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Abstract— This paper considers mission design strategies for
mobile robots whose task is to perform spatial sampling of
a static environmental field, in the framework of compressive
sensing. According to this theory, we can reconstruct compress-
ible fields using O(logn) nonadaptive measurements (where n is
the number of sites of the spatial domain), in a basis that is “in-
coherent” to the representation basis [1]; random uncorrelated
measurements satisfy this incoherence requirement. Because an
autonomous vehicle is kinematically constrained and has finite
energy and communication resources, it is an open question
how to best design missions for CS reconstruction. We compare
a two-dimensional random walk, a TSP approximation to
pass through random points, and a randomized boustrophedon
(lawnmower) strategy. Not unexpectedly, all three approaches
can yield comparable reconstruction performance if the plan-
ning horizons are long enough; if planning occurs only over
short time scales, the random walk will have an advantage.

I. INTRODUCTION

Mobile robots are increasingly being used to survey and
map spatial phenomena for large-scale environmental mon-
itoring applications. Examples include the NIMS system of
tethered robots to map atmospheric conditions in forests [2],
and robotic boats [3] and underwater gliders [4] to map
chemical and physical properties of water. The success of
these and other systems today means that soon groups of
tens or even hundreds of robots will be deployed, and for
longer missions than they are today. A fundamental question
underlying such monitoring goals is: “Given some prior
knowledge of the field of interest, how should robots move
to gather maximum information, subject to energy and other
constraints?” As is well-known, these planning problems can
scale poorly even for one vehicle, and groups of vehicles
executing a planned mission will likely have very significant
connectivity and navigation requirements [5]–[10]. At the
same time, recent results in compressive sensing (CS) [1],
[11] show that under certain conditions it is possible to
reconstruct fields using only O(log n) completely random
measurements, where n is the number of sites in the dis-
cretized field. The major requirements are that the field is
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sparse in a basis, for example that its Fourier transform
has only a few nonzero components, and that the sensing
basis is incoherent with respect to the field basis. Indeed,
most natural phenomenon are smooth and they admit sparse
representations in the frequency or wavelet bases [12]; local
spatial measurements tend to be incoherent with these bases.

Thus, using CS to reconstruct fields may provide a new
opportunity for designing extremely simple but effective mis-
sions in autonomous vehicles. In addition to mitigating the
path planning and navigation challenges mentioned above,
this “lightweight” sampling approach has other advantages.
For one, since it does not require the robots to sample at
specific locations, sampling can easily be interleaved with
other tasks. Further, it may be that effective multiple vehicle
operations are no more complicated than a set of independent
vehicles, each acting alone.

Our scope in this paper is to consider three basic mission
design paradigms in the context of CS for a single vehicle.
We compare a two-dimensional random walk, a travelling
salesman problem (TSP) approximation to pass through
random points (referred to here as “random TSP”), and a
randomized boustrophedon (“mowing the lawn”) strategy,
subject to equivalent energy costs and budget; the value func-
tion is the CS reconstruction error. We consider in particular
a discrete setting where the domain is a 2D grid with n sites,
and assume the Discrete Fourier Transform (DCT) basis for
sparsity/compressibility. The vehicle is assumed to be well-
controlled, with minimal navigation errors.

Our contributions are as follows. We explicitly combine
the constraints of energy costs with compressed sensing
for the development of practical path planning. We further
provide an optimized method for designing the randomized
path which both satisfies the requirements for good field re-
construction as dictated by compressed sensing as well as ex-
plicitly takes the navigation costs into consideration. Finally,
we compare our proposed strategy with the two schemes
previously mentioned and find that for short horizons, our
proposed scheme outperforms the other two with respect to
energy consumption while maintaining a comparable field
reconstruction accuracy.

This paper is organized as follows. Section II summarizes
related work in the field of CS. Section III presents the CS
background relevant to our work. Section IV provides the
problem statement and mobility models. Section V presents
and discusses our numerical simulations and results. Sec-
tion VI concludes the paper.



II. RELATED WORK

The benefits of compressive sensing are being vigorously
studied in sensor networks for data gathering and compres-
sion, and recent work has explored the selection of sparse,
local projections [13], [14]. With mobile robots, en-route
compression is not relevant because the energy spent on
storing and communicating data is negligible compared to
the energy spent on motion. The main challenge in the robot
sampling scenario is rather that the spatial dependence of
robot motion will not provide uniformly random measure-
ments as desired for compressive sensing. Recently, Mostofi
et al. [15] considered a field reconstruction problem in
which compressive sensing is used for cooperative mapping
with robot groups using properties of wireless transmission;
however, vehicle path planning is not addressed. As stated
in the introduction, our interest is in vehicle mobility models
which are lightweight in terms of robot cooperation and
navigation, can accurately reconstruct the field of interest,
and include vehicle kinematic constraints. Due to the use of
compressed sensing-based strategies, we retain the feature of
collecting a small set of measurements as exploited in [15].

III. CS METHODOLOGY

We present some key results from compressive sensing [1],
and lay out our particular scenario.

A. Orthonormal Measurement and Sparsity Bases

Let Ψ ∈ Rn×n be an orthonormal basis in which the
signal, f , has a concise or sparse representation. Suppose
f = Ψx for x ∈ Rn. Formally, x is S-sparse if it has at
most S non-zero elements. Further, x is compressible if for
xS obtained from x by keeping only the S largest terms,
the loss in signal energy, ∥x−xS∥ is “small”. Many natural
phenomenon are compressible in domains such as frequency,
wavelets or total variation [12] . Let Φ ∈ Rn×n be another
orthonormal basis, and let y1, y2, · · · ym be the measure-
ments obtained by projecting f on vectors ϕ1, ϕ2, · · · , ϕm ∈
Rn i.e. yi = ⟨f, ϕi⟩. In the usual robot sampling scenario,
sensing is performed in the spatial domain, so that the
measurement basis functions are delta functions in space.
The domain grid is vectorized into a n×1 column, and each
measurement is an n× 1 column of zeros, with a single 1 at
the measurement location. Φ is orthogonal, a permutation of
the n×n identity matrix. We are interested in cases where the
number of samples is significantly less than the dimension
of the field i.e. m << n; this is encoded into R, an m× n
matrix which pre-multiplies Φ. Thus we have y = RΦf ,
with f = Ψx.

B. Incoherence and Reconstruction

Incoherence is a critical requirement for CS, and captures
how dissimilar a pair of sparsity and measurement bases are;
the idea is that local information in one basis will be spread
out in the other basis. Incoherence is defined as

µ(Φ,Ψ) =
√
n max

1≤j,k≤n
∥⟨ϕj , ψk⟩∥ .

For a 2D field that is sparse in the DCT basis and
is sampled spatially as described above, µ(Φ,Ψ) = 2,
a constant value which satisfies the CS requirement. For
an S-sparse field, the reconstruction problem can now be
formulated as the convex optimization program [1]

min
x̃∈Rn

∥x̃∥ℓ1 subject to y = RΦΨx .

In words, this optimization is finding the set of coefficients
of x̃ which is consistent with the measurements, y, and has
the minimum ℓ1 norm.

A key theorem is of CS states that with if the coefficient
sequence x of f in the basis Ψ is S-sparse, the reconstruction
is exact with high probability if m ≥ Cµ2(Φ,Ψ)S log n for
some positive constant C, and the measurements are taken in
the Φ domain uniformly at random. This implies that if the
incoherence is constant, then the number of measurements
needed for exact reconstruction is O(log n).

C. RIP and Measurement Techniques

For signals which are not strictly sparse, but only com-
pressible, i.e. they have rapidly decaying coefficients, an
extension is needed to the above theorem. This extension
states that for compressible signals that obey the Restricted
Isometry Property (RIP), the reconstruction quality decays
gracefully. Informally, a measurement system Φ,Ψ, R satis-
fies RIP of order S if RΦΨ approximately preserves the
Euclidean length of S-sparse vectors. This is equivalent
to saying that the columns of RΦΨ are approximately
orthogonal. If a compressible signal satisfies RIP then CS
reconstruction algorithms can be used with high confidence.
However, CS algorithms are generally applied with a class
of random projection matrices constructed using Gaussian
and Bernoulli variables that are known to satisfy RIP and
therefore lead to efficient reconstruction [1], [11]. Such ran-
dom projections are not suited for our problem of sampling
using robots because the motion constraints make gathering
of independent random measurements infeasible. Therefore
it is desirable to find new projection matrices that 1) result
in efficient CS reconstruction and 2) can be constructed
efficiently by mobile robots. In general, it is not easy to
show that structured projections satisfy the RIP, although
there have been recent efforts directed towards the design of
deterministic projection matrices [16]–[18]. However, these
approaches directly control the structure of the sensing ma-
trix A (= RΦΨ) whereas in our case, we can only control the
measurement matrix RΦ. To the best of our knowledge, there
are no techniques for structured random construction of the
measurement matrix, especially given the motion constraints
of robots.

IV. SETUP FOR MISSION COMPARISON

A. Energy Budget and Costs

In order to constrain the motions and the number of
measurements that the robots can take, an energy budget with
associated costs was developed to mimic real-world systems.
Costs were included for linear motion, direction changes, and
measurements, given by



E = α
m∑
i=1

Li + β
m∑
i=1

(∆θi)
2 + γm

where E is the expended vehicle energy, α is the linear mo-
tion cost, β is the direction change cost, γ is the measurement
cost, Li is the length of step i, ∆θi is the magnitude of
the direction change before step i, and m is the number of
measurements. We forego a separate communication cost,
assuming that it could be included as a piece of the total
measurement cost.

Several scenarios were investgated. One scenario is that of
expensive movement and cheap measurement, such as when
measuring a temperature field. Another scenario is that of
measurement costs on a par with movement costs, such as
with biological sampling [19] or measurements that require
active stationkeeping for an extended period. Also, direction
change costs were varied to simulate differences in vehicle
dynamics and domain size; sharp turns with streamlined
vehicles will greatly reduce speed, thereby increasing the
amount of energy consumed. The initial vehicle energy
was based on the size of the domain. The energy was set
to allow for a fixed number (O(10)) of traversals of the
space, along with the associated 90◦ turns required for a
complete boustrophedon pattern, if no measurements were
taken. The mission design must then trade off movement
for measurement. These scenarios are discussed in more
detail in Section V-A. Additional scenarios not discussed
here include consideration of obstacles and complicated
domain geometry, non-uniform information distributions, and
measurement duration and its effect on information quality.

B. Mobility Models - Mission Design

1) Random Walk: The random walk mobility model is
designed to satisfy the compressive sensing requirement of
uniform random measurement locations while enforcing ve-
hicle kinematic constraints. The vehicle begins in a randomly
chosen location and a measurement is taken. After each
measurement i, a joint probability mass function (PMF)
P (∆θ, L) is sampled for a direction change ∆θi and step
length Li. The vehicle follows this trajectory and takes a
measurement at the end of each step and then samples the
PMF again. Fig. 1(a) shows a typical random walk tour.
The step-by-step model is illustrated in Fig. 2. We assume
instantaneous direction changes, a fair assumption when
domain size is large compared to vehicle speed. Domain
boundary constraints are enforced by projecting the desired
path back into the domain, with the angle of reflection equal
to the angle of incidence. McNish [20] investigates reflection
angles designed to achieve probabilistically uniform cover-
age; however, that work applies only to circular domains
with direction changes only at the boundaries. Further work
in reflection strategies may be warranted.

The random walk PMF is optimized as described in
Section IV-E. An important feature of the random walk is
that it requires no time or measurement horizon. It simply
continues until the available energy is expended or some

other mission parameter is satisfied. The use of an optimized
PMF to generate the random walk is one of the major
contributions of this work.

2) Random TSP: The random TSP mobility model is
designed to use uniform random measurements that will
fully satisfy the measurement requirement for compressive
sensing. A specific number, m, of measurement locations
are randomly chosen from the domain. A tour of these
points is then generated using a TSP approximation. The
expected energy consumption is computed, and if it is ‘close’
to the available energy, the path is used. Otherwise m is
modified to better match the available energy and another
set of points and a tour are generated. For our comparisons,
we use the nearest neighbor technique (NNTSP). Fig. 1(b)
shows a typical random TSP tour.

3) Radomized Boustrophedon: The randomized boustro-
phedon mobility model is comprised of back-and-forth mo-
tions traversing the space. The deterministic boustrophedon
(commonly referred to as a “lawnmower” trajectory) is a
widely used measurement strategy for coverage of a space
[21]; here we introduce randomness for the purposes of
employing compressive sensing. The path is determined
based on the the desired number of measurements, with the
location of the lengthwise traversals chosen randomly. The
measurement locations are then chosen randomly along this
path. Additionally, the ratio of energy spent on movement
and measurement is configured to match that of the random
walk to provide a fair and accurate comparison between the
two strategies. Fig. 1(c) shows a typical boustrophedon.

C. Mobility Models - Algorithm Complexity

Complexity of mission planning algorithms is a major
factor for large numbers of vehicles or measurements. The
random walk and boustrophedon calculations have a cost
which is linear in m. For the random TSP, the NNTSP
approximation we use here is also linear in m; however,
there is no approximiation factor with the NNTSP. Certainly
a more efficient strategy could be designed – a minimum
spanning tree gives an approximation factor of two with
O(m2) computational cost, while a matching step will give
an approximation factor of 3/2 with O(m3) cost [22].

D. Horizon Planning

Generating a pre-planned mission relies on a prediction
of vehicle energy expenditure. Stochastic variables, such as
ocean currents or unknown obstacles can cause unexpected
changes in mission cost. When the vehicle has an energy
surplus or deficit, the vehicle time is not being used as
efficiently as possible. These inefficiencies can result in a
waste of support vehicle and personnel expenditures or a
lost opportunity for the robot to perform other tasks. The
unplanned random walk model does not suffer from this
problem; its one-step horizon enables the use of all available
energy. Differences in expected and actual energy expendi-
ture, however, do affect the random TSP and boustrophedon
models’ planning strategies. A common practice is to split
a mission into a set of phases each with a shorter horizon.
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Fig. 1. Typical robot paths. The random walk path begins at a random location and samples a joint PMF for heading change and distance after each
measurement. The random TSP path is designed in three phases, each using some fraction of the available vehicle energy. A nearest neighbor tour connects
randomly chosen points for each phase. The boustrophedon path is designed by choosing the number of traversals and measurements to result in a desired
ratio of measurement and movement energy expenditure. The traversal and measurement locations are then chosen randomly. The boustrophedon path is
also designed as a set of independent phases.
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Fig. 2. Illustration of the random walk. At each measurement location,
a new step length Li and a heading change ∆θi are chosen from a joint
PMF.

A TSP path planned in this manner will suffer from a lower
efficiency, as there are fewer points to connect with each
phase of the mission, but this strategy ensures that at least
one path will be completed, providing some assurances that
most of the domain will have been visited. With this in mind,
we design the random TSP and boustrophedon missions as
a series of phases that combine into the complete path. In
the specific example below we use three phases which each
consume 33% of the vehicle energy.

E. Random Walk Optimization

A particle swarm optimization (PSO) algorithm is used
to design the PMF for the random walk. The PSO is
performed as in [23], which is a comprehensive learning
variant [24]. PSO was used because it is well-suited to multi-
modal functions where local optima may exist. The PSO
is performed as follows: each position in the joint PMF
is represented by several distinct ‘particles.’ Each particle
moves throughout the design space in response to the current
best evaluation of the fitness objective function, along with an
additional influence from pseudo-random noise. In this case,
the objective function is the reconstruction error achieved
with a random walk tour using the PMF. Movement and
measurement costs will affect this performance, so a separate
optimization was run for each set of costs. As expected, with
high movement costs the optimization returns a PMF which
places more weight on shorter step lengths.

V. SIMULATION EXPERIMENTS

We have tested the proposed sampling strategies through
extensive simulations in MATLAB. The domain is a 2D grid
with n grid points. The field is taken from measurements
of sea surface temperature. Each of the sampling strategies
mentioned above was compared under three different sce-
narios of vehicle movement and measurement costs. Each
of these scenarios is meant to simulate differences in real-
world operating conditions, such as vehicle mobility, type of
measurement, and domain size.

A. Measurement and Movement Cost Scenarios

1) Scenario 1: Inexpensive Measurements and Large Do-
main: For this scenario, the linear motion cost, α, is set
to one, and the direction change cost, β, and measurement
cost, γ, are set to 0.01. These settings simulate a vehicle
which is taking cheap measurements, such as temperature
or optical imaging. Additionally, the small turning cost
simulates a domain which is large in comparison to the
vehicle turning radius, or a highly maneauverable vehicle.
Fig. 3 (left) shows the simulation results for Scenario 1. The
top plot show energy expended as a function of measurement
number. The bottom plot shows reconstruction error. For
this plot, reconstruction error is computed successively as
measurements are added.

2) Scenario 2: Inexpensive Measurements and Small Do-
main: For this scenario, α and β are set to one, and γ is
set to 0.01. Here, direction changes play a larger role, and
we refer to this as the small domain effect; it comes from
having a less maneuverable vehicle or a domain which is
small in comparison to the vehicle turning radius. The small
domain imposes a greater turning cost because large direction
changes will significantly slow the vehicle. Additionaly, a
small domain will impose more severe limitations on the
vehicle path that may decrease the efficiency of path planning
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Fig. 3. Energy expenditure and reconstruction error as measurements are taken during a mission. Each sampling strategy is given the same initial
energy. Scenario 1: Inexpensive Measurements and Large Domain. Scenario 2: Inexpensive Measurements and Small Domain. Scenario 3: Expensive
Measurements and Small Domain. In Scenario 1, the random TSP is more efficient, taking more measurements and also achieving a better reconstruction
error. In Scenario 2, the random TSP is again more efficient and achieves a better final reconstruction error; however, for a given number of measurements,
the random walk perfoms equally well. In Scenario 3, all strategies are similarly efficient, and here the random TSP is superior given the same number
of measurements. The boustrophedon performes similarly to the random walk in Scenarios 1 and 3. In Scenario 2 the random walk is superior to the
boustrophedon.

algorithms. Fig. 3 (center) shows the simulation results for
Scenario 2.

3) Scenario 3: Expensive Measurements and Small Do-
main: For this scenario, α, β and γ are set to one. These
settings simulate a vehicle taking expensive measurements,
such as biological samples in a small domain. Fig. 3 (right)
shows the simulation results for Scenario 3.

B. Discussion

Results in each scenario above show that, for a given num-
ber of measurements, the random TSP strategy marginally
outperforms the ’ophedon and random walk. Likely, this
performance difference can be attributed to the uniformly
random measurements taken by the random TSP, as opposed
to the quasi-random measurements of the other strategies.

A larger influence on final reconstruction error, and what
we will discuss from here on, seems to come from dif-
ferences in the number of measurements taken with each
mission type. The boustrophedon mission was designed to
match the random walk’s ratio of movement energy to
measurement energy, so a similar number of measurements
is taken with the two strategies, thus resulting in a similar
reconstruction error. The random TSP strategy, however,
becomes more efficient as more measurements are taken.
Fig. 4 shows the average step length as a function of the
number of measurements for the random walk in each of the
cost scenarios, and for a single instance of the random TSP
(the TSP approximation does not depend on vehicle costs).
The random walk shows a constant step length, independent
of mission duration. This constant is equal to the expected

value of the step length from the optimized PMF for each
scenario. The random TSP, however, shows a step length
which decreases with increasing mission duration. As the
step length of the random TSP mission gets shorter, the
random TSP is able to take more measurements, resulting
in a better reconstruction. A mission design strategy would
seek to maximize the number of measurements taken, and
thereby minimize the recontruction error. Looking again at
Fig. 4, we conclude that for missions of short duration, i.e.,
to the left of the intersection for a particular scenario, the
mission would benefit from the random walk, whereas, with
long missions, to the right of the intersection, the mission
should utilize the random TSP.

VI. CONCLUSIONS

We have investigated three mission design strategies for
compressive sensing of spatial environmental features using
mobile robots. Our random walk strategy includes a novel
addition to classical compressed sensing: we optimize the
probability mass function of the walk in order to consider
motion constraints. The random walk strategy is lightweight
and scalable with regards to path planning and is efficient
at low numbers of measurements. The random TSP strategy
outperforms the random walk at larger numbers of measure-
ments, but an additional computational cost must be incurred
to design a TSP tour. The boustrophedon strategy performs
similarly to the random walk and is more computationally
manageable than the random TSP method; however, it is still
more expensive than the random walk. We establish that
these measurement strategies combined with compressive
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sensing provide an efficient way to reconstruct compressible
natural fields.
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