1,622 research outputs found

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Underwater Robot Path Planning in an Intermittent Communication System

    Get PDF
    Sunflower, a novel cross-medium localization system between an aerial drone and an underwater robot, has not yet been implemented in a multi-robot exploration system. This project’s aim was to simulate various configurations of multi-robot systems, and to create an algorithm, called AdjustPath, to improve exploration and avoid inter- robot collisions. With three, five, seven, and ten simulated underwater robots, there was significant improvement when the AdjustPath algorithm was used. Knowing this, future hardware using the Sunflower system could use this proposed algorithm to increase efficiency and avoid more collisions

    QoS Challenges in wireless sensor networked robotics

    Get PDF
    Wireless sensor networks and mobile robotics are two hot research topics. Integrating them leads to a wide range of new applications in many different environments such as terrestrial, underwater, underground and aerial. Where sensor networks are mainly used for large-scale monitoring and control, mobile robotics are used for performing fine-scale actions and automation. Network heterogeneity together with stringent Quality of Service (QoS) demands from applications such as voice and video make QoS support very challenging. Therefore, this paper investigates the QoS challenges in wireless sensor networked robotics and presents a novel QoS framework as solution to cope with these challenges

    Intelligent Escape of Robotic Systems: A Survey of Methodologies, Applications, and Challenges

    Full text link
    Intelligent escape is an interdisciplinary field that employs artificial intelligence (AI) techniques to enable robots with the capacity to intelligently react to potential dangers in dynamic, intricate, and unpredictable scenarios. As the emphasis on safety becomes increasingly paramount and advancements in robotic technologies continue to advance, a wide range of intelligent escape methodologies has been developed in recent years. This paper presents a comprehensive survey of state-of-the-art research work on intelligent escape of robotic systems. Four main methods of intelligent escape are reviewed, including planning-based methodologies, partitioning-based methodologies, learning-based methodologies, and bio-inspired methodologies. The strengths and limitations of existing methods are summarized. In addition, potential applications of intelligent escape are discussed in various domains, such as search and rescue, evacuation, military security, and healthcare. In an effort to develop new approaches to intelligent escape, this survey identifies current research challenges and provides insights into future research trends in intelligent escape.Comment: This paper is accepted by Journal of Intelligent and Robotic System

    Wireless Sensor Networks for Underwater Localization: A Survey

    Get PDF
    Autonomous Underwater Vehicles (AUVs) have widely deployed in marine investigation and ocean exploration in recent years. As the fundamental information, their position information is not only for data validity but also for many real-world applications. Therefore, it is critical for the AUV to have the underwater localization capability. This report is mainly devoted to outline the recent advance- ment of Wireless Sensor Networks (WSN) based underwater localization. Several classic architectures designed for Underwater Acoustic Sensor Network (UASN) are brie y introduced. Acoustic propa- gation and channel models are described and several ranging techniques are then explained. Many state-of-the-art underwater localization algorithms are introduced, followed by the outline of some existing underwater localization systems

    Mission Design for Compressive Sensing with Mobile Robots

    Get PDF
    This paper considers mission design strategies for mobile robots whose task is to perform spatial sampling of a static environmental field, in the framework of compressive sensing. According to this theory, we can reconstruct compressible fields using O(log n) nonadaptive measurements (where n is the number of sites of the spatial domain), in a basis that is "in coherent" to the representation basis [1]; random uncorrelated measurements satisfy this incoherence requirement. Because an autonomous vehicle is kinematically constrained and has finite energy and communication resources, it is an open question how to best design missions for CS reconstruction. We compare a two-dimensional random walk, a TSP approximation to pass through random points, and a randomized boustrophedon (lawnmower) strategy. Not unexpectedly, all three approaches can yield comparable reconstruction performance if the planning horizons are long enough; if planning occurs only over short time scales, the random walk will have an advantage

    Sensing and connection systems for assisted and autonomous driving and unmanned vehicles

    Get PDF
    The special issue, “Sensors, Wireless Connectivity and Systems for Autonomous Vehicles and Smart Mobility” on MDPI Sensors presents 12 accepted papers, with authors from North America, Asia, Europe and Australia, related to the emerging trends in sensing and navigation systems (i.e., sensors plus related signal processing and understanding techniques in multi-agent and cooperating scenarios) for autonomous vehicles, including also unmanned aerial and underwater ones
    corecore