305 research outputs found

    Autonomous Navigation for Mars Exploration

    Get PDF
    The autonomous navigation technology uses the multiple sensors to percept and estimate the spatial locations of the aerospace prober or the Mars rover and to guide their motions in the orbit or the Mars surface. In this chapter, the autonomous navigation methods for the Mars exploration are reviewed. First, the current development status of the autonomous navigation technology is summarized. The popular autonomous navigation methods, such as the inertial navigation, the celestial navigation, the visual navigation, and the integrated navigation, are introduced. Second, the application of the autonomous navigation technology for the Mars exploration is presented. The corresponding issues in the Entry Descent and Landing (EDL) phase and the Mars surface roving phase are mainly discussed. Third, some challenges and development trends of the autonomous navigation technology are also addressed

    Technologies for single chip integrated optical gyroscopes

    Get PDF
    Optical gyroscopes are being employed for navigational purposes for decades now and have achieved comparable or better reliability and performance than rotor-based gyroscopes. Mechanical gyros are however generally bulky, heavy and consume more power which make them unsuitable for miniaturized applications such as cube satellites and drones etc. Therefore, much effort is being expended worldwide to fabricate optical gyros having tactical grade robustness and reliability, small size, weight, cost and power consumption with minimal sacrifice of sensitivity. Integrated optics is an obvious approach to achieving this. This work comprises detailed comparative analysis of different types and structures of integrated optical gyroscopes to find out the suitable option for applications which require a resolution of <10 o/h. Based on the numerical analysis, Add-drop ring resonator-based gyro is found to be a suitable structure for integration which has a predicted shot noise limited resolution of 27 o/h and 2.71 o/h for propagation losses of 0.1 dB/cm and 0.01 dB/cm respectively. An integrated gyro is composed of several optical components which include a laser, 3dB couplers, phase/frequency modulators, sensing cavity and photodetectors. This requires hybrid integration of multiple materials technologies and so choices about which component should be implemented in which technology. This project also undertakes theoretical optimization of few of the above-mentioned optical components in materials systems that might offer the most convenient/tolerant option, this including 3dB coupler, thermo-optic phase modulator and sensing cavity (resonator and waveguide loop). In particular, the sensing element requires very low propagation loss waveguides which can best be realised from Si3N4 or Ta2O5. The optimised Si3N4 or Ta2O5 waveguides however are not optimal for other functions and this is shown and alternatives explored where the Si3N4 or Ta2O5 can easily be co-integrated. The fabrication process of low loss Si3N4 and Ta2O5 waveguides are also reported in this thesis. Si3N4 films were grown by using low pressure chemical vapor deposition (LPCVD) technique. Dry etching of Si3N4 films have been optimized to produce smooth and vertical sidewalls. Experimental results predicted that the propagation loss of 0.009 dB/cm is achievable by using optimum waveguide dimensions and silica cladding with the relatively standard processes available within the Laser Physics Centre at the Australian National University. A CMOS back end of line compatible method was developed to deposit good quality Ta2O5 films and silica claddings through ion beam sputtering (IBS) method. Plasma etching of Ta2O5 waveguides has been demonstrated by using a gas combination of CHF3/SF6/Ar/O2. Oxygen was introduced into the chamber to produce non-vertical sidewalls, so the waveguides could be cladded without voids with IBS silica. Average propagation losses of 0.17 dB/cm were achieved from Ta2O5 waveguides which appeared after extensive investigation to be limited by the spatial inhomogeneity of the processing. Lastly, a detailed theoretical and experimental analysis was performed to find out the possible causes of the higher average propagation loss in Ta2O5 waveguides, some sections being observed with 0.02 dB/cm or lower losses

    High Data-Rate Atom Interferometry for Measuring Dynamic Inertial Conditions

    Get PDF
    Light pulse atom interferometers have demonstrated remarkable sensitivity and stability for acceleration and rotation rate measurement. However, typical manifestations are designed for laboratory environments and thus rely on a fixed magnitude and direction of gravity, and limited ambient rotation rate. We have enhanced the application space of atom interferometers towards more dynamic environments, with special attention for inertial navigation. I present our work in the domain of short time-of-flight atom interferometry, whereby the magnitude of ensemble excursion is constrained. The limited interrogation time results in a significant loss of sensitivity. We recover a fraction of the lost sensitivity by operating with an enhanced duty-cycle and data-rate. To demonstrate this concept, we construct an atom interferometer accelerometer capable of operating at data-rates as high as 300 Hz with sensitivities at μg/rtHz levels, which represents a competitive figure for inertial navigation application. For the bulk of this work, we demonstrate a dual-axis sensor capable of simultaneous acceleration and rotation-rate measurements. The sensor relies on a technique we refer to as ensemble exchange which provides a high flux source of ultracold atoms by swapping atomic ensembles between two MOTs. We achieve a steady-state atom number of 7e6 atoms/shot using a minimal loading time of a few milliseconds each shot. Furthermore, we find this technique to be robust under dynamic conditions as large as 10 g of acceleration and 20 rad/s of rotation rate, representing a significant enhancement in ultra-cold atom sample preparation. The sensor achieves μg/rtHz and μrad/s/rtHz sensitivities, making this technique a compelling prospect for inertial navigation applications. Through the use of auxiliary cosensors and a real-time combinatorial loop with feedforward and feedback mechanisms, we demonstrate an unprecedented enhancement of the sensor dynamic range up to 20 mg. Finally, I will discuss a novel manifestation of short time-of-flight atom interferometry in a warm atomic vapor, which avoids the complication of cold sample preparation and has the potential for significantly simplified laser systems

    Improving cold-atom sensors with quantum entanglement: Prospects and challenges

    Full text link
    Quantum entanglement has been generated and verified in cold-atom experiments and used to make atom-interferometric measurements below the shot-noise limit. However, current state-of-the-art cold-atom devices exploit separable (i.e. unentangled) atomic states. This Perspective piece asks the question: can entanglement usefully improve cold-atom sensors, in the sense that it gives new sensing capabilities unachievable with current state-of-the-art devices? We briefly review the state-of-the-art in precision cold-atom sensing, focussing on clocks and inertial sensors, identifying the potential benefits entanglement could bring to these devices, and the challenges that need to be overcome to realize these benefits. We survey demonstrated methods of generating metrologically-useful entanglement in cold-atom systems, note their relative strengths and weaknesses, and assess their prospects for near-to-medium term quantum-enhanced cold-atom sensing.Comment: Invited perspective; close to published version. Note the change in title. 19 pages, 7 figure

    New frontiers at the interface of general relativity and quantum optics

    Get PDF
    In the present paper we follow three major themes: (i) concepts of rotation in general relativity, (ii) effects induced by these generalized rotations, and (iii) their measurement using interferometry. Our journey takes us from the Foucault pendulum via the Sagnac interferometer to manifestations of gravito-magnetism in double binary pulsars and in Gödel\u27s Universe. Throughout our article we emphasize the emerging role of matter wave interferometry based on cold atoms or Bose-Einstein condensates leading to superior inertial sensors. In particular, we advertise recent activities directed towards the operation of a coherent matter wave interferometer in an extended free fall. © 2009 Springer Science+Business Media B.V

    Light pulse atom interferometry at short interrogation times for inertial navigation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, February 2012."February 2012." Cataloged from PDF version of thesis.Includes bibliographical references (p. 141-150).Light pulse atom interferometry with cold atoms is a promising inertial sensing technology for high accuracy navigation. At present, laboratory atom interferometers match or surpass state of the art mechanical and optical inertial sensors in terms of sensitivity and long term stability. Conventional laboratory systems, however, do not achieve sufficient bandwidth or dynamic range to operate in a dynamic environment; furthermore, the size, weight and power of laboratory sensors are unsuitable for many applications. In this thesis, atom interferometry is realized at shorter interrogation times (100 ms), in which the required sensitivity, bandwidth and dynamic range of navigation systems becomes feasible. A cold atom gravimeter testbed using atom interferometry with stimulated Raman transitions was developed, which executed the entire measurement cycle in a compact vacuum cell (~ ~ 80 cc). The system demonstrated an inferred sensitivity of 2 [mu]g[square root] Hz for an interrogation time of 2T = 10 ms (based on measured phase SNR, scale factor, and repetition rate). With realistic improvements to the apparatus, it could achieve a sensitivity of <1 [mu]g[square root]Hz, advancing toward the realization of a compact, atom-based inertial measurement unit with unprecedented performance. In addition, a method for increasing the momentum splitting of Raman pulse interferometers with sequential Raman pulses was demonstrated, and interferometer area was increased by up to a factor of nine without altering the interrogation time (corresponding to a momentum splitting of 18hk, the largest reported for Raman pulse interferometry). Composite Raman pulses were implemented to improve population transfer efficiency, which limits the achievable increase in precision. Finally, the effect of coherent population trapping (CPT) induced by Raman pulse atom optics was identified as a source of systematic phase shifts in the [pi]/2 - [pi] - [pi]/2 interferometer used for sensing acceleration and rotation. CPT effects were modeled in a three-level (A) atom, and were experimentally characterized using atom interferometry. Based on the magnitude of measured coherences induced by Raman pulse atom optics, phase shifts of several milliradians should occur for a typical GHz-scale laser detuning. A method for suppressing this bias in realistic operation by Raman beam propagation direction reversal is proposed.by David L. Butts.Ph.D

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected
    • …
    corecore