4,806 research outputs found

    A Neural-CBR System for Real Property Valuation

    Get PDF
    In recent times, the application of artificial intelligence (AI) techniques for real property valuation has been on the increase. Some expert systems that leveraged on machine intelligence concepts include rule-based reasoning, case-based reasoning and artificial neural networks. These approaches have proved reliable thus far and in certain cases outperformed the use of statistical predictive models such as hedonic regression, logistic regression, and discriminant analysis. However, individual artificial intelligence approaches have their inherent limitations. These limitations hamper the quality of decision support they proffer when used alone for real property valuation. In this paper, we present a Neural-CBR system for real property valuation, which is based on a hybrid architecture that combines Artificial Neural Networks and Case- Based Reasoning techniques. An evaluation of the system was conducted and the experimental results revealed that the system has higher satisfactory level of performance when compared with individual Artificial Neural Network and Case- Based Reasoning systems

    A Spatial Decision Support System for Property Valuation

    Get PDF
    May 6-

    The effect of google drive distance and duration in residential property in Sydney, Australia

    Full text link
    © 2016 by World Scientific Publishing Co. Pte. Ltd. Predicting the market value of a residential property accurately without inspection by professional valuer could be beneficial for vary of organization and people. Building an Automated Valuation Model could be beneficial if it will be accurate adequately. This paper examined 47 machine learning models (linear and non-linear). These models are fitted on 1967 records of units from 19 suburbs of Sydney, Australia. The main aim of this paper is to compare the performance of these techniques using this data set and investigate the effect of spatial information on valuation accuracy. The results demonstrated that tree models named eXtreme Gradient Boosting Linear, eXtreme Gradient Boosting Tree and Random Forest respectively have best performance among other techniques and spatial information such drive distance and duration to CBD increase the predictive model performance significantly

    Identifying Real Estate Opportunities using Machine Learning

    Full text link
    The real estate market is exposed to many fluctuations in prices because of existing correlations with many variables, some of which cannot be controlled or might even be unknown. Housing prices can increase rapidly (or in some cases, also drop very fast), yet the numerous listings available online where houses are sold or rented are not likely to be updated that often. In some cases, individuals interested in selling a house (or apartment) might include it in some online listing, and forget about updating the price. In other cases, some individuals might be interested in deliberately setting a price below the market price in order to sell the home faster, for various reasons. In this paper, we aim at developing a machine learning application that identifies opportunities in the real estate market in real time, i.e., houses that are listed with a price substantially below the market price. This program can be useful for investors interested in the housing market. We have focused in a use case considering real estate assets located in the Salamanca district in Madrid (Spain) and listed in the most relevant Spanish online site for home sales and rentals. The application is formally implemented as a regression problem that tries to estimate the market price of a house given features retrieved from public online listings. For building this application, we have performed a feature engineering stage in order to discover relevant features that allows for attaining a high predictive performance. Several machine learning algorithms have been tested, including regression trees, k-nearest neighbors, support vector machines and neural networks, identifying advantages and handicaps of each of them.Comment: 24 pages, 13 figures, 5 table

    A geographic knowledge discovery approach to property valuation

    Get PDF
    This thesis involves an investigation of how knowledge discovery can be applied in the area Geographic Information Science. In particular, its application in the area of property valuation in order to reveal how different spatial entities and their interactions affect the price of the properties is explored. This approach is entirely data driven and does not require previous knowledge of the area applied. To demonstrate this process, a prototype system has been designed and implemented. It employs association rule mining and associative classification algorithms to uncover any existing inter-relationships and perform the valuation. Various algorithms that perform the above tasks have been proposed in the literature. The algorithm developed in this work is based on the Apriori algorithm. It has been however, extended with an implementation of a ‘Best Rule’ classification scheme based on the Classification Based on Associations (CBA) algorithm. For the modelling of geographic relationships a graph-theoretic approach has been employed. Graphs have been widely used as modelling tools within the geography domain, primarily for the investigation of network-type systems. In the current context, the graph reflects topological and metric relationships between the spatial entities depicting general spatial arrangements. An efficient graph search algorithm has been developed, based on the Djikstra shortest path algorithm that enables the investigation of relationships between spatial entities beyond first degree connectivity. A case study with data from three central London boroughs has been performed to validate the methodology and algorithms, and demonstrate its effectiveness for computer aided property valuation. In addition, through the case study, the influence of location in the value of properties in those boroughs has been examined. The results are encouraging as they demonstrate the effectiveness of the proposed methodology and algorithms, provided that the data is appropriately pre processed and is of high quality

    Land valuation using an innovative model combining machine learning and spatial context

    Get PDF
    Valuation predictions are used by buyers, sellers, regulators, and authorities to assess the fairness of the value being asked. Urbanization demands a modern and efficient land valuation system since the conventional approach is costly, slow, and relatively subjective towards locational factors. This necessitates the development of alternative methods that are faster, user-friendly, and digitally based. These approaches should use geographic information systems and strong analytical tools to produce reliable and accurate valuations. Location information in the form of spatial data is crucial because the price can vary significantly based on the neighborhood and context of where the parcel is located. In this thesis, a model has been proposed that combines machine learning and spatial context. It integrates raster information derived from remote sensing as well as vector information from geospatial analytics to predict land values, in the City of Springfield. These are used to investigate whether a joint model can improve the value estimation. The study also identifies the factors that are most influential in driving these models. A geodatabase was created by calculating proximity and accessibility to key locations as well as integrating socio-economic variables, and by adding statistics related to green space density and vegetation index utilizing Sentinel-2 -satellite data. The model has been trained using Greene County government data as truth appraisal land values through supervised machine learning models and the impact of each data type on price prediction was explored. Two types of modeling were conducted. Initially, only spatial context data were used to assess their predictive capability. Subsequently, socio-economic variables were added to the dataset to compare the performance of the models. The results showed that there was a slight difference in performance between the random forest and gradient boosting algorithm as well as using distance measures data derived from GIS and adding socioeconomic variables to them. Furthermore, spatial autocorrelation analysis was conducted to investigate how the distribution of similar attributes related to the location of the land affects its value. This analysis also aimed to identify the disparities that exist in terms of socio-economic structure and to measure their magnitude.Includes bibliographical references

    Policy Design for Controlling Set-Point Temperature of ACs in Shared Spaces of Buildings

    Full text link
    Air conditioning systems are responsible for the major percentage of energy consumption in buildings. Shared spaces constitute considerable office space area, in which most office employees perform their meetings and daily tasks, and therefore the ACs in these areas have significant impact on the energy usage of the entire office building. The cost of this energy consumption, however, is not paid by the shared space users, and the AC's temperature set-point is not determined based on the users' preferences. This latter factor is compounded by the fact that different people may have different choices of temperature set-points and sensitivities to change of temperature. Therefore, it is a challenging task to design an office policy to decide on a particular set-point based on such a diverse preference set. As a result, users are not aware of the energy consumption in shared spaces, which may potentially increase the energy wastage and related cost of office buildings. In this context, this paper proposes an energy policy for an office shared space by exploiting an established temperature control mechanism. In particular, we choose meeting rooms in an office building as the test case and design a policy according to which each user of the room can give a preference on the temperature set-point and is paid for felt discomfort if the set-point is not fixed according to the given preference. On the other hand, users who enjoy the thermal comfort compensate the other users of the room. Thus, the policy enables the users to be cognizant and responsible for the payment on the energy consumption of the office space they are sharing, and at the same time ensures that the users are satisfied either via thermal comfort or through incentives. The policy is also shown to be beneficial for building management. Through experiment based case studies, we show the effectiveness of the proposed policy.Comment: Journal paper accepted in Energy & Buildings (Elsevier
    • 

    corecore