/research/unsupervised_pose

    Imaging dynamics beneath turbid media via parallelized single-photon detection

    Full text link
    Noninvasive optical imaging through dynamic scattering media has numerous important biomedical applications but still remains a challenging task. While standard methods aim to form images based upon optical absorption or fluorescent emission, it is also well-established that the temporal correlation of scattered coherent light diffuses through tissue much like optical intensity. Few works to date, however, have aimed to experimentally measure and process such data to demonstrate deep-tissue imaging of decorrelation dynamics. In this work, we take advantage of a single-photon avalanche diode (SPAD) array camera, with over one thousand detectors, to simultaneously detect speckle fluctuations at the single-photon level from 12 different phantom tissue surface locations delivered via a customized fiber bundle array. We then apply a deep neural network to convert the acquired single-photon measurements into video of scattering dynamics beneath rapidly decorrelating liquid tissue phantoms. We demonstrate the ability to record video of dynamic events occurring 5-8 mm beneath a decorrelating tissue phantom with mm-scale resolution and at a 2.5-10 Hz frame rate

    Digital Image Processing

    Get PDF
    This book presents several recent advances that are related or fall under the umbrella of 'digital image processing', with the purpose of providing an insight into the possibilities offered by digital image processing algorithms in various fields. The presented mathematical algorithms are accompanied by graphical representations and illustrative examples for an enhanced readability. The chapters are written in a manner that allows even a reader with basic experience and knowledge in the digital image processing field to properly understand the presented algorithms. Concurrently, the structure of the information in this book is such that fellow scientists will be able to use it to push the development of the presented subjects even further

    SecureAD: A secure video anomaly detection framework on convolutional neural network in edge computing environment

    Get PDF
    National Research Foundation (NRF) Singapore under Strategic Capability Research Centres Funding Intiatives; Ministry of Education, Singapore under its Academic Research Funding Tier

    Toward commercial realisation of whole field interferometric analysis

    Get PDF
    The objective of this work was to produce an instrument which could undertake wholefield inspection and displacement measurement utilising a non-contacting technology. The instrument has been designed to permit operation by engineers not necessarily familiar with the underlying technology and produce results in a meaningful form. Of the possible techniques considered Holographic Interferometry was originally identified as meeting these objectives. Experimental work undertaken 'provides' data which confirms the potential of the technique for solving problems but also highlights some difficulties. In order to perform a complete three dimensional displacement analysis a number of holographic views must be recorded. Considerable effort is required to extract quantitative data from the holograms. Error analysis of the experimental arrangement has highlighted a number of practical restrictions which lead to data uncertainties. Qualitative analysis of engineering components using Holographic Interferometry has been successfully undertaken and results in useful analytical data which is used in three different engineering design programmes. Unfortunately, attempts to quantify the data to provide strain values relies upon double differentiation of the fringe field, a process that is highly sensitive to fringe position errors. In spite of this, these experiments provided the confidence that optical interferometry is able to produce data of suitable displacement sensitivity, with results acceptable to other engineers.....

    Unsupervised Automatic Detection Of Transient Phenomena In InSAR Time-Series using Machine Learning

    Get PDF
    The detection and measurement of transient episodes of crustal deformation from global InSAR datasets are crucial for a wide range of solid earth and natural hazard applications. But the large volumes of unlabelled data captured by satellites preclude manual systematic analysis, and the small signal-to-noise ratio makes the task difficult. In this thesis, I present a state-of-the-art, unsupervised and event-agnostic deep-learning based approach for the automatic identification of transient deformation events in noisy time-series of unwrapped InSAR images. I adopt an anomaly detection framework that learns the ‘normal’ spatio-temporal pattern of noise in the data, and which therefore identifies any transient deformation phenomena that deviate from this pattern as ‘anomalies’. The deep-learning model is built around a bespoke autoencoder that includes convolutional and LSTM layers, as well as a neural network which acts as a bridge between the encoder and decoder. I train our model on real InSAR data from northern Turkey and find it has an overall accuracy and true positive rate of around 85% when trying to detect synthetic deformation signals of length-scale > 350 m and magnitude > 4 cm. Furthermore, I also show the method can detect (1) a real Mw 5.7 earthquake in InSAR data from an entirely different region- SW Turkey, (2) a volcanic deformation in Domuyo, Argentina, (3) a synthetic slow-slip event and (4) an interseismic deformation around NAF in a descending frame in northern Turkey. Overall I show that my method is suitable for automated analysis of large, global InSAR datasets, and for robust detection and separation of deformation signals from nuisance signals in InSAR data
    • …
    corecore