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Abstract

Light pulse atom interferometry with cold atoms is a promising inertial sensing technology
for high accuracy navigation. At present, laboratory atom interferometers match or surpass
state of the art mechanical and optical inertial sensors in terms of sensitivity and long term
stability. Conventional laboratory systems, however, do not achieve sufficient bandwidth or
dynamic range to operate in a dynamic environment; furthermore, the size, weight and power
of laboratory sensors are unsuitable for many applications. In this thesis, atom interferome-
try is realized at shorter interrogation times (<15 ms as opposed to >100 ms), in which the
required sensitivity, bandwidth and dynamic range of navigation systems becomes feasible.
A cold atom gravimeter testbed using atom interferometry with stimulated Raman transi-
tions was developed, which executed the entire measurement cycle in a compact vacuum cell
(~ 80 cc). The system demonstrated an inferred sensitivity of 2 pg/ Hz for an interroga-
tion time of 2T = 10 ms (based on measured phase SNR, scale factor, and repetition rate).
With realistic improvements to the apparatus, it could achieve a sensitivity of <1 pg/Hz,
advancing toward the realization of a compact, atom-based inertial measurement unit with
unprecedented performance. In addition, a method for increasing the momentum splitting
of Raman pulse interferometers with sequential Raman pulses was demonstrated, and in-
terferometer area was increased by up to a factor of nine without altering the interrogation
time (corresponding to a momentum splitting of 18hk, the largest reported for Raman pulse
interferometry). Composite Raman pulses were implemented to improve population transfer
efficiency, which limits the achievable increase in precision. Finally, the effect of coherent
population trapping (CPT) induced by Raman pulse atom optics was identified as a source
of systematic phase shifts in the r/2 - r - r/2 interferometer used for sensing acceleration
and rotation. CPT effects were modeled in a three-level (A) atom, and were experimentally
characterized using atom interferometry. Based on the magnitude of measured coherences
induced by Raman pulse atom optics, phase shifts of several milliradians should occur for a
typical GHz-scale laser detuning. A method for suppressing this bias in realistic operation
by Raman beam propagation direction reversal is proposed.
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Chapter 1

Introduction

Inertial sensing technology plays a pivotal role in modern navigation and science. High

performance inertial sensors enable technology such as self-contained, precise navigation

systems, spacecraft that can survey the gravity field of a planet, or laboratory systems that

test fundamental physical principles such as the universality of free fall. New sensing modal-

ities, such as atom-based technology, are poised to revolutionize many of these engineering

and scientific applications.

1.1 High Accuracy Inertial Navigation

Inertial sensors with high sensitivity and long term stability are critical for demanding navi-

gation applications in which external references such as the Global Positioning System (GPS)

are unavailable or may be unreliable. Typical inertial navigation applications include air and

space flight, long duration submarine navigation, precise satellite pointing, and GPS-denied

land navigation. In these circumstances, a suite of instruments measuring linear acceleration

and rotation (accelerometers and gyroscopes) are of central importance in providing accurate

position and heading estimates, and reducing the dependence on external aiding.

In an inertial navigation system, data from accelerometers and gyroscopes are integrated

to estimate vehicle position over time- essentially a mechanized form of dead reckoning.

However, sensor errors quickly integrate to large position errors. For example, an accelerom-

eter with sensitivity oa (quoted as a velocity random walk, specified in units of g//Iz) leads

to a position error over duration T scaling as Ax - oaT 3 /2. A constant acceleration bias Aa



leads to a position error growing faster as Ax ~ -AaT2 . Likewise, angular rate errors from

noise in gyroscopes (specified as angle random walk in units of deg/Vhr) or biases also leads

to a rapidly accumulating position error. Other limiting error sources include initial align-

ment and uncertainty in compensation for local gravity, which individual accelerometers do

not measure directly (accelerometers measure specific force, the difference between inertial

and gravitational acceleration). While sophisticated gravity models mitigate this problem to

some level, measurements of gravity gradients by onboard, high precision gradiometers may

yet provide a more robust solution [1].

At present, the highest performance class of inertial navigation systems achieve position

accuracy at the level of - 100 m/hr. Table 1.1 summarizes the approximate performance

specifications for the individual sensors that would constitute the three-axis inertial mea-

surement unit (IMU) in such a system. These performance levels are currently met by state

of the art mechanical and optical inertial sensors. For accelerometers, the Pendulous Inte-

grating Gyroscopic Accelerometer (PIGA) has demonstrated high sensitivity and linearity

over a large dynamic range, making it suitable for a variety of flight applications. A PIGA

senses acceleration by measuring displacements of a pendulous mass and rebalancing this

motion with gyroscopic forces exerted by a separate rotating mass. These sensors, however,

require inertially-stabilized platforms that are large, costly to manufacture, and have limited

bandwidth (<30 Hz). Ultimately, the long term stability of mechanical sensors is limited

by the precision of their machining, which can be prohibitively expensive and challenging to

reproduce, and wear over the sensor lifetime. For gyroscopes, optical instruments such as

the ring laser gyroscope and fiber optic gyroscope are beginning to replace their mechanical

counterparts in some precision navigation systems. Optical gyroscopes measure rotation rate

by the Sagnac effect, which introduces relative path differences between laser light travel-

ing around counter-propagating paths on a rotating platform. These path differences are

observable via power variations produced by interference of the laser beams at the inter-

ferometer loop output. Optical gyroscopes offer high sensitivity, large dynamic range, and

compact, solid state design (no moving parts). For these reasons, they may be suitable for

strapdown inertial systems (non-gimbaled) which require low noise, high bandwidth and high

dynamic range sensors, but trade costly, complicated machining for increased computational

complexity.



Table 1.1: Cha
class for flight

racteristic performance metrics
iavigation systems [2].

of inertial sensors in the highest performance

Sensor Metrics 100 m/hr 5 m/hr (Future)
Accelerometer

Sensitivity (pg/v'Hz) 50 2
Bias stability (pg) 1 < 0.1

Scale factor stability (ppm) 1-10 <0.1
Gyroscope (strapdown)

Sensitivity (mdeg//hr) 0.1 <0.05
Bias stability (mdeg/hr) 0.5 <0.02

Scale factor stability (ppm) 1-10 <0.1
Size, weight, and power

Volume (cc) 100-600 Similar
Power (W) 5-35 Similar
Weight (g) 300-2200 Similar

Future high accuracy navigation applications, however, may demand inertial systems to

achieve at or below 5 m/hr position drift. At this level of performance, a completely-inertial

navigation system would approach GPS-levels of accuracy (~ 1 - 2 meters) for missions

under one hour in duration, allowing a vehicle to navigate without external aiding. As the

sensor specifications in Table 1.1 indicate, however, this requires improvements in sensing

performance of at least an order of magnitude. This increase in performance, particularly in

bias stability and scale factor stability, has been difficult to achieve in 'bulk media' sensing

technologies (e.g., MEMS).

Since the early 1990s, inertial sensing with atoms has proven a promising technology. The

most successful atomic sensors use laser-cooled atoms as a proof mass, and precisely measure

the motion of the atoms with atom interferometry. Atom interferometry exploits the wave

properties of matter to make sensitive measurements of inertial forces, providing the exquisite

accuracy possible with atomic measurements. Consider a comparison between optical and

atom gyroscopes. As mentioned above, optical Sagnac gyroscopes measure rotation rate as

a phase shift between two counter-propagating laser beams that enclose an area A:

light A-(1.1)
Ac

'Bias stability is a measure of the stability of the sensor output for zero input. Scale factor stability is a

measure of the stability of the ratio of sensor output to input.



where Q is the rotation rate, A is the optical wavelength, and c is the speed of light. In an

atom interferometer, matter waves are split and recombined in a similar geometry, resulting

in a phase shift with a similar form,

2m
Aatom = 2 -A, (1.2)

where m is the atomic mass and h is the reduced Planck constant. The phase shift measured

by the atom interferometer is larger by a factor of mc2/(ho) 1010 for the same enclosed

area (interestingly, this is the ratio of the atom rest energy to the photon energy). While

optical interferometers enclose more area than atom interferometers in practice, the expected

sensitivity for an atom interferometer is still orders of magnitude better. At present, labo-

ratory atom interferometers already compete with or surpass the sensitivity of state of the

art sensors in each sensor class [3-6].

Atom-based sensors also offer several technological advantages. Like optical sensors,

they have no moving parts and exploit major advances in laser, electro-optic, and vacuum

technologies. Atoms also provide exceptional long term stability because they are ideal,

inertially-free proof masses. Unlike proof masses in mechanical accelerometers, atoms in

an interferometer are not directly coupled to the sensor case, which is typically a source

of nonlinear response and drift. Moreover, all atoms in an ensemble are identical (of one

species), and their physical properties are well-known and unchanging (as far as we know).

As a sensing technology for navigation, atom interferometry is appealing because a single

measurement technique provides both high precision acceleration and rotation rate, as well

as other useful information like precise timekeeping. This fact has important implications for

integrating sensors in an IMU, as well as simplifying the industrial base that would provide

the sensors.

While the raw sensing capability demonstrated in laboratory systems underscores the

potential for high accuracy, atom-based IMUs, these systems fall far short in other critical

performance metrics- namely, dynamic range, bandwidth, and robustness to real-world en-

vironmental factors. Laboratory systems use large vacuum volumes, weigh tens to hundreds

of kilograms and require hundreds or thousands of Watts to power lasers, electro-optic com-

ponents, and radio-frequency (RF) electronics. Typical measurement cycles of >100 ms fall



short of the 100-500 Hz bandwidths demanded for many navigation systems, in addition to

the difficulty in achieving continuous operation (during the dead time in which cold atom

samples are prepared, there is no inertial sensitivity). Large scale factors (e.g., > 105 radi-

ans of phase per g of acceleration) pose a challenge for operation in a dynamic environment,

where large changes in acceleration could result in errors due to the ambiguity of which

interferometer fringe is registered. While early laboratory demonstrations were certainly not

designed with the intention of serving such dynamic applications, the engineering challenges

faced in transitioning atom interferometer technology from the laboratory to field-deployable

platforms are clearly significant.

The following sections provide a more in-depth conceptual and historical background of

inertial sensing with atom interferometry, and summarize important technological advance-

ments relevant to the development of practical atomic inertial sensors. The chapter concludes

with an outline of this thesis and a brief summary of the main contributions.

1.2 Inertial Sensing with Atom Interferometry

Before discussing state of the art in experimental atom interferometry, it is worthwhile to

describe an atom interferometer at a basic level (the next chapter describes the theory of

atom interferometry in more detail). In broad scope, atom interferometry is the coherent

manipulation of an atom such that its quantum mechanical wavefunction is spatially split

and recombined, creating interference between wavepackets that have accrued relative phase

differences along their respective paths. These manipulations are implemented by atom

optics, which are either laser light pulses or physical gratings that serve functions similar to

optical beam splitters and mirrors [7]. In an interferometer, the atoms are deBroglie waves

with a wavelength inversely proportional to their momentum (AdB= h/p). Interference is

manifested in the distribution of atoms at the output ports of the interferometer. At present,

light pulse atom optics have been most successful for making inertial measurements. Since

light pulse atom interferometry is the subject of this thesis, the scope of the remaining

discussion is restricted to this approach.

Fig. 1-1 depicts the simplest inertially-sensitive atom interferometer, a Mach-Zehnder

interferometer. Initially, a sample of atoms in free space is prepared in one state, represented
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Figure 1-1: A Mach-Zehnder light pulse atom interferometer. keff is the effective wavevector
of the interferometer beams, which is proportional to the momentum transferred to the
wavepackets by the light pulses, hkeff. Interference produces a population difference between
the output ports, corresponding to atoms in states |a) and |b).

by the notation 1a), which includes both the internal state and external momentum state (for

generality, it is denoted here by a single letter). A beam splitter pulse splits the wavepacket

into a coherent superposition of two states, la) and |b), typically with a two-photon transition

that allows for long coherence times (e.g., a stimulated Raman transition). By energy conser-

vation, the component of the wavefunction that makes a transition experiences a change in

momentum hkeff. The definition of the effective wavevector keff of the interferometer beams

depends on the particular transition driven by the light pulses. For instance, stimulated Ra-

man transitions driven by two counter-propagating laser beams impart two photon recoils

of momenta, hkeff ~ 2hk, where k is the wavenumber of one laser beam (a more detailed

description of Raman transitions is the subject of Chapter 2).

Following free propagation for a time T, the two wavepackets are deflected back toward

each other by a 'mirror' pulse, which flips the state of each packet with certainty (from Ia) to

|b) or vice versa). When the wavepackets recombine at a time T later, a final beam splitter

pulse mixes the wavepackets and creates interference. The relative phase of the two arms

of the interferometer can be related to the relative populations of atoms in the two output

ports of the interferometer, which respectively correspond to atoms in states |a) and 1b).

The population in |b) (the upper interferometer output port) is related to the interferometer

phase A# by P = - - 1 cos A#.
2 2

Inertial sensitivity is introduced when the atoms are displaced relative to the inertial



reference (e.g., a mirror fixed to the vehicle platform) by inertial forces. The principle of

the measurement is simple: acceleration can be determined by measuring the curvature of a

particle's trajectory. With three position measurements, {zi}, acquired at equal intervals in

time, T, the average acceleration is

(Z3 - z2 ) - (z 2 - zi) (1.3)

With a three pulse sequence like the one shown in Fig. 1-2, the local laser phases, # =

keff -z - Wefft + #, sampled by the particle center of mass at each pulse encode this position

information:

(#3 - #2) - (2 - 1 ) # 1-2#2 +#3 A# (1.4)
keffT2 keffT 2  keffT 2 '

for constant laser frequency and {#9}. In this regard, it is illustrative to consider the optical

phase fronts as a 'ruler' for the motion of the atom along the laser propagation axis, keff. The

Mach-Zehnder interferometer shown in Fig. 1-2(ii) measures acceleration along keff through

this differential phase shift, Aq, because the interaction of the atom with the light imprints

the light phase on the wavefunction of the atom. The scale factor for the acceleration

measurement is Ikeff T2 , meaning that precision can be improved by either increasing the

interrogation time or transferring more momentum to the atoms with the atom optics. There

is a clear trade between sensitivity and bandwidth; in other words, higher bandwidth sensors

must resolve smaller displacements to achieve the same sensitivity.

By a similar argument, it can be shown that a rotation of the reference frame of the

interferometer beams displaces the atoms by the Coriolis force. As mentioned above, the

Sagnac phase shift measured by the three-pulse interferometer enclosing area A is

2m
A#gyro = Q - A = -2keff - ( x vo)T 2  (1.5)

h

where vo is the initial velocity of the atom. Therefore, the three-pulse interferometer pro-

vides acceleration and rotation rate measurements 2 [7]. A second interferometer is required,

however, to discriminate between these quantities. Both the phase shifts in Eqs. (1.4) and

2This assumes zero linear acceleration. Chapter 2 discusses a higher-order phase shift coupling accelera-
tion and rotation, with scaling ~ (Q x a)T3 .
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Figure 1-2: (i) Simple three-pulse acceleration measurement that measures the curvature
of the particle's trajectory relative to the laser phase fronts (#1, #2, #3). (ii) The same
interferometer shown in Fig. 1-1, but with atoms undergoing acceleration a, as viewed in
the laboratory frame. The phase difference measured at the output of this interferometer is
proportional to a, analogous to the simple scheme depicted in (i).

(ii)



(1.5) state that the motion of the atom is measured on the scale of the wavelength of the in-

terferometer beams, confirming the notion that the light pulses act as high resolution 'rulers.'

The following sections review important developments in atom interferometry.

1.3 Light Pulse Atom Interferometry

The conceptual and experimental origins of light pulse atom interferometry can be traced

back to seminal experiments by Rabi et al. [8] in atomic RF resonances, and Ramsey [9] in the

method of separated oscillatory fields. Matter wave interference was first observed in 1975

with neutrons by Colella et al. [10]. In 1991, interference of neutral atoms was observed

with very different approaches. Two experiments used nano-fabricated gratings as atom

optics [11, 12]. Other successful techniques used momentum transfer from absorption and

stimulated emission of photons, including stimulated Raman transitions in cesium [13] and

an optical Ramsey excitation in calcium [14]3. Light pulse atom interferometry has been the

most successful approach for inertial sensing because of the high achievable phase contrast

and availability of longer interrogation times. Nevertheless, from the demonstration of the

neutron interferometer onward, inertial sensing was recognized as a promising application of

matter wave interferometry.

1.3.1 Cold Atoms

Cold atoms have become important tools in atomic physics for high precision spectroscopy,

atom-based sensor technology, and quantum information science. At pK temperatures, an

ensemble of atoms can be interrogated for >100 ms, availing very high precision in a variety

of measurements including inertial sensors and clocks. In 1970, Ashkin demonstrated that

laser light exerts a substantial scattering force, called radiation pressure, on microscopic

particles and atoms [16,17]. The basic principle of laser cooling is that atoms can be made

to scatter photons with more energy than the incoming photon (at the laser frequency),

and thereby transfer kinetic energy from the atom to the light field. Each scattering event

imparts one photon recoil of momentum, hk, along the laser beam propagation direction,

plus a momentum kick from the spontaneous emission of a photon in a random direction.

3A comprehensive review of atom interferometry is given by Berman (ed.) [15] and Cronin et al. [7].



Figure 1-3: Diagram of a magneto-optic trap (MOT), with labeled light polarizations and
magnetic coil current directions.

On average, scattering decelerates an atom moving towards the laser beam. Ashkin later

proposed methods for trapping atoms in three dimensions with focused laser beams, which

provide both a scattering force from radiation pressure and a transverse force from intensity

gradients (analogous to the methods used to trap macroscopic dielectric spheres) [18]. The

first three-dimensional cooling of an alkali vapor was reported in 1985 by Chu et al. [19],

and is commonly known as 'optical molasses.'

A major extension of this work was the development of the magneto-optic trap (MOT),

in which a quadrupole magnetic field and three orthogonal pairs of off-resonant, circularly-

polarized laser beams exert both a cooling, friction-like force and a position-dependent trap-

ping force (see Fig. 1-3). The first MOT was demonstrated with sodium atoms by Raab et

al. [20] in 1987, and has since become a ubiquitous tool for cold atom experiments. Typical

MOTs trap - 109 atoms at pK temperatures in millimeter-scale clouds, and are robust to

small beam misalignments and polarization errors. It was also noted in early trapping ex-

periments that counter-propagating beams with crossed polarizations (e.g., o+ - a-) cooled

atoms to temperatures far below the Doppler limit predicted for optical molasses [21]. The

Doppler temperature is TD= hl/2kB, for natural linewidth F and Boltzmann constant kB

(for cesium, the atom used in this work, TD ~ 126 pK). This limit is reached when the dif-

fusive nature of light scattering competes with the cooling rate of the molasses. The subtle

physics underlying polarization gradient cooling, in which the crossed polarization of the

beams contributes to extra cooling, are beyond the scope of this discussion; a useful treat-



ment is given in [22]. With such sub-Doppler cooling, the limiting temperature is reduced to

several recoils (- 1 pK for cesium). Finally, long interrogation times in a 1 g environment

are made possible by cooling atoms in an atomic fountain [23], in which counter-propagating

laser beams with slightly different detunings, tAw, both cool and accelerate atoms to a

reference frame moving at velocity v = Aw/k.

1.3.2 State of the Art Atom Interferometric Inertial Sensors

Since the first atom interferometry experiments, orders of magnitude improvements in sen-

sitivity to acceleration, rotation, and gravity gradients have been made. A summary of the

current state of the art for each instrument class is given below.

Accelerometers

The best reported acceleration measurement by an atom interferometer is an atomic fountain

experiment by Peters which measured gravitational acceleration with a sensitivity of 20

ng/ Hz [24, 25]. After two days of averaging, the interferometer resolved local gravity to

0.1 ng. The interferometer interrogation time was T = 160 ms, resulting in an induced

phase shift of ~ 3.8 x 106 rad. Time series data from the experiment exhibit higher-order

variations in gravity due to tidal effects, at the level where the data could test geophysical

models; in addition, it has more recently been identified as providing the best measurement

of the gravitational red shift predicted by general relativity, improving upon the previously

achieved resolution of this effect by a factor of ~ 104 [26]. The accuracy of the gravity

measurement was confirmed by comparison with an on-site, high accuracy falling corner-

cube gravimeter (FG5, [27]) at the level of 7 t 7 ng. Extensions of this experiment could in

principle achieve sensitivities at the level of ~ 10-13 g/ Hz by using advanced atom optics

and a larger baseline- such an experiment has been proposed in [28] for a test of the Einstein

equivalence principle.

Gravity Gradiometers

Gravity gradiometers are useful for inertial navigation because individual accelerometers are

unable to discriminate inertial acceleration from gravitational acceleration. As mentioned



above, this uncertainty in local vertical is a source of position error. The high sensitivity

achieved by a suite of atom interferometric gravity gradiometers, however, could provide on-

board gravity compensation [1]. Light pulse atom interferometry avails an elegant method

for measuring gradients. The gradient is measured as the difference in gravitational ac-

celeration between two cold atom interferometers separated along a baseline defined by a

common interferometer beam. As a result, large sources of noise such as spurious platform

motion or laser phase noise are common mode and consequently are highly suppressed in the

differential measurement. Such an experiment by Fixler et al. reported a differential accel-

eration sensitivity at the level of 4 ng/ H/Iz, implying an individual accelerometer sensitivity

of 2.8 ng/v/Hz and a gradient resolution of 0.65 E over a 1 m baseline4 [6,29]. This system

measured the Newtonian gravitational constant G with a precision of 4 x 10-4 , approaching

the currently accepted uncertainty of 1.2 x 10-4 [30]. More recently, a portable cold atom

gravity gradiometer demonstrated a similar differential acceleration sensitivity [31] as well

as the capability for making mobile gravity gradient measurements [32].

Gyroscopes

The best reported atom interferometric gyroscope, built by Gustavson et al. [33], achieved

a sensitivity of 69 ydeg/ hr with a sodium atomic beam interrogated by a 2 m-baseline

interferometer using stimulated Raman transitions. The sensitivity of this system was later

improved to 3 pdeg/ hr by overlapping a counter-propagating atomic beam in the same

interrogation region [4,5]. The bias stability of the apparatus was reported to be <70 deg/hr.

An atomic beam was used instead of cold atoms because the rotation phase shift effectively

scales as L 2 /V oc T, for baseline L and atom velocity v, rather than T 2 . The sensitivity of

atomic beam gyroscopes, however, do not scale favorably at smaller form factors because of

the factor of L2 , and additionally suffer from phase dispersion from the longitudinal velocity

distribution of the atomic beam.

The best reported cold atom gyroscope yielded a measured sensitivity of 8 mdeg/vhr with

T = 52 ms, which was limited by high frequency environmental vibrations; measurements

with a second, simultaneous interferometer implied a sensitivity of 295 pdeg/ hr [34, 35].

Since the interrogation occurred in an atomic fountain, the volume of the interrogation region

4 The traditional unit for gravity gradients is the Eotvos. 1 E = 10-9 s-2 0.1 ng/m



was substantially smaller (~ 0.1 in 3 ) than that of the atomic beam gyroscope.

1.4 Practical Atom Interferometric Sensor Technology

This section reviews advancements in atom interferometric inertial sensing with the over-

arching goal of operation outside of a laboratory. The first mobile atomic inertial sen-

sor, called the Mobile Atomic Gravity Gradiometer Prototype Instrument (MAGGPI) was

demonstrated in 2002 at Yale University [36]. A gravity gradiometer similar to that of

McGuirk [29] was constructed on a truck platform with a portable laser, electronic control,

ultra-high vacuum (UHV) chamber, and vibration isolation system. Subsequent work by this

group produced a new generation of mobile atomic inertial sensors at Stanford University,

starting with a gravity gradiometer in 2007 [31]. Two of these sensors, pictured in Fig. 1-4(i),

include beam delivery and detection optics, vacuum cells and pumps, and multiple layers of

magnetic shielding in a cube of ~ 50 cm per side. Within one enclosure, two independent

atomic fountains could be interrogated simultaneously. In addition, the laser sources and

electro-optics were engineered to withstand multiple-g shocks, but were housed on a separate

cart. This sensor was installed in a truck and demonstrated an accurate gravity gradient

mapping capability [32]. This system was also extended by Takase to perform multiple sens-

ing functions as a gyroscope, accelerometer and gradiometer (with a pair of the sensors).

The gyroscope sensitivity was noted in the previous section; a bias stability of 6.6 mdeg/hr

was reported (again, the measured performance was limited by high frequency vibrations

in the laboratory) [34]. This system presently represents the publicly-reported state of the

art in mobile atomic inertial sensing. It is worth noting, however, that a private company,

AOSense, Inc., is currently developing proprietary, deployable atom-based sensors and has

likely made substantial improvements in raw sensing performance, and in size, weight, and

power reduction.

Research by several groups in Europe has also made advances in engineering practical

atom interferometers. Stern et al. made the first demonstration of atom interferometry in mi-

crogravity, in which a non-inertially sensitive interferometer was operated onboard an aircraft

flying a parabolic 'zero-G' trajectory [38]. More recently, an accelerometer was demonstrated

in a similar flight experiment, achieving a sensitivity of 20 pg/VHz [39]. An important tech-
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Figure 1-4: (i) Compact inertial sensor built at Stanford. The laser sources and electro-optics
are housed externally. (Credit: [34]) (ii) Pyramidal cold atom gravimeter (Credit: [37]).
Atoms are trapped in a pyramidal MOT and interrogated along the same axis as they fall.

nological development in this work involved transitioning from free-space, external cavity

diode lasers to more robust fiber-based, telecommunications-wavelength components. Ru-

bidium is a convenient atom, in this case, because frequency-doubled 1560 nm light produces

the 780 nm transition used for trapping and interferometry [401. Advances in fiber-coupled

waveguides for frequency-doubling, as well as high power erbium-doped fiber amplifiers have

enabled this work.

An interesting compact cold atom gravimeter by Bodart et al., shown in Fig. 1-4(ii)

used a pyramidal retroreflector to reduce the cooling, detection and interferometer optics to

a single beam axis (with all the appropriate polarizations), and achieved a sensitivity of 0.2

pg//Hz with T = 40 ms [37]. High bandwidth was not possible in the closed retroreflector

geometry, however, because the interferometer could not be initiated until the atoms dropped

out of the chamber by free fall. Another portable sensor launched two cold rubidium ensem-

bles in counter-propagating trajectories in order to share interferometer beams and permit

discrimination of both acceleration and rotation in one measurement (the vacuum chamber is

~ 90 cm long) [41]. In this configuration, one axis of acceleration and rotation are available

since only the rotation phase shift changes sign with atom velocity (see Section 1.2). Efforts



to design high flux atom sources for rapid cold atom sample preparation have achieved MOT

loading rates of 5 x 109 atoms/s [42] by increasing atom flux in the 3D MOT region with a

2D MOT.

Interest in designing completely atom-based IMUs has prompted schemes for multi-sensor

concepts which measure all six degrees of freedom. Canuel et al. [43] demonstrated a proof-

of-concept interferometer which provides complete six degree of freedom information (not

simultaneously) by using two counter-propagating cold atom clouds and three spatially-

separated laser beams. Kasevich and Dubetsky have also proposed methods for integrating

data from a suite of atom interferometers to produce position estimates [44].

1.4.1 Enhanced Sensitivity

An important area of current research for developing high performance sensors involves

enhancing sensitivity with large momentum transfer (LMT) atom optics, which do not con-

strain bandwidth or dynamic range (as is the case for longer interrogation times). As shown

in Section 1.2, the precision of an atom interferometer increases linearly with the momen-

tum transfer of the beam splitter, or equivalently, the area enclosed by the interferometer.

A large momentum splitting was first proposed and demonstrated with Raman transitions,

achieving up to 6hk of momentum splitting by applying extra Raman pulses with alternating

keff, which can improve acceleration sensitivity by up to a factor of three [45]. In Chapter

5, this method is extended to up to 18hk, increasing the interferometer area by a factor of

nine. Multi-order Bragg diffraction has also proven an effective method for large momentum

transfer, with a current record of 24hk for a single beam splitter pulse [46], and 102hk for

a sequential-pulse beam splitter [47]. Multi-order Bragg pulses, however, demand ultracold

atom ensembles and higher laser power than used for driving Raman transitions. For low

bandwidth, ultra-high precision applications, however, this approach could offer dramatic

increases in sensitivity.

Another promising advance in sensing performance was the demonstration of a zero dead

time (ZDT) interferometer measurement scheme. Dead time occurs in an atom interferom-

eter while an atom sample is being prepared, and inertial sensitivity is lost. Since typical

measurement schemes involve updating a reference oscillator with interferometer data, os-



cillator phase noise accumulates during the dead time between measurements (for clocks,

this phenomenon is known as the Dick effect [48]). Biedermann [31] demonstrated an inter-

leaved pair of microwave clock interferometers that eliminated dead time and substantially

improved (- 15x) the long term stability over that of the individual clocks. This is primarily

due to the fact that constant monitoring of the reference oscillator phase noise suppresses

a phase random walk between the reference oscillator and the atoms. As a result, this

technique yields averaging statistics with a 1/T scaling, where T is measurement interval.

By comparison, an individual clock is limited by 1/fi statistics. Subsequently, Takase

proposed an inertially-sensitive ZDT interferometer that interleaves two four-pulse Raman

interferometers [34]. These interleaved measurements provide a continuous measurement of

velocity with similarly high suppression of oscillator phase noise, a factor that has important

implications for improving the accuracy of an inertial navigation system.

1.4.2 Guided Atom Interferometry

Atom chip technology and guided atom interferometry, as opposed to the 'free space' inter-

ferometry approach described above, represent another rapidly developing field of relevance

to inertial sensing. Atom chips have already demonstrated the capability to guide atoms

above MEMS-fabricated magnetic guides [49] as well as produce, manipulate, and interfere

Bose-Einstein condensates (BEC) [50,51]. Area-enclosing guided atom interferometers were

demonstrated by Jo et al. [52] and Wu et al. [53], which achieved long coherence times with

atoms confined by magnetic fields (the former achieved -200 ms coherence times with BECs).

In principle, the latter system could provide a large area atomic gyroscope in a compact sen-

sor by translating the guide back and forth over the same area (this allows wavepacket paths

to be reciprocal, which could reduce several systematic errors). In practice, coherence times

are limited by the smoothness of magnetic fields close to the chip surfaces.

Finally, atom interferometers using BECs have attracted interest because of the longer

coherence times available with a colder, denser ensemble of atoms. While the initially colder

temperature permits longer interrogation times, condensates require significantly longer

preparation time than for thermal ensembles of cold atoms, and result in lower atom num-

bers. The most common method for producing BECs involves evaporative cooling, which is



limited by fundamental atomic collisional rates. BECs are typically created on ~ 1 second

time scales, rather than the millisecond time scales that are possible with higher flux MOT-

based sources. For instance, a state of the art, portable rubidium BEC system (~ 0.4 M3 )

achieved a repetition rate of 0.3 Hz [54]. In addition, density-dependent atom-atom interac-

tions can lead to systematic phase shifts and dephasing [55]. Nevertheless, for applications

with less stringent bandwidth requirements, ultracold atoms could avail unprecedented sen-

sitivity with longer interrogation times and large momentum transfer atom optics [47].

While presently a less mature technology than free space interferometry, chip-based atom

interferometers might provide a competitive sensor architecture for some applications in the

future.

1.4.3 Remaining Problems

In summary, the development of atomic inertial sensors for navigation applications is in an

early but rapidly growing stage. Building on the current wealth of successful laboratory

demonstrations, there is increasing interest in engineering compact, high performance, atom

interferometric instruments. As the previous discussion motivates, many notable achieve-

ments have already been made in this field, but many important engineering challenges

remain. In addition, as scientific advances continue to be made in atom interferometry,

considerable room remains for defining the physics-level design of these sensors.

This thesis focuses both on the design of the interferometer as well as technical factors

affecting sensor performance, such as vacuum cell and optical design. The contributions of

this thesis, listed below, take steps toward realizing an atom interferometric accelerometer

with the accuracy, bandwidth, dynamic range, and size, weight and power required for

inertial sensors in flight navigation systems. The approach of this work is to design and build

a laboratory atom interferometric gravimeter as a testbed for investigating performance at

short interrogation times, including methods for improving sensitivity and characterizing

error sources.



1.5 Thesis Contributions

1. The first contribution of this thesis is the demonstration of a short interrogation time

(2T < 15 ms) gravimeter in a compact (~80 cc) vacuum cell. This approach is different

from previous work in that the entire measurement cycle is completed in a single, small

volume. High contrast interference was observed, which improved interferometer phase

sensitivity. The system achieved an inferred acceleration sensitivity of 2 pg//Hz for

an interrogation time of 2T = 10 ms, with a repetition rate of 2 Hz. With realistic ex-

pectations for improvements in atom count, detection SNR, and repetition rate, a high

bandwidth (~100 Hz) accelerometer meeting the specifications of high performance

flight navigation systems should be feasible.

2. A second contribution of this thesis is the demonstration of large area Raman pulse

atom interferometry, using sequential Raman pulses to achieve large momentum trans-

fer. The inertial phase shift measured by an atom interferometer is proportional to

the enclosed area of the atomic wavepackets. The implementation of composite Ra-

man pulses, analogous to composite pulse techniques developed for nuclear magnetic

resonance (NMR) spectroscopy, significantly improved Raman pulse transfer efficiency,

which ultimately limits the gain in precision. The area of a Raman pulse interferometer

was increased by up to a factor of nine, which is the largest reported to date. Large

area interferometry is well-suited to a high bandwidth inertial sensor design because

it improves precision without increasing interrogation time, which is constrained in

practice by sensor bandwidth and size. Moreover, the method implemented here does

not require colder atoms or significantly different interferometer beam parameters to

increase sensitivity over the conventional three-pulse interferometer. Other large mo-

mentum transfer atom optics (e.g., multi-photon Bragg transitions) require samples

with sub-recoil temperatures, which limits atom count or repetition rate (in the case

of ultracold atoms). Finally, composite Raman pulses were demonstrated to improve

the robustness of the atom optics to realistic factors such as large detunings (e.g., due

to impulses) and a non-uniform Raman beam; such robustness could be beneficial for

sensor performance in dynamic sensing applications.



3. The third major contribution of this thesis is the identification and experimental char-

acterization of the impact of coherent population trapping (CPT) on Raman pulse

atom interferometers. It is argued that these interferometers, including the common

three-pulse interferometer used for measuring acceleration and rotation rate, experience

a systematic phase offset as a consequence of CPT effects. In an inertial measurement,

this effect is a source of bias. While CPT is a well-understood physical effect, its im-

pact on atom interferometry has not been considered in previous work. A method for

suppressing this effect in realistic operation is also discussed. In addition to the pri-

mary relevance of this work in understanding the performance of atom interferometric

inertial sensors, the experimental approach for studying transient CPT effects in cold

atoms is scientifically novel.

1.6 Thesis Outline

The next chapter presents a summary of the theory of Raman pulse atom interferometry,

the sensing modality used in this work. This discussion describes the physics of inertially-

sensitive interferometry and provides a conceptual framework for the experimental results

discussed in later chapters. Chapter 3 describes the experimental apparatus developed for

this thesis. Chapter 4 presents an investigation of atom interferometry at short interrogation

times, focusing on design factors affecting performance as an inertial sensor for dynamic

applications. The apparatus is used to measure gravity as a test. Chapter 5 presents a

method for increasing the precision of Raman pulse interferometers by large momentum

transfer with sequential Raman pulses. Composite Raman pulses are proposed as a robust

atom optic, and demonstrated to improve the performance of large area interferometers.

Chapter 6 describes the impact of coherent population trapping (CPT) on Raman pulse

atom interferometers. Both theoretical and experimental results are presented, along with

a method for suppressing the effect. Finally, Chapter 7 summarizes the results of the thesis

and suggests areas for future work.
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Chapter 2

Atom Interferometer Theory

This chapter describes the theory of stimulated Raman transitions, which comprise the atom

optics used for interferometry in this thesis. In addition, the phase and frequency response

of a three-pulse -r/2 - 7 - r/2 interferometer are analyzed. Systematic effects relevant to

short interrogation time interferometry, such as finite pulse length effects, are also discussed.

2.1 Stimulated Raman Transitions

Light pulse atom interferometers employ the kinematic effects of light to split atomic wavepack-

ets. In this work, cesium atoms are coherently manipulated by stimulated Raman transitions.

Figure 2-1 shows an energy diagram for a stimulated Raman transition, in which two ground

states, |g) and le), of a three-level atom are coupled via an intermediate excited state i) by

two off-resonant, coherent optical fields with frequencies wi and w2 . The two ground states

are typically hyperfine ground states in an alkali atom, with ~GHz separations.

Raman transitions provide a useful atom optic for several reasons. When the two fields are

counter-propagating (Doppler sensitive, ki ~ -k 2) and their frequency difference, wi -w 2, is

equal to the hyperfine splitting WHF, the atom makes a transition from one ground state to the

other, and experiences a change in momentum hkeff = h(ki - k2 ) ~ 2hki. The atom absorbs

a photon from one field and stimulates emission into the other, yielding two photon recoils of

momentum. For example, a cesium atom acquires a velocity of v, = hkeff/m ~ 7 mm/s. This

is a factor of ~ 10' larger than the velocity kick from a microwave transition between the

ground states (~ 92 nm/s). By detuning the individual frequencies from optical resonance



Figure 2-1: Energy level and momentum transfer diagrams of a stimulated Raman transition.

(A), decoherence from spontaneous emission can be suppressed. As a result, the atom can be

prepared in a coherent superposition of the two hyperfine ground states. In principle, meta-

stable optical transitions can achieve both coherent transfer and large momentum transfer;

however, ultra-stable lasers are required to excite these transitions (such lasers do exist, but

are currently at the state of the art; e.g., [56]). Raman transitions do not require this level

of optical frequency stability. Instead, the two-photon resonance depends on the difference

between the two optical frequencies (WHF ~ 9.2 GHz in cesium), meaning that only the

frequency difference needs to be highly stable for precise interferometry. The appropriate

frequency difference can easily be produced by phase-modulating a single laser beam with

an electro-optic modulator (EOM), using a low noise RF signal generator stabilized to an

atomic reference.

The theory of stimulated Raman transitions has been treated in great detail in previous

work [57-60]. This section provides a basic, semi-classical treatment of coherent population

transfer, and a derivation of the resonance condition. The analysis is carried out in the

laboratory frame where the ground state, 1g), initially has momentum p. The Hamiltonian

Sh(1k,|+1k 21)

Ig)@ er le)e

W1, L 2



for the three-level atom, Ho and atom-light interaction is

2

H = Ho+V = 2  + hLo^|g)(gI + he^|e)(e l + hw' li)(il + V (2.1)

where p is the momentum operator, hwf is the energy of internal state j), and V is an

operator describing the atom-light interaction. This interaction occurs between the atom

and two optical fields (the Raman fields)

E = E 1 cos (ki - z - wit + #0) + E 2 cos (k 2 z - 2 t + 0) , (2.2)

where field E1 couples Ig) -- i) and field E2 couples le) -+ i), as shown in Fig. 2-1. This

simplifying assumption neglects cross-coupling (e.g., field E1 coupling le) -+ li)), which is

reasonable since typically WHF > A. In the electric dipole approximation, the interaction

Hamiltonian can be written as

V = -er -E (2.3)

where -er is the dipole moment. Spontaneous emission from single photon excitation of

the atom to level li) is neglected by assuming that the detuning from optical resonance is

sufficiently large compared to the average decay rate, F (A > F). Importantly, Raman

transitions create a correlation between the internal state of the atom and its momentum.

The atomic state is denoted j, p), where j refers to the internal energy state and p is the

momentum state of the atom. The Schr6dinger equation is solved by assuming eigenstates

of the form

) = dp c,,(t) exp [-i (of+ p 2 /2m) t] 1j, p) (2.4)

where the time-dependent population in state j, p) is represented by probability amplitude

cj,p(t). For a particular momentum p and effective wavevector keff = k -k 2 , the Schr6dinger

equation reduces to coupled equations of motion between the populations cg,p(t), Ce,p+hkff (t),

and Ci,p+rk 1 (t):

6gp(t) = 2 * e9 1* Ci,p+hki

Ce,p+hkeff 2 ei tCi,p+hk1 (2.5)

,k)i t cis2t
Ci,p~hk1 \QgCiAg,p + Q e iA Ce~+hk ff



where QGy are single photon Rabi frequencies between states lj) and li),

Qgj =(ilr - E1|g)e 1, Qei (ijr - E2|e)ei+2 (2.6)
hh

with position-dependent phases 5j = kj . z + 0. Laser detunings are defined as

A 22A,~~~ ~ _W WA_ ) (p +hki )2
A1 [wi - (wi - oL^)] +2mm9 2m 2m

A2 [hkeff] 2  (p + hki )2  (2.7)
2m 2m

The rotating wave approximation has also been made in the equations of motion, to eliminate

terms with high frequency dependencies (wi + (f -- w)) or - (w2 + (f -e

The evolution of the three-level system in Eq. (2.5) can be reduced to an effective two-

level system by performing adiabatic elimination on the excited state. In this approximation,

it is assumed that the excited state population is small (ci,p+ki (t) < 1) and slowly varying

compared to the ground states (ai,p+hki (t) 0) as a consequence of large detuning A. After

integrating the equation of motion for the excited state and substituting into the other

equations, the resulting equations of motion are{69,(t) ~ -iQAC, 9 cgp -p i6t neff Ce,p+hkeff (2.8)
i(2.8)

Ce,p+hkeff ( -iAC,e Ce,p+hkeff - 2iot QeffCgp

where

hk 2
6 5A 1 -A 2  (P 1 -W 2 )- WHF + keff -V + (2.9)

2m

IAC,j 41 (2.10)

Qeff gA - I giez C1e (2.11)
2A 2A

QAC,j is the AC Stark shift of level j, and Qeff is the effective (two-photon) Rabi frequency (it

has been assumed in these definitions that A1 ~ A2). Note that the effective Rabi frequency

is complex, with an associated phase #eff - #1. The interaction of the Raman fields

with the atom imprints this phase on the atomic wavefunction. The Raman detuning (6)



includes detunings from the hyperfine splitting frequency, Doppler shifts, and the recoil shift

of le). The differential AC Stark shift,

6AC = QAC,e - QAC,g (2.12)

also contributes to the detuning, but is typically tuned to zero in experiment.

Finally, these equations can be easily solved for Raman-resonant fields (6 = 0). Assuming

the atom is initially in state 1g), |@(to)) = 1g), the final state of the atom after a Raman

pulse starting at time to and having duration T is

|$(to+-T)) = cos 2 ) g) - ieeff sin K2) e) (2.13)

For an atom initially in state le), the state of the atom after the Raman pulse is

I0(to + T)) = cos e) - ie--An sin (Q2fT g) (2.14)

The results in Eqs. (2.8), (2.13), and (2.14) are equivalent to the standard equations of

motion for a two-level atom driven by an oscillating electric field (see, e.g., [61]). As a result,

similar terminology is used to describe Raman pulse atom optics. An atom beam splitter is

achieved with a pulse of duration

t F 2Qeg (2.15)

which prepares the atom in a balanced, coherent superposition of the two ground states (a

r/2 pulse). A mirror, which flips the state of the atom with certainty, is accomplished by

a 7r pulse. In both cases, the wavefunction of the atom is imprinted with the effective laser

phase #eff. The following sections show that this phase is one of the dominant contributions

to an atom interferometer.

2.1.1 Pseudospin Representation

Several of the results in this thesis are intuitively presented by recasting the two-level dy-

namics derived above into the Bloch sphere, where the atomic state is represented as a

pseudospin vector on a Bloch sphere. It can be shown that for this two-level system (typi-
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Figure 2-2: Rotation of the atomic pseudospin (yellow) by a Raman pulse. The effective
drive field produced by the Raman fields is represented by Q.

cally two hyperfine ground states of the atom), a Raman pulse acts to rotate the pseudospin

about an effective drive field vector, analogous to a classical magnetization precessing about

an oscillating magnetic field (for a complete derivation, see [60]).

The atomic wavefunction can be expressed as a spin vector P(t) on the Bloch sphere by

projecting the two-level density matrix

p(t) = |$(t))(V)(t)| = Zc*(t)cn(t)Im)(n1, {m,n} = e,g (2.16)
m,n

onto the Pauli spin matrices, {o-, o-a, oZ. The resulting components are defined as

P (t - Tr [PMt -oi] , j = X, y, z

P(t) 2Re[reg1
P(t) Pu (t) = -21m[reg] (2.17)

Pz(t) Pee - Pgg

where oj are the Pauli spin matrices, pee and pgg are the ground state populations, and re,

is the coherence between the ground states. One sees that Pz(t) captures the population

difference between the two ground states, and that the equatorial components P2(t) and

Py(t) describe the coherence formed by the Raman fields between the two states.

As shown in [62], the equation of motion for the pseudospin in the presence of the Raman



fields, neglecting spontaneous emission, is

+P(t) + P(t) x Q = 0 (2.18)dt

where Q = Q[2 cos 0 + sin 0(± cos # + 9 sin #)] is the effective drive field vector, and Q

|e|ff2 + (6Ac - 6)2 is the generalized Rabi frequency. The variable 0 determines the

detuning-dependent polar angle of the drive field vector, and is defined by

cos0 = 6AC 
-  s = eff (2.19)

Figure 2-2 depicts the action of a Raman pulse on an atom initially in 1g) (P(O) -).

Interestingly, the dynamics in Eq. (2.18) are isomorphic to the dynamics of magnetic res-

onance [63]- the pseudospin precesses about a drive field vector at a generalized Rabi fre-

quency. Many of the results presented in this work are intuitively described in this framework,

which is of great utility for understanding both theoretical and experimental aspects of light

pulse atom interferometry.

2.2 Interferometer Theory

The simplest light pulse interferometer for measuring acceleration is the three-pulse F/2 -

- - r/2 sequence. Figure 2-3 shows the trajectory of free-falling atoms interrogated by this

sequence. The first 7r/2 pulse acts as a beam splitter that divides the atoms into two coherent

wavepackets, separating by Az = hkeffT/m over the free evolution period, or dwell time, T.

When the Raman fields are Doppler sensitive, Az is much greater than the coherence length

of the atoms, AxC = h/Ap, where Ap is width of the momentum distribution. For cesium,

the two-photon recoil velocity is ~ 7 mm/s and the coherence length for atoms with ~ PK

temperature is ~ 10-8 m. Unlike in a microwave or co-propagating (Doppler insensitive)

Raman interferometer, overlap is not guaranteed for arbitrary pulse sequences. To achieve

overlap, the wavepackets are deflected toward each other by a mirror (-F) pulse, recombining

another interval T later. A second beam splitter pulse then recombines the wavepackets and

interferes them.
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Figure 2-3: Trajectory of the -r/2 -7r - 7/2 interferometer paths for a gravimeter (a = -gs)
The arrows represent the three Raman pulses interrogating the free-falling atoms. The color
of the arms represent the internal states of the atom along each path.

2.2.1 Interferometer Phase Shifts

This section describes sources of phase shifts in the 7r/2 - -r - 7r/2 interferometer, includ-

ing several higher-order effects relevant to inertial sensing applications. The interferometer

phase can be determined by calculating the evolution of the wavefunction through the three

Raman pulses and two free evolution periods. Several good references present approaches

to calculating interferometer phase for a variety of fields and inertial forces (accelerometer,

gyroscope, etc.) [57, 59, 64]. The interferometer measures differential phase shifts accrued

between the two arms, which can be divided into

A# = A1ight + Aprop + Asep (2.20)

where Aq1ight is the phase resulting from the interaction with the Raman fields, AZprop is

the differential phase accrued during the free propagation between light pulses, and Aosep is

the phase shift introduced by spatially-separated wavepackets during the final pulse. Each

phase shift is summarized below.

2.2.2 Laser Interaction Phase Shifts

In the r/2 -7 - 7r/2 interferometer, the dominant phase shift for inertial sensing is produced

by the Raman pulse manipulations of the atoms. As noted in Section 2.1, the relative phase



of the Raman fields is imprinted on the atomic wavepackets by each pulse. The total phase

shift due to the three pulses is

Alight = /(zi, t 1) - [O(z2', t 2 ) - (Z2, t2 )] i (Z3, t3 ) (2.21)

where #(z, t) = keff . z - (Wi - w2 )t + #0 is the effective laser phase at location z and time

t, and #0 = #' - #'. The position superscript distinguishes the local phases sampled by

the upper and lower wavepackets during the second pulse. For an atom accelerating under

gravity along z, the resulting phase is

A01ight keff gT 2 + ( - 2 +,3) (2.22)

In this equation, it has been assumed that the pulse durations are negligible compared to T,

and that the laser frequency difference is held constant in all three pulses. In this case, the

frequency-dependent terms cancel. If a constant rotation Q occurs as well, additional phase

terms are introduced:

A rt 2m
Aort = h . A - keff - ( x g)T3 , (2.23)

where A is the area enclosed by the wavepackets. Since this work focuses on measuring ac-

celeration, a derivation of these shifts is beyond the scope of this chapter. A useful derivation

is provided in [34]. It is worth noting that, in addition to the familiar Sagnac phase shift,

there is a term scaling as - T 3 that introduces cross-coupling of acceleration and rotation.

This phase shift must be carefully accounted for in calibrating the scale factor of individual

sensors in an inertial measurement unit.

The intuitive inertial phase shift expression in Eq. (2.22) illustrates the role of the Raman

fields as a 'ruler' for the motion of the atom, with resolution scaled by the effective wavelength

Aeff = 27r/keff. For Doppler sensitive Raman transitions in cesium, Aeg ~ 426 nm. It is also

notable that the inertial input can be measured by chirping the laser frequency difference at

a rate a, producing a net phase A01ight - (keffg-a)T2 . For the obvious choice of a = kef -g,

the inertial phase shift is canceled for any T (this is useful for preserving resonance during

the pulses, and for fringe disambiguation in a static measurement). The scale factor of

the acceleration measurement is |keff T 2 , meaning that precision increases linearly with the
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Figure 2-4: Free propagation along paths F,ci. and Fii,ci. contributes a phase difference if
the wavepackets do not experience the same potential along their respective paths (e.g., a
spatially-varying magnetic field). A rigorous calculation sums over the contribution of all
possible paths, but including only the contribution of the classical paths provides a very
good approximation.

momentum splitting of the beam splitter and quadratically with the interrogation time.

Constant detunings from resonance, due to unaccounted magnetic or AC Stark shifts, do

not contribute to a net phase difference if the fields are spatially and temporally uniform.

This fact makes sense when considering that a -/2 - - - -F/2 sequence is essentially two

consecutive Ramsey (7r/2 - -F/2) sequences. One also observes that the initial velocity of the

atom does not contribute to a phase shift. This is critical for achieving high phase contrast,

even with a narrow velocity distribution. Other light-induced phase shifts can result from

processes such as coherent population trapping (CPT) [62] or higher-order light shifts from

off-resonant Raman processes [65]. Chapter 6 presents a characterization of CPT effects on

Raman pulse atom interferometers.

2.2.3 Free Propagation Phase

During the periods between Raman pulses, the wavepackets accrue phase along their respec-

tive paths. The free propagation phase A5prop is typically calculated with the Feynman path

integral approach. A general overview of this method is presented in [66], and a practical

tutorial for calculating these integrals in typical atom interferometers is given by [67]. The

Feynman path integral formulation is also useful because it provides an intuitive way of

estimating phase shifts introduced by systematic effects such as spatially-inhomogeneous or

time-varying magnetic fields.



The free propagation phase shift between the two arms of the interferometer is

Aprop = (Sri - Srn) = L(z, )dt - j L(z, 2)dt (2.24)

where Sr is the classical action integral for path F, L(z, z) = 2m2 - V(z) is the Lagrangian

of the atom, V(z) is the potential energy (e.g., a gravitational field), and F is the path

taken by the wavepacket along each arm of the interferometer, as shown in Fig. 2-4. A

rigorous calculation of these action integrals in quantum mechanics requires summing over

the contributions of all paths between z(ti) and z(t 3 ). However, evaluating along the classical

trajectories of the wavepackets provides a very good approximation (Ag 10 2 og, [68]).

For the case of equal dwell times between pulses and no gravity gradients, the net phase

from free propagation cancels. This is a result of the fact that the wavepackets spend equal

time in the two hyperfine ground states, and overlap at the time of the third pulse. The

presence of gravity gradients introduces a differential phase shift because the interferometer

arms experience different gravitational potentials while spatially-separated. Considering a

linear vertical gravity gradient 'y, the phase shift can be calculated with the Lagrangian

L(z,.z) = mz2 - mgz + myz2 (2.25)
2 2

and by evaluating the integral in Eq. (2.24). The resulting phase shift is

Aqprop = keffT 2 (f gT2 - z(O)T - z(O) (2.26)

where f(0) = (O) + Iv, is the mean velocity of the two wavepackets after the beam splitter

pulse. At short interrogation times, this phase shift is small.

2.2.4 Separation Phase

In a uniform gravitational field, the atom wavepackets overlap perfectly when the Raman

pulses are equally spaced. The introduction of gravity gradients and rotation, however, can

lead to spatial separation at the time of the final pulse. For a relative separation of Az at



the time of the final beam splitter pulse, the phase shift introduced is

Aqsep = A (2.27)
h

In this equation, p is the mean classical canonical momentum of the wavepackets at the

output of the interferometer. This phase shift essentially accounts for the extra phase ac-

cumulated by a plane wave over Az. For a matter wave, the phase shift induced by the

separation is scaled by Az/AdB, where AdB is the deBroglie wavelength. At short interroga-

tion times, this is also typically a small phase contribution.

2.2.5 Finite Pulse Duration Effects

The expression for the laser interaction phase shift in Eq. (2.22) assumes that the Raman

pulses are negligibly short in duration compared to the interrogation time T (the short pulse

limit). In other words, the light pulse 'grating' is considered to be infinitely thin [69]. More

detailed calculations, such as those by Peters [24], Antoine [70], and Stoner et al. [60], include

the effects of detuning variation within the interferometer pulses, and predict corrections to

the accelerometer and gyroscope scale factors. For instance, the analysis in [60] finds the

phase shift due to a constant acceleration and constant laser frequency difference is, to second

order in T/T (r = t,2):

~ 4r r 2 (2
A# = keff aT2 1 + + - 1) (2.28)

_ -FrT T2 7r

The analysis by Antoine, [70], incorporates additional effects relating to the motion of the

wavepackets during light pulses, and produces a slightly different result. Specifically, the

latter analysis includes the atomic Borrmann effect, which shifts the path of the incoming

wavepacket during the pulse (other analyses assume that the diffraction occurs exactly at

the center of the pulse). As a result, the interferometer area, and thus the acceleration scale

factor, are modified.

Adetailed discussion of these analyses is beyond the scope of this chapter; nevertheless,

these scale factor modifications are clearly more significant for short interrogation times;

e.g., the first order effect on the phase of a T = 1 ms interferometer is typically - 1%. It



is worth noting, however, that this correction does not apply to the case where the Raman

laser frequency difference is chirped to compensate for the linear variation in the Doppler

shift, preserving resonance throughout the interrogation. The modified scale factor would

only appear in the phase shift resulting from the difference between the acceleration implied

by the applied chirp rate, e = a/kea, and the actual acceleration experienced during the

interferometer.

2.3 Interferometer Frequency Response

Thus far, the discussion of acceleration sensitivity has been restricted to constant accelera-

tions. For inertial navigation applications, it is important to consider the frequency response

of the interferometer, and choose an appropriate interrogation time to capture the desired

vehicle dynamics. The transfer function of the r/2 - 7 - 7r/2 interferometer is determined

by calculating the interferometer phase induced by a vibrational acceleration at a defined

frequency, w:

a(w, t) = ac cos wt + a, sin wt, (2.29)

with the time origin arbitrarily defined as the time of the center of the 7r pulse. The ac-

celeration response function is plotted in Fig. 2-5, for T = 1 ms. The sensitivity of the

interferometer rolls off as ~ 17w 2 at frequencies higher than 1/T, i.e., it acts as a low pass

filter. In addition, the interferometer is insensitive to acceleration Fourier components at

frequencies that are multiples of 1/T, since the platform position is equal at each pulse. This

analysis is also relevant to assessing noise produced by platform vibrations in a gravimeter.

For instance, a vibration at a particular frequency could in principle be suppressed by a

suitable choice of T.
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Figure 2-5: Frequency response of a r/2 -7r - 7r/2 interferometer to acceleration input (T 1
ms). The interferometer is insensitive to acceleration Fourier components with frequencies
at multiples of 1/T, and its sensitivity rolls off as ~ 1/w2 at frequencies greater than 1/T.



Chapter 3

Apparatus

This chapter describes the experimental apparatus developed for investigations of atom in-

terferometry at short interrogation times. A compact vacuum cell was designed for imple-

menting atom cooling and trapping, interferometry, and state detection in a single volume.

Conventional laboratory atom interferometers (e.g., [24]) typically use multiple vacuum re-

gions to isolate interferometer interrogations from stray magnetic fields, regions of higher

background pressure and sources of scattered light (e.g., the MOT). Practical applications,

however, constrain the volume of the vacuum cell and might preclude distinct separation

of the trapping, interrogation, and detection sites. A gravimeter with cesium atoms was

implemented as a testbed for studying high bandwidth inertial sensor performance, and as

a step toward developing more advanced compact inertial sensors.

3.1 Vacuum System

Ultra-high vacuum (UHV) is required to minimize collisions of cold cesium atoms with

background (non-cesium) particles, which would reduce the number of atoms in the trap

and lead to spurious phase shifts in the interferometer. A compact, octagonal vacuum cell

(80 cc), shown in Fig. 3-1, was constructed from a machined quartz frame, and seven 1" and

two 2.3" windows were fused to the frame with quartz frits. This allowed fusing to occur at

a temperature sufficiently low to prevent significant distortions of the windows, which have

a higher softening temperature. Before fusing, the windows were polished to A/20 flatness,

and maintained flatness to A/10 after construction.



Figure 3-1: Octagonal vacuum cell design and photograph of the finished cell. The diameter
of the large windows is 2.3", and 1" for the smaller windows.

The cell accommodates a configuration of three orthogonal beam pairs for laser cooling,

two possible axes for Raman beams, a probe beam, and a beam for state preparation (the

actual configuration is described in the next chapter). The large windows also provide access

for a microwave source and detection optics for measuring laser-induced fluorescence (LIF).

All windows are anti-reflection coated, and transmit more than 99.5% of 852 nm laser light.

The all-glass design offers several advantages. First, it is effective at reducing scattered light,

which can lead to spontaneous emission and systematic phase shifts. In addition, the use of

glass avoids stray magnetic fields produced by metal vacuum chambers.

The vacuum cell is initially evacuated with a turbomolecular pump, and the entire vacuum

system is baked at 100 - 120'C to minimize outgassing. The vacuum level is maintained at

3 x 10-9 Torr by a 200 L/s getter (SAES CapaciTorr, St 185 Ti-V alloy) and a 2 L/s ion

pump. A cesium metal dispenser (SAES, 5.2 mg) controls the cesium background pressure,

and emits a directed flux of atoms toward the MOT. For cleanliness, the metal dispenser is

baked out while the turbomolecular pump is attached. Initially, 1 A of current is run through

the dispenser until the pressure returns to its post-bakeout level. This cycle is repeated at

2 A and 3 A over a period of 24 hours. This preparation process removes hydrogen trapped



in the dispenser cartridge. Efficient loading of the MOT requires a large cesium flux in the

cell, but a high background pressure can be detrimental to interferometry for the reasons

stated above. The cesium dispenser is located in the nozzle of the quartz cell, about 3" from

the MOT. It evaporates cesium through a small slit, which is aligned toward the trapping

region to maximize the loading rate. At 3 A, the source depletes the cesium sample over

more than one year with daily usage. This current level results in a trap loading rate of

~ 3 x 107 atoms/s (the lifetime was ~0.3 s). Evaporation is most efficient at over 4.5 A,

but operating at this current depletes the sample in under one hour. A higher flux could be

produced by adding a 2D MOT, at the cost of extra complexity and size [31].

One of the significant challenges for sensor development is reducing the power required

to maintain UHV over a potentially multiple year lifetime. Getter pumps efficiently pump

many species after being activated, and use no power until the gettering material surface

is saturated and requires reactivation. Unfortunately, getters cannot pump noble gases,

so ion pumps must be used additionally. In particular, helium diffusion becomes a major

limitation without an ion pump. One potential solution is to use materials with low helium

permeability, such as sapphire (the diffusion constant for helium permeation in sapphire has

been observed to be at least six orders of magnitude smaller than in other glasses [71]).

3.2 Magnetic Field Control

State preparation, interferometry, and detection require a bias magnetic field in order to

define a quantization axis for the atoms. Careful engineering of the field is required, since

atom interferometers are sensitive to spatially or time-varying magnetic fields. To reduce

the sensitivity of the interferometer to magnetic fields, the atoms are prepared in the first-

order insensitive |F = 3, mF = 0) ground state. The splitting of the IF = 3, mF= 0) and

IF = 4, mF = 0) ground states used in the interferometer increases with the magnetic field

as AE = aB 2 where ae = 427 Hz/G 2. By contrast, AmF - 0 levels split by AE =#mFB,

where # ~ 700 kHz/G.

Three orthogonal pairs of magnetic coils, separated at the Helmholtz condition (the coil

separation is equal to the coil radius), are tuned to null environmental magnetic fields (Earth

and laboratory). A programmable power supply (Agilent N6700B) alternates two vertically-
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Figure 3-2: Simple circuit used to reduce the MOT coil shutoff time. D = Diode, ZD
Zener diode.

oriented, 12" diameter coils between nulling field and bias field settings. A bias field of 0.8 G

lifts the degeneracy of the Zeeman sublevels, and permits driving Raman transitions between

the mF = 0 states. The magnitude of the quadratic Zeeman shift is resolved to better than

1 Hz with microwave Ramsey spectroscopy. Since the atoms fall a small distance during the

interrogation (several millimeters), no magnetic shielding is used.

To form a quadrupole field for the MOT, two 80 mm diameter anti-Helmholtz magnetic

coils are mounted around the vacuum cell. A current of 2.3 A produces a field gradient

of a 10 G/cm. A solid state relay switches the MOT coil current on for loading the trap.

Additionally, high voltage Zener diodes are installed in parallel to shorten the shut-off time

to 100 ps by dissipating the large back-EMF produced when the relay closes (Fig. 3-2 shows

the MOT coil circuit schematic).

3.3 Optical System

Fig. 3-3 depicts the generation of the trapping and detection light on an atomic energy level

diagram. Two Toptica TA100 lasers serve as sources for atom trapping, state preparation,

and detection. Each laser produces up to 300 mW of fiber-coupled 852 nm light by injecting

the output of an external cavity diode laser (= 0.5 MHz linewidth) into a tapered amplifier.

These lasers are locked by saturated absorption spectroscopy to the cesium F = 4 -+ F' =

4/5 and F = 3 - F' = 3/4 crossover transitions (referred to as the F = 4 and F = 3 lasers,

respectively). Fig. 3-4 shows the optical scheme for locking. A 50/50 beamsplitter splits a
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Figure 3-4: Diagram of optics for locking an external cavity diode laser used as a source for
driving optical transitions from F = 4 -+ F' = 4, 5. The optics for splitting and delivering
trapping, state preparation and detection light to the vacuum cell are shown in Figs. 3-5,
3-6.

1 mW beam into a pump and probe beam, the latter of which is attenuated by an ND

filter. These beams are expanded and overlapped in a cesium vapor cell (ThorLabs), and

the probe beam is subsequently detected on a photodiode. A lock-in regulator circuit locks

the laser to the appropriate peak in the absorption signal by controlling both the grating

piezo and the laser current. A similar scheme is used to stabilize the F = 3 laser.

Acousto-optic modulators (AOM, Isomet) tune the F = 4 laser output to generate fre-

quencies for driving the F = 4 - F' = 5 cycling transition (trapping) and the F =

4 - F' = 4 transition (Figs. 3-5, 3-6). The latter frequency is overlapped with repump

(F = 3 - F' = 4) light to optically pump atoms into the IF = 4, mF = 0) level, which is a

dark state to both frequencies when the laser beams are linearly polarized. As mentioned in

Section 3.2, mF = 0 states are used for interferometry to reduce magnetic field sensitivity.

AOM drive signals are derived from voltage-tunable RF drivers (Isomet), and pulsed with

TTL-controlled switches (RF-Lambda, 80 dB isolation). The AOMs provide high optical

attenuation (60 dB) and short switching times (100 ns when the beam is focused to a waist

in the crystal). By double-passing light through AOMs, the trapping light can be detuned by
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Figure 3-5: Diagram of optics for state preparation. A laser beam resonant with the F =

4 --> F' = 4 transition is overlapped with repump (F = 3 - F' = 4) light and delivered
to the cell. Both beams are linearly polarized, so that atoms are optically pumped into the
IF = 4, mF = 0) level.

>45 MHz for sub-Doppler cooling, while preserving alignment and fiber-coupling efficiency.

All of the optical fiber in the system was single mode and polarization maintaining (PM).

Chapter 4 discusses the experimental sequence for atom interferometry in more detail.

3.3.1 Tapered Amplifiers

Fiber-coupled laser amplifier modules were constructed to increase the available power for the

trapping and Raman beams. Larger atom numbers were achieved with higher trapping beam

intensities, and more efficient interferometer pulses required higher Raman beam intensity

(see Section 3.5). Tapered amplifiers (TAs) are well-suited to this task because they avail

high output power over a broad frequency band and preserve single mode input.

Fig. 3-7 shows the design of the amplifier module, which couples seed light into a tapered

rom F=4 laser

+105 MHz

-110 MHz
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Figure 3-6: Diagram of optics for splitting the trapping light, as well as preparing the probe

and pushing beams. The probe beam is expanded to 4 mm before the vacuum cell. The

pushing beam is used to push away atoms in mF # 0 levels, which are undesirable for

interferometry. Since these laser beams derive from the same source (Fig. 3-4), mechanical

shutters select which beams reach the atoms.

Figure 3-7: Design for the tapered amplifier modules. Two of these modules were used to
amplify the trapping light and the Raman beam.



diode (Eagleyard Photonics, EYP-TPA-0850-01000-4006-CMT04) and fiber-couples the am-

plified output. With 10-15 mW of seed power to saturate the diode, the TA produces up to

1 W of optical power at 852 nm with a drive current of 2.7 A. The diode amplifies light over

a 26 nm band centered at 850 nm. An aspheric and cylindrical lens circularize the output

beam before coupling it into a PM fiber (OFR FiberPorts fiber-coupled the input and out-

put beams). By fiber-coupling, a module can be conveniently installed in the optics train.

Furthermore, since the mode of amplified spontaneous emission (ASE) from the diode is

broader than the amplified output mode, the fiber-coupling optics effectively spatial filter it.

To prevent backward amplification of back-reflected light, which can damage the diode [72],

a 38 dB isolator (OFR 10-3-850-HP) is installed before the output coupler. A drive current

of 2 A produces 400 mW of fiber-coupled light with <1 mW of broadband ASE. A 5 A

current controller (Wavelength Electronics PLD5K-CH) provides a switchable drive current

for the diode.

After amplification, the trapping light is split into three separate beams, and coupled

back into fibers, as shown in Fig. 3-6. These beams are delivered to the call via cage-

mounted optics (ThorLabs) (Fig. 3-8), which provide high pointing stability and reduce the

need for frequent realignment. The trapping beams are collimated to a 1 cm diameter (1/e 2 )

with an intensity of ~ 10 mW/cm2 . Each beam is circularly polarized by a polarizer and

A/4 waveplate. After the cell, another A/4 waveplate and mirror retroreflects the trapping

beams with opposite helicity. The coldest temperatures are achieved, however, with slightly

misaligned retroreflections. Optimal alignment is accomplished by maximizing the MOT

size with perfect retroreflections, and then making small adjustments to the retroreflections

by trial and error. Since the probe beam for atom state detection is derived from the same

source as the trapping light, mechanical shutters serve to select which beam is delivered to

the atoms (the characteristics of the probe beam and LIF detection optics are discussed in

Section 4.3).

3.4 Control Electronics

A National Instruments PXI-1042Q real-time embedded controller manages data acquisition,

the RF switches for the AOMs, the mechanical shutters, tuning of the AOM driver frequen-



Figure 3-8: Design of vacuum cell mount with trapping beam optics, magnetic coils (MOT
and nulling) and Raman retroreflector stage. The breadboard supporting the vacuum pumps
is tilted 5' relative to the table surface in order to prevent the formation of standing waves
in the Raman beam.
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Figure 3-9: Diagram of optics for generating the Raman beams. The RF circuit for the
phase modulation signal and AOM drive signal is shown in Fig. 3-11.

cies, and timing for the experimental sequence. The data acquisition and digital/analog

output cards share a common 10 MHz clock reference (Spectracom 9383). The experimen-

tal sequence is programmed in LabVIEW and executes with < 10 ps timing jitter. Since

much more precise timing is required for the interferometer pulses, a 15 bit, 625 MS/s ar-

bitrary waveform generator (AWG, Agilent N8241A) handles Raman and microwave pulse

timing (the interferometer sequences are only triggered by a digital I/O card in the PXI

chassis). Raman pulse and microwave frequency generation is discussed below. A separate

laptop serves as a host for data storage, running LabVIEW, and programming the AWG in

MATLAB.

3.5 Raman Beam Generation

The Raman beams are used for interferometry as well as velocity selection in the experiments.

Fig. 3-9 shows the optical layout for generating the Raman beam frequencies. A distributed

feedback laser (Toptica DL100) emitting at 852 nm with a 1 MHz linewidth serves as the

master laser. This laser is offset-locked from the cesium D2 line by picking-off light from

the laser output and phase-modulating it in an EOM (EOSpace PM-0K5-10-PFA-PFA-850)

to produce sidebands at the offset frequency. The laser is locked via saturated absorption

spectroscopy to a cesium transition in the absorption profile corresponding to one of the



sidebands. Typically, the detuning is set to A m-1 GHz from the F = 4 -+ F' = 2

frequency, in order to maximize interferometer contrast. A smaller laser detuning increases

the effective Rabi frequency but also increases the rate of spontaneous emission. A higher

Rabi frequency improves transfer efficiency because a larger velocity distribution of atoms

is addressed (the bandwidth of a Raman pulse is -. eff). An 80 MHz AOM serves as a

switch for the Raman beam by coupling the first diffracted order into a fiber (the RF signal

for this AOM is produced by the AWG for precise timing). A fiber-coupled EOM (Photline

NIR-MPX800-LN-08) phase-modulated the beam at the cesium hyperfine splitting frequency

(WHF = 9.2 GHz) to produce sidebands for driving Raman transitions. The RF signal driving

the EOM also realized phase-shifting and frequency sweeping capabilities for interferometry.

The generation of this signal is described in Section 3.5.1. The phase-modulated beam is then

amplified by a TA, in order to produce short interferometer pulses. To minimize spontaneous

emission and AC Stark shifts produced by near-resonant ASE, the TA output is filtered in

a separate cesium vapor cell before being sent to the vacuum cell.

The Raman beam is collimated to a diameter of 5 or 10 mm (1/e 2) and polarized by a

high extinction ratio (>80 dB) linear film polarizer (ThorLabs LPVIS). A pure polarization

ensures that spurious Doppler insensitive transitions, which require o.+ - .+ polarizations,

are not driven. To drive Doppler sensitive transitions, the Raman beam is retroreflected

through a A/4 waveplate above the vacuum cell so that the counter-propagating beams have

lin. _L lin. polarizations. To prevent the formation of standing waves from back-reflections

occurring at the upper window of the cell, the vacuum cell is mounted at an angle of 5'

relative to the vertical Raman beam axis1.

This retroreflected beam configuration offers several advantages for interferometry. By

phase-modulating a single laser beam, any phase introduced by the optics prior to reaching

the atoms is common mode to both frequencies, so it does not contribute to a differential

phase shift. Secondly, since both frequencies and circular polarizations are present in the

counter-propagating beams, Raman transitions with opposite propagation directions ±keff

can be selectively excited. If the atoms have a non-zero velocity along the Raman beam, the

two resonances are separated by Doppler shifts of opposite signs. This allows excitation of

Raman transitions along either propagation direction by simply changing the laser frequency

'The cell was originally mounted without the tilt, and lower Raman pulse transfer efficiency was observed.
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Figure 3-10: The Raman beam spectrum produced by phase modulation with an EOM.
Optical frequencies we and Wc + WHF (red) contribute the largest effective Rabi frequency.
The symmetric pair of frequencies, we and wc - WHF (green), produce interference with the
coherent population transfer of the dominant frequencies (Eq. 3.1).

difference. As Chapters 5 and 6 discuss, propagation direction reversal enables suppression

of systematic light-based phase shifts, as well as a method for large area interferometry with

Raman pulses.

Since one of the Raman frequencies must propagate to the retroreflecting mirror and

back to the atoms, the effective laser phase #eff = #1- 2 is defined relative to the position

of the mirror (the mirror surface is flat to A/20 in order to minimize phase front distortions).

Thus, the position of the mirror along the input axis needs to be stable over the dura-

tion of the interferometer sequence. Mirror motion z(t) contributes an overall phase shift

A7mirror ~ kef [z(to) - 2z(to + T) + z(to + 2T)]. In the apparatus, the mirror is mounted on

an optical breadboard supported by large, rigid posts. Noise introduced by mirror vibrations

is discussed in Section 2.3.

A disadvantage of using a single phase-modulated beam is that optical power is dis-

tributed amongst other sidebands that do not significantly contribute to population transfer,

due to large detuning. Moreover, other sideband pairs separated by WHF produce interfer-

ing population transfer [73]. As the Raman beam spectrum in Fig. 3-10 shows, optical

frequencies we and we + WHF, and wc - WHF and we are both Raman resonant. Since the

spectrum of a phase-modulated beam is symmetric, the single-photon Rabi frequencies of

the +1 sidebands are equal. The effective Rabi frequency for the farther detuned pair is

lower by a factor of A/(A + WHF)~ 1/10 for A ~ -1 GHz. 2 Since the EOM is operated in

2In Chapter 5, wc is locked to a detuning of +3.5 GHz from the F = 4 -+ F' = 5 transition. In this case,
the Rabi frequencies are different only by a factor of ~ 2, and both pairs contribute significantly.



the weak phase modulation limit (far from suppression of the carrier frequency), the effect

of higher-order sidebands can be neglected. Analysis in [74] derives the effective Rabi rate

for the combination of the three dominant optical frequencies

Qeff = c+1 + c__1 + 2Qc,+ 1 Qc,- 1 cos (AO) (3.1)

where ,,i is the standard two-photon Rabi frequency for frequencies w, andoc -± WHF,

and AO is the difference phase of the fields AO = #1 + 0+1 - 20. For phase-modulated

fields AO = r, so the two Raman processes destructively interfere, reducing the effective

Rabi frequency. Moreover, a retroreflected, phase-modulated beam also forms to a spatially-

modulated Rabi frequency, with a period of Amicrowave/2, where Amicrowave = 27rc/WHF ~ 3.3

cm [34]. This effect leads to dephasing and pulse length errors if the atoms are displaced

a significant fraction of Amicrowave during the interrogation (e.g., while operating in a dy-

namic environment); in this work, however, it does not contribute significantly for the small

displacements accrued over drop times of <25 ms.

3.5.1 Microwave Frequency Generation

Microwave frequencies at around the cesium WHF are generated for driving the Raman EOM

and a microwave antenna. As Fig. 3-11 shows, the Raman EOM signal derives from a single

sideband mixer (Polyphase SSB90110A) that mixes a constant 9.2 GHz signal from an Agilent

E8257D signal generator with a dynamic - 30 MHz signal from the AWG (Agilent N8241A).

The E8257D has a phase noise specification of -114 dBc/Hz, at an offset of 10 kHz. The

intermediate frequency band covers 10-50 MHz. Spurious frequency components produced

by mixing are suppressed by >27 dB. The laser frequency difference is given by

Aw(t) = fE8257D + fN8241A(t) (3.2)

The signal is then amplified to ~ 16 - 24 dBm for driving the EOM. The RF amplitude

is chosen to produce the intensity ratio in the Raman beam frequencies that cancels the

differential AC Stark shifts of the |F = 3, mF = 0) and IF =4, mF = 0) levels. This signal

can be programmed for phase-continuous frequency sweeps and discrete phase shifting, which



Figure 3-11: Diagram of the circuit for generating the microwave frequencies for the Raman

EOM and AOM signals. The single sideband mixer adds the base 9.2 GHz signal (fE8257D)

with the dynamic signal from the AWG [fN8241A(t)], providing frequency sweeping and phase
shifting capabilities.

are useful for scanning through interference fringes.

In state preparation, a microwave antenna (Narda WR90) transfers atoms between the

mF= 0 ground state levels, and is also used for microwave interferometry. An IFR 2042

signal generator produces a 4.6 GHz signal that is doubled to the cesium WHF, and then is

amplified by a narrowband RF amplifier (Microwave Power L0809) to 35 dBm. Positioned

~3" from the atoms, the antenna produces a r pulse with a duration of 110 ps. A high iso-

lation (>70 dB) RF switch controls the microwave pulse timing. High isolation is important

because leakage power can coherently transfer population during the interferometer, leading

to systematic phase shifts. Finally, the IFR 2042 and Agilent E8257D signal generators, as

well as the AWG, shared a common 10 MHz reference (Spectracom 9383, a rubidium-locked

crystal oscillator with GPS corrections).
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Chapter 4

Short Interrogation Time Atom

Interferometry

This chapter presents a demonstration of a cold atom gravimeter with short interrogation

times (2T < 15 ms). The operation of the interferometer in a compact vacuum cell is

described in detail, from state preparation to detection, and a summary of the performance

of the system is given. High contrast interference fringes were observed at these short

interrogation times, and limitations to achieving higher contrast are discussed.1

4.1 Atom Trapping and State Preparation

The measurement sequence begins by loading cesium atoms from a thermal vapor into a

MOT. A diagram of the vacuum cell with trapping and Raman beams is shown in Fig.

4-1. Three orthogonal, counter-propagating laser beams are detuned by -2.5r from the

F = 4 - F' = 5 cycling transition (F = 2-r x 5.23 MHz, see table in Appendix A for other

cesium data). Each beam is 1 cm in diameter (1/e 2) and has an intensity of ~ 10 1sat, where

Isat = 1.10 mW/cm 2 is the saturation intensity for the cycling transition. After loading ~ 107

atoms over a period of 500 ms (with a loading rate of - 3 x 10' atoms/s), the magnetic field is

shut off and the detuning of the trapping beams is increased to -8 for sub-Doppler cooling.

The trapping beam intensity is stepped down to ~ 10% over 5 ms and then switched off. The

'This chapter is based on Butts et al., "Light pulse atom interferometry at short interrogation times," in

Journal of the Optical Society of America B 28, 416-421 (2011) [75].
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Figure 4-1: Vacuum cell with the configuration of laser beams for trapping and interfer-
ometry. The Raman beams are oriented vertically for gravimetry. The cesium dispenser is
located in the nozzle of the vacuum cell, so that it provides a direct flux of atoms to the
trapping volume. The probe beam (not shown) uses the same axis as the Raman beams,
but is tilted slightly from vertical.

far-detuned molasses cools the atoms to ~ 5 - 6 pK. Doppler sensitive Raman transitions

measure the final temperature in a separate measurement. Finally, the repump light remains

on for 1 ms to ensure atoms are distributed in the F = 4 manifold.

As discussed in Chapter 3, only the magnetically-insensitive mF = 0 sublevels in F = 4

and F = 3 are used for interferometry. To increase the population in mF = 0 sublevels, the

vertical bias coils apply a 0.8 G bias field to lift the degeneracy of the Zeeman sublevels, and

define a quantization axis. A 100 ps optical pumping pulse with resonant F = 4 - F' = 4

and F = 3 -+ F' = 4 laser light places ~ 80% of the atoms in the |F = 4, mF = 0) level,

which is a dark state to both beams since they are linearly polarized (along the quantization

axis). This step slightly heats the ensemble to ~ 5 pK, but increases the atom count in the

desired level by a factor of seven. To select atoms in the mF - 0 level, a 120 Ps microwave

7r pulse drives atoms from IF = 4, mF = 0) to IF = 3, mF = 0). Alternatively, a Doppler

sensitive Raman pulse can transfer atoms to |F = 3, mF = 0) to select an ensemble with

near-recoil temperatures (Tr ~ 200 nK for cesium) along the Raman beam axis, at a cost



of lower atom number. By selecting a population with a temperature of 0.5 piK, about

10% of the atoms from the MOT remain. All of the atoms in mF # 0 states do not make

a transition, and stay in the F = 4 manifold. At this point, a horizontal pushing beam,

resonant with the F = 4 - F' = 5 transition, is pulsed for 500 ps to accelerate them out of

the interrogation region. Far-detuned F = 4 - F' = 4 transitions distribute < 0.5% of the

atoms in the F = 3 manifold, so that they remain visible at detection (this only contributes

a small background signal).

This state preparation sequence produces a free-falling ensemble of up to - 107 atoms in

the IF = 3, mF = 0) level (with velocity selection, the atom number is further reduced by

S10x).

4.2 Interferometry

The gravitational acceleration of the atoms in free fall is measured with a w/2 - - - 7F/2

interferometer. The Raman beam is aligned to local vertical to within 0.30, using a plumb

bob as a reference. The actual acceleration measured by the interferometer is keff -g = g cos 0,

where 0 is the angle from vertical and keff is the unit vector for the propagation axis of the

Raman beam. To ensure that the Raman resonance condition is satisfied during all three

pulses, the laser frequency difference is swept to cancel the Doppler shift of the accelerating

atoms, as shown in Fig. 4-2. The Doppler shift increases at a rate a = keff 9 27 x 23

kHz/ms. Figure 4-3 shows two oppositely Doppler-shifted Raman resonances after a drop

time of 12 ms; as noted earlier, the retroreflected Raman beam can excite Raman transitions

along opposite keff. Either may be selected for interferometry as long as the separation of the

resonances is greater than the Rabi frequency, which determines the width of the resonances.

The Raman laser detuning is typically set at A = -1.25 GHz from the F = 4 -±

F' = 2 frequency. Smaller detunings allow for shorter Raman pulses, but also increase the

rate of spontaneous emission. Contrast was found to be maximized with 7r pulse durations

~ 8 - 10 ps. With velocity selection, a ir pulse transfers ~ 85% of the atoms, since the

bandwidth of the pulse is broader than the velocity distribution of the atoms. Contrasts up

to 70% were observed. Using hotter atoms leads to greater variation in pulse area across the

ensemble, and therefore higher dephasing. While the availability of higher laser power from
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Figure 4-2: Interferometer pulse timing diagram. The laser frequency difference is chirped
by a/27r ~ 23 kHz/ms continuously to maintain resonance in all three pulses.

the tapered amplifiers could further reduce the pulse durations, Rabi frequencies greater than

100 kHz begin to drive Raman transitions along both propagation directions simultaneously,

leading to extra interferometer loops that reduce contrast. Launching the atoms with moving

molasses could provide for increased separations and use of higher Rabi frequencies.

To produce interference fringes, such as those shown in Fig. 4-4, the phase of the third

Raman pulse is scanned. The dynamic RF signal driving the Raman EOM enables both

frequency sweeping and discrete phase shifting (see Section 3.5.1). As derived in Section

2.2.2, the gravitational phase shift is canceled for all T when the chirp rate is tuned to

compensate for the linearly-increasing Doppler shift, providing a measurement of gravity:

9 a (4.1)
IkeffI

To ensure an accurate fringe count, T is initially set to several values less than 1 ms, and

the chirp rate is adjusted to null the small inertial phase shifts. The interrogation time can

then be increased to the desired duration.

Another step in the preparation for a gravity measurement is the cancellation of the

differential AC Stark shift of the F = 3 and F = 4 ground state levels, in order to avoid

systematic phase shifts. The differential AC Stark shift is nulled by tuning the ratio of

intensities in the Raman fields with the RF amplitude driving the EOM. To calibrate the
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Figure 4-3: Detuning scans for atom samples with ~~ 5 pK and ~ 0.5 pLK temperatures. The

colder sample exhibits less broadening and more clearly defined features. The two resonances
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Figure 4-4: Interference fringes for T = 1 ms. Each point is an average of three shots.
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shift, a microwave 7r/2 - 7r/2 interferometer is tuned so that atoms are placed in a balanced

superposition, and a Raman pulse is inserted between the microwave pulses. To suppress

coherent transfer, the Raman detuning is set to several MHz (the AC Stark shifts, however,

are not significantly altered). For the duration of the Raman pulse, the AC Stark shift

introduces a temporary detuning, resulting in a phase shift proportional to the pulse length.

The differential shift is canceled when the optically-induced phase shift is nulled for a range

of pulse lengths.

The next section describes the method for measuring interferometer phase by state de-

tection. Analysis of a gravity measurement with the apparatus is discussed in Section 4.4.

4.3 State Detection

At the output of the interferometer, the atoms are in a superposition of the F = 3 and F = 4

hyperfine ground states, corresponding to the populations in the two interferometer output

ports. The interferometer phase A# is extracted from these populations by measuring the

fraction of atoms in F = 4 as a function of the scanned laser phase A# 0:

1 C
P = 2 2 cos(A# + A#") (4.2)

where C = (Pmax - Pmin)/(Pmax + Pmin) is the contrast, Pma, and Pmin are the observed

maximum and minimum F = 4 populations (at a net phase of 0 and ir, respectively), and

P is the transition probability.

The method for state detection in this experiment is normalized laser-induced fluores-

cence. A vertical probe beam is tuned to the F = 4 - F' = 5 cycling transition is pulsed

for 500 ps to measure the F = 4 population. The probe beam is 5 mm in diameter and has

an intensity of 2 .51sat. To balance the scattering force, the beam is retroreflected and tuned

slightly to the red of resonance (A ~ -1 MHz). Approximately 1.5% of the fluorescence

from the atoms is collected by a 1" lens (f=37.5 mm) at a distance of 2f from the atoms,

and imaged on a photodetector positioned another 2f beyond the lens (1:1 imaging). The

integrated photodetector voltage, V4 , provides a measure of the F = 4 population.

After measuring the population in F = 4, the probe beam is tuned to the blue of the
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Figure 4-5: Measurement of detection SNR with a Doppler insensitive r/2 - 7r/2 clock

sequence (T = 0.5 ms). The phase SNR is 140.

F = 4 -+ F' = 5 transition and pulsed for 500 ps to push the F = 4 atoms out of the detector

field of view. Finally, a repump pulse places the F = 3 atoms in the F = 4 manifold, after

which another F = 4 -- F' = 5 pulse measures the population as signal V3. The estimate of

the transition probability is therefore

P V4  (4.3)
V4 + V3

By normalizing, the readout is insensitive to fluctuations in the total atom number from

shot to shot. Normalization is improved by blowing away the F = 4 atoms, and separately

measuring the two populations; alternatively, one population could be measured, followed

by a measure of the total population. Normalization errors can easily occur in the latter case

if some of the F = 4 atoms are scattered out of the field of view by the first probe pulse.

The detection SNR was measured with a Doppler insensitive Raman 7r/2 - r/2 clock

sequence. The laser frequency difference was tuned such that the atoms were in an equal

superposition of the two ground states (A# = ir/2), with the pulse separation set to T =

500 ps. The noise in the population measurement, UAp is related to the phase SNR, 1/uae,

by
8(A#) 2

o-AO x (Ap = -ap (4.4)
P Ar/2 C
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using the result in Eq. (4.2) and propagation of uncertainty. The measured phase SNR was

140 per shot, corresponding to a phase sensitivity of 7 mrad per shot.

The primary SNR limitation of this readout is the frequency and amplitude stability of

the probe beam. The probe beam intensity is stable to ~ 0.3% from shot to shot. The

dominant noise source, however, is frequency jitter, since the populations in the two states

are not measured simultaneously. For example, consider a laser linewidth of 0.5 MHz and a

probe beam intensity of 2 .51sat. The photon scattering rate fluctuates by ~ 0.8% if the laser

is tuned to resonance. Assuming the fluctuations between detection pulses are uncorrelated,

the SNR is limited to ~ 170. In previous work, simultaneous fluorescence detection, which

is less sensitive to these fluctuatons, has achieved SNR- 800, which is near or at the shot-

noise limit for many atom interferometry experiments [76]. However, this approach typically

involves spatially-separating the two populations so they can be simultaneously imaged,

relying upon the high velocity of atoms at the bottom of an atomic fountain (one population

is 'stopped' by a resonant beam while the other continues to fall). In a brief interrogation

where the atoms are not launched by moving molasses, sufficient separation is difficult to

achieve. One possible solution is to split the probe beam with a high frequency AOM driven

at half the hyperfine splitting frequency. The -1 and +1 diffracted orders would be used to

excite the F = 4 - F' = 5 and F = 3 -+ F' = 2 transitions, so both populations could

be measured simultaneously on separate detectors by absorption imaging (a similar method

was used to generate Raman beams in [77]).

4.4 Gravity Measurement

A gravity measurement provided a characterization of the acceleration sensitivity of the

apparatus. The total fringe number was accounted for by scanning the interrogation time

(T), and calibrating the chirp rate of the Raman laser frequency difference to cancel the

inertial phase shift. The chirp rate was then fixed and the interferometer phase was set to

mid-fringe (A# = 7r/2) by shifting the phase of the third pulse. Data was acquired for 11

hours at a repetition rate of 1.7 Hz, with an interrogation time of T = 3.5 ms (the remaining

time was for loading the MOT).

In principle, one could measure the precision of the gravity measurement by computing



the standard deviation over the entire data sample. For long samples, however, instabilities in

the apparatus lead to a diverging sample standard deviation as the number of measurements

increases, making this statistic ill-defined. The sensitivity and stability of the system were

instead characterized by computing the Allan deviation, ug(T), where T is the measurement

averaging interval. The Allan variance (o (T)) for equally-spaced measurements of g, {g4}

{g(t,)} is defined as2 :

02(T) IK( 9 +j -9 )+j 2 (4.5)
( j= 0 j=N

where r= N&ot =N(t, - t, ). Since the statistic is defined over a fixed measurement

interval, the statistic is always well-defined. Purely white, uncorrelated noise in the mea-

surements should average as ~ 1/2, so quoting a sensitivity in terms of velocity random

walk (~ g//Hz) is identified by the occurrence of such a trend in a plot of Ocg versus r.

Instabilities can also be characterized by trends in the Allan deviation as a function of T.

For instance, an acceleration random walk manifests as a trend~ T 1/2. The bias stability

of the measurement is typically taken to be the minimum value of the Allan deviation (in

units of g).

Fig. 4-6 shows the Allan deviation calculated from the full sample, in units of pg. The

short term sensitivity is measured to be ~ 120 pg/ H/Iz, and averages down to 6 pg at about

750 seconds. Based on the phase SNR calculated in the previous section, however, one

infers a sensitivity of 4 pg/v/Hz, a factor of 30 lower than the observed noise density. The

dominant source of noise is high frequency vibrations of the platform from floor vibrations

and ambient acoustic noise. To diagnose this, similar gravity measurements were made with

different interrogation times (T = 3, 3.1, 3.25 ms). Fig. 4-7 shows that, despite the variation

in scale factor, the noise statistics in units of g are nearly identical, indicating that the

interferometer is in fact measuring real motion. It is worth noting that one would not expect

a velocity random walk process to result from platform motion (i.e., the table height does not

undergo a random walk). It is likely that the observed- T 1/
2 averaging is a consequence

of measuring vibrations with a low sampling rate. While the interferometer responds to

motion at many of the vibrational frequencies (10-200 Hz, which are within the < 1/T

2 The Allan variance is also referred to as the two-sample variance.
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Figure 4-6: Allan deviation of gravity data acquired over 11 hours at a repetition rate of 1.7
Hz. The red line represents a T-1/ 2 trend. The minimum value of 6 pug occurs at T ~ 750
seconds. The feature at r ~ 5 seconds is likely the result of rocking motion of the optical
table.

frequency band), the vibrations are not sufficiently coherent from shot to shot to average

down effectively as T- 1 . In effect, the interferometer samples a random phase, producing

an apparent velocity random walk process with averaging statistics scaling as 7- 1/ 2 . The

instability observed at T ~ 5 seconds is due to rocking motion of the optical table at the

~10 mrad level, since the optical table is floated but not actively stabilized.

The apparatus is unfortunately located in a laboratory environment that is quite adverse

to making precise gravity measurements- several stories above ground, with large envi-

ronmental control systems in close proximity. Nevertheless, the value of gravity obtained,

9.80381 ± 0.00006 m/s 2 , agrees with the value predicted by a gravity survey, 9.80382 t

0.00002 m/s 2, accounting for elevation and table tilta. At shot noise-limited performance

(assuming N ~ 106 and T = 3.5 ms), the interferometer would achieve a sensitivity of

~ 0.56 pg/ Hz. The following section discusses sources of systematic error.

3National Geodetic Survey, Lat. = N42'21'54", Long. = W71 0 5'26".
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Figure 4-7: Allan deviation of gravity data acquired at different interrogation times. Blue:
T = 3.25 ms, Red: T = 3.1 ms, Green: T = 3 ms. Despite the variation in scale factor,
the noise statistics are very similar. This indicates that high frequency vibrations are the
dominant noise source.

4.4.1 Systematics

The accuracy of the measurement is limited by several systematic error sources. First,

misalignment of the Raman beams from local vertical by angle 0 leads to an error gmeas/g =

cos(0), where gmeas is the acceleration measured by the interferometer. The tilt of the Raman

beams was measured with an uncertainty AO 0.3', corresponding to an uncertainty in g of

4 pg. This is the largest source of systematic error . Uncertainty in keff also results from

the resolution of the laser wavelength. By locking the laser to an optical transition in cesium,

the laser frequency is known to 1 MHz (el ppb), so it is not a significant error source. Noise

in the microwave frequency electronics used to generate the Raman frequency difference also

leads to fluctuations in the interferometer phase. With a method similar to that applied in

analyzing the contribution of vibrations to interferometer phase noise, a transfer function

for Raman phase noise in the three-pulse interferometer can be derived [78] (Fig. 4-8 shows

'A more precise measurement could be done, in principle, but table motion quickly becomes the dominant
source of pointing uncertainty.
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Figure 4-8: Frequency response of the 7r/2 - ir - 7r/2 interferometer to laser phase noise

(T = 3.5 Ms, T = 10 Is). The pulse duration effectively high pass filters laser phase noise,
since these fluctuations average within one pulse. At frequencies < 1/2T, the contribution of

fluctuations is small over the duration of the interferometer. The interferometer is insensitive

to Fourier components with frequencies at multiples of -I 1/(T + 2T), where T is the 7r pulse

duration.

this function, |H(w)|, for T = 3.5 ms and a -r pulse duration of 10 ps).

-= f H(w)|2 S4(w)do (4.6)

where SO(w) is the Raman phase power spectral density. From the measured power spectral

density of the Raman EOM drive signal, which defines the Raman phase excluding mirror

vibrations, uos is estimated to be 3 mrad (Ag/g ~ 2 x 10~6). This is not currently a

dominant noise source, and could be further reduced in the future by generating the 9.2 GHz

signal from a cleaner oscillator.

Fluctuations in the Raman intensity lead to noise in the relative populations. Intensity

fluctuations o-, lead to proportional changes in the effective Rabi frequency, o/I = UQeff/Qeff.

The resulting noise in the relative populations o-p after the three-pulse sequence is approxi-

mately

o- =I ,(4.7)
2 I

assuming uncorrelated noise in each pulse [3]. For shot-to-shot fluctuations at the level

of ~ 0.3%, up < 0.01 and therefore Ag/g ~ 10-6 per shot. While this is not the current



sensitivity limitation, the Raman laser power is not actively stabilized and drifts at the ~ 1%

level occur over hour-time scales, which could produce long term drifts.

Another light-based error source results from AC Stark shifts. As described earlier in

this chapter, the differential AC Stark shift between the two interferometer states is canceled

by tuning the intensity ratio of the Raman beam frequency components. The three-pulse

interferometer is intrinsically insensitive to AC Stark shifts, as long as the shift is the same

in all three pulses. The phase shift due to a differential AC Stark shift 6 AC,j during pulse j

is

AOAC 6 AC,3 _SAC,1 (4.8)
Qeff Qeff

When canceled, fluctuations in the Raman beam power do not lead to a variation in the

differential AC Stark shift. Long term cancellation relies on the stability of the phase mod-

ulation signal and optical properties of the electro-optic modulator, which can vary due to

environmental factors such as temperature drift. For a non-zero differential AC Stark shift,

however, the expansion of the cloud over the non-uniform beam can introduce significant

shifts. This effect is commonly a long term stability limitation for Raman pulse atom in-

terferometers, and are more problematic for sensors operating at shorter interrogation times

(the phase shifts introduced by AC Stark shifts do not significantly change with interroga-

tion time, so it is a fractionally larger effect). The amplitude of the 9.2 GHz signal driving

the EOM is stable to - 0.1 dB over several hours. Over multiple hour durations, AC Stark

shifts were measured to produce systematic phase shifts of on the order of - 0.01 rad for

6AC ~ 0.lQeff, which is the dominant limitation to the long term stability of the measure-

ment. In principle, these long term drifts could be suppressed by comparing measurements

with opposite Raman beam propagation direction (e.g., see [34]). While the phase shift due

to gravitational acceleration will change sign, systematic shifts from AC Stark shifts and

Raman beam power drift do not.

Higher-order Inertial Effects

Time-varying and higher-order inertial effects also affect the accuracy of a gravity measure-

ment. First, daily tidal variations occur at the ~ 10-7 g level, and are therefore not a

significant source of error in these measurements. Secondly, gravity gradients introduce a



higher-order phase shift, as described in Section 2.2.3:

Agrav.grad. keffT 2 ( 1 T2 - (0)T - z(0)) (4.9)

where f (0) =(0) + jv, is the mean velocity of the two wavepackets after the beam split-

ter pulse. For an interferometer with T = 3.5 ms and a drop time of 13 ms, the offset

in the measured gravity value is ~0.1 ng, which is also well below the resolution of the

interferometer.

Finally, imperfect alignment of the Raman beam with g leads to a horizontal velocity

component in the trajectory of the atom during the interferometer, which means that spatial

area is enclosed and a Sagnac phase shift is introduced. In this case, the rotation rate of the

Earth induces a phase shift:

A#rot = 2Q . (vo x keff)T 2  (4.10)

where i is the Earth rotation rate (~ 7.29 x 10-' rad/s), vo is the initial velocity of the

atom, and m is the atomic mass. Therefore, the error in gravity is:

Ao7rot
Ag = keffT 2  (vo x keff) (4.11)

Given the Raman beam pointing uncertainty and the drop time of the atoms, the offset is

only Ag/g ~ 10-8, which again is below the current resolution.

4.5 Raman Pulse Dephasing

An important factor which limits contrast for short interrogation time interferometry is the

transfer efficiency of the Raman pulses. The atom temperature does not increase significantly

during the interrogation, so high Rabi frequencies allow transform-limited Raman pulses. As

Chapter 5 discusses, Raman pulse transfer efficiency is also the primary limitation to realizing

larger area interferometers and higher sensitivity.

The dominant limitation to transfer efficiency in this apparatus is due to the non-

uniformity of the intensity profile of the Raman beams. An ideally uniform Raman beam

profile would produce a constant Rabi frequency across the ensemble. The Gaussian envelope
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Figure 4-9: Doppler insensitive Raman pulse population transfer versus pulse duration. The

solid curve was acquired with the cloud centered in the Raman beam, and the dotted curve

was acquired with the cloud displaced radially by 3 mm from the center of a 5 mm beam.

More rapid dephasing is evident in the off-axis case.

of the Raman beam and imperfections in the optics, however, create a spatial distribution

of Rabi frequencies. Figure 4-9 shows population transfer as a function of Raman pulse

duration. By displacing the atoms radially in the Raman beam, Rabi oscillations appear to

decay more rapidly as a result of the broader distribution of intensity. However, this effect

is not the result of a irreversible decoherence- coherence is preserved in each atom, and in

principle, the dephasing is reversible at some level.

A diagnostic was developed to isolate the effects of Raman beam non-uniformity on

population transfer, using an n7r - n7r pulse sequence, with even n. The basic idea of the

diagnostic is to apply two Doppler insensitive Raman pulses of variable duration in rapid

succession. The pulses have identical durations but a relative phase of 0 or 7r. The effect

of the second pulse in the latter case is, at least in part, to undo the dispersion in transfer

induced by the first Raman pulse. A similar regimen is used to test the fidelity of quantum

information systems manipulated by microwave pulses, drawing on spin echo techniques

developed for NMR spectroscopy [79-82].

In the pseudospin representation, depicted in Fig. 4-10, an inhomogeneous Rabi fre-

quency causes the pure initial spin state to spread angularly in the plane of rotation. The

dephasing becomes more pronounced with increasing pulse duration, ultimately dispersing



Figure 4-10: Bloch sphere representation of the Raman pulse dephasing diagnostic discussed
in Section 4.5. The initial state is spin down, and the spheres represent the state after each
pulse. A 2woo - 27roo sequence dephases the ensemble in both pulses. The second pulse of
the 27 0o - 2 18 0 sequence, however, reverses the dephasing.

the ensemble with longer pulses. Figure 4-11 shows the measured final relative populations

after several nnr - n7 sequences, with a common dwell time of 16 ps. In the nroo - n7oo

sequence, where the subscript refers to the relative phases of the pulses, both pulses lead to

dephasing. Conversely, the second pulse in the n7roo - n71 8 0o sequence effectively counter-

rotates the pseudospin and reverses the dispersion produced by the first pulse, assuming the

atoms are motionless and the Raman beam intensity is constant. Both sequences should, in

a uniform Raman beam, return the pseudospin to the initial state. However, as the data in

Fig. 4-11 show, the final state of the ensemble after the n7roo - n7180o sequence is weighted

more toward the initial F = 3 state, even beyond an accumulation of 207r in pulse area. At

longer pulse durations, rephasing is degraded by spontaneous emission and dephasing due

to imperfect AC Stark shift cancellation.

The same experiment was run with the atoms radially displaced by 3 mm from the center

of the Raman beam. As the other curves in Fig. 4-11 show, it is clear that dispersion is

even more dramatic in the n7roo - nroo sequence. The n7roo - n7 1 8 0o sequence, however,

still achieves significant rephasing in the presence of a far broader intensity distribution.
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Figure 4-11: Raman pulse dephasing measured by two pulse (n7roo - n7Too/1soo) interferom-

eters. Open (solid) points correspond to zero (7r) phase shift in the second pulse. These

profiles are shown for a cloud centered in the Raman beam, and then radially displaced by

3 mm.

This result motivates composite pulse sequences, which accomplish the same net transfer

as a -r pulse but use multiple rotations at different laser phases to reduce these dispersive

effects. Chapter 5 discusses particular pulse sequences that improve transfer efficiency and

enable large area atom interferometers with Raman pulses. Contrast loss as a function of the

transverse position of the cloud also has important implications for the design of a sensor

operating in a dynamic environment, where the transverse motion of the atom could be

significant. The design of the sensor must trade Raman beam size with the dynamic range,

maximum input, and bandwidth requirements of the sensor. A wider Raman beam can

accommodate larger transverse input, but the required laser power quickly increases.

4.6 Summary

In this chapter, a gravity measurement using short interrogation time atom interferometry

was described. The primary limitation to the sensitivity of the current apparatus is high fre-

quency vibrations in the laboratory environment. Longer term stability was affected mostly

by slowly-varying phase shifts introduced by AC Stark shifts. Significant improvements in

sensitivity could be made by better vibration isolation (e.g., mounting the Raman retrore-

flector on a passive isolation stage), though much of the vibration resulted from acoustic



noise that may require other measures to effectively isolate the mirror. Alternatively, the

position of the mirror could be continuously monitored by a Michelson interferometer using

the Raman beam path as one arm, and used in analysis to compensate for the motion. In

the future, improvements to the readout SNR, Raman beam intensity and phase stability,

and repetition rate, could yield a sensitivity of <1 pg/Hz. Finally, sources of Raman pulse

dephasing were diagnosed and implications for interferometer performance in a dynamic

environment were discussed.



Chapter 5

Composite Raman Pulses and Large

Area Atom Interferometry

This chapter presents a demonstration of large area atom interferometry with Raman tran-

sitions, and proposes it as a method for increasing the sensitivity of a high bandwidth

atom interferometric inertial sensor. Large area atom interferometry is realized with large

momentum transfer (LMT) atom optics, which linearly improve the precision of an atom in-

terferometer with the relative momentum splitting of the atomic wavepackets. As discussed

in Chapter 1, existing light pulse atom interferometers achieve state of the art performance

in measurements of gravity, rotation, and gravity gradients in laboratory conditions [4,6,25].

Atom interferometers operating in a dynamic environment, however, are constrained to po-

tentially much shorter interrogation times, trading away much sensitivity for sensor com-

pactness, dynamic range and bandwidth. In this regard, LMT atom optics could improve

interferometer precision without a requisite reduction in sensor bandwidth, thereby regaining

some of the sensitivity lost at shorter interrogation times.

In this work, large momentum transfer is achieved with extended Raman pulse sequences,

based on the Mach-Zehnder 7r/2 - -r - r/2 interferometer. The maximum achievable mo-

mentum transfer is limited by the transfer efficiency of the Raman pulses, since this fac-

tor ultimately constrains the interferometer contrast and phase SNR. In this chapter, it is

shown that by using more efficient composite Raman pulses, the momentum splitting can

be increased to 9hkeff 18hk (compared to the standard 2hk Raman beam splitter), thus



increasing the inertial phase shift by a factor of nine. Composite pulses techniques were

initially developed for high-resolution NMR spectroscopy, and are implemented here for the

first time in a light pulse atom interferometer. The main advantages of this approach are

that the increase in precision can be obtained without using significantly colder atoms, mak-

ing drastic increases in laser power or reductions in repetition rate. In addition, composite

Raman pulses are shown to improve the robustness of the interferometer to several effects

that limit Raman pulse transfer efficiency and are of particular concern to operation in a

dynamic environment.

5.1 Large Momentum Transfer with Raman Pulses

The most widely-demonstrated light pulse atom optics are stimulated Raman transitions,

which impart momentum splittings of 2hk. While other light pulse atom optics, such as

multi-photon Bragg pulses [46, 47, 83] and Bloch oscillations [46, 84], have achieved larger

momentum splittings and offer higher precision, Raman pulse beam splitters place less strin-

gent demands on atom temperature. Multi-photon Bragg transitions have demonstrated

24hk single-pulse beam splitters [46] and up to 102hk with sequential-pulse beam split-

ters [47]. Efficient transfer with Bragg pulses, however, requires sub-recoil temperatures,

achieved either by narrow velocity selection, which limits sensitivity due to atom number

counting statistics, or by using ultracold samples that are produced at low repetition rates

(e.g., 0.3 Hz in [54]). As a result, Raman pulse atom optics appear technologically favorable

for high bandwidth sensors.

As first demonstrated by McGuirk et al. [45], extended Raman pulse sequences with

alternating wavevectors, ikeff, increase the momentum splitting between atomic wavepackets

by a factor of 2N + 1, where N is the number of pulses inserted after the initial -X/2 beam

splitter pulse. Fig. 5-1 depicts a sequence of N 7 pulses, called augmentation pulses here,

after the initial 7/2 pulse that imparts (4N + 2)hk of relative momentum. A large area

Mach-Zehnder interferometer, shown in Fig. 5-2, is then composed of a symmetric sequence

of 4N + 3 pulses that splits, reflects, and recombines wavepackets, and results in an inertial

phase shift larger by a factor of 2N + 1 over the conventional 7r/2 - 7 - w/2 interferometer.

In the first demonstration of large area Raman pulse interferometry, a momentum split-
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Figure 5-1: Diagram of Raman pulse sequence that increases the relative momentum of
atomic wavepackets to (4N + 2)hk, where N is the number of augmentation pulses of al-
ternating propagation direction after the r/2 pulse. The arrows indicate the Raman beam
propagation direction, keff, and the line colors denote the internal states of the wavepackets

(e.g., Red= 1g) and Grey= le)).

ting of 6hk (N = 1) was reported [45]. The major limitations to increasing the number of

augmentation pulses were cited as Rabi frequency inhomogeneities arising from the Gaussian-

shaped Raman beam, the frequency selectivity of a square pulse, and decoherence due to

spontaneous emission. All of these factors reduce population transfer efficiency, interfer-

ometer contrast, and phase SNR, which ultimately obviates the use of larger momentum

interferometers despite the larger signals available. McGuirk et al. [29] suggested the sub-

stitution of composite Raman pulses for the conventional 7r augmentation pulses as a means

of increasing the efficiency of the augmentation pulses, thereby enabling larger momentum

splittings without significant degradation of interferometer contrast.

5.1.1 Composite Pulse Techniques

A composite pulse is composed of a sequence of contiguous or nearly contiguous pulses

(subpulses) at constant amplitude but different relative phase [85]'. It is illustrative to

describe the action of a composite pulse on the atomic state as consecutive rotations of

the atomic pseudospin on a Bloch sphere, recalling the discussion in Section 2.1.1. This

'More complex composite pulses with frequency or amplitude shaping have been used in NMR experi-
ments, but are beyond the current scope.
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Figure 5-2: Diagram of two large area atom interferometers (N =1, 2) compared to a
r/2 - 7- 7/2 (N = 0) interferometer. The augmentation pulses are denoted A.



framework elegantly links Raman pulse population transfer to NMR techniques, from which

composite pulses were initially developed.

Fig. 5-3 depicts the evolution of the atomic state for a simple composite pulse used

for population inversion, 7/2oo - 7Foo - r/2oo , where the subscripts indicate the relative

phase of the effective drive field between subpulses (for now, consider coherent transfer

between two hyperfine ground states driven by microwave pulses). As the figure shows,

this sequence of subpulse rotations accomplishes the same net rotation as a single w pulse,

inverting population from one state to the other. The composite pulse, however, achieves near

perfect inversion for a larger range of Rabi frequency errors. For this reason, the composite

pulse yields higher average transfer efficiency with an ensemble sampling a spatially-varying

drive field intensity, as encountered in interrogations of cold atom samples with laser and

microwave fields [86]. Composite pulses can also achieve efficient population inversion over

a larger bandwidth [87], as shown in Fig. 5-4. For example, the bandwidth of a iF pulse is

limited to a full-width-half-maximum (FWHM) of 2Q0 , where Q0 is the Rabi frequency, while

the bandwidth of the 7r/2 0o - agoo - or/20 o sequence approaches 4Qo. Thus, composite pulses

can also be more robust to inhomogeneous broadening effects (e.g., atom temperature).

The primary advantage of composite pulse techniques is that robustness is obtained with-

out significant additional technical complexity beyond that which is required to implement

square pulses. More advanced composite pulse techniques involving shaped pulses have also

been proposed for higher efficiency and robustness (e.g., [88]), but come at the cost of more

complex implementation. In NMR spectroscopy, a staggering variety of composite pulses

have been developed with varying degrees of insensitivity to Rabi frequency error, detun-

ing, and phase error (i.e., for imperfectly applied phase shifts between subpulses) [89-92].

Composite pulses have served more recently as diagnostic tools for analyzing the fidelity of

microwave manipulations in quantum information systems. Fidelity determines the number

of possible manipulations before the ensemble is dephased, and its coherent evolution is no

longer detectable [80,81].

Section 5.2 describes the experimental characterization of two composite Raman pulses,

7/20o - 7 9 0 o - w/2oo and ir/2oo - 7risoo - 37/2 0 o, where in the context of Raman pulses,

the subscripts refer to the relative effective laser phase #eff of each subpulse. Both of these

sequences are designed for high efficiency, broadband population inversion. Finally, Section



Figure 5-3: Atomic pseudospin evolution for a population-inverting composite pulse (7/2 0. -
7r90 0 - 7r/2 0o), in the presence of pulse length errors resulting from drive field inhomogeneities.
Even for a ~ 10% error in pulse length, the composite pulse transfers over 98% of the
population.
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Figure 5-4: Comparison of theoretical detuning profiles of a 7r pulse and the ir/2 0 o - 790o -

ir/2 0o and 7r/2 0o - 7r180o - 37r/2 0o composite pulses. The larger bandwidth of the composite
pulses is evident (these profiles assume the same Rabi frequency)).



5.3 discusses the application of composite Raman pulses as augmentation pulses for increasing

the momentum splitting of Raman pulse interferometers up to 18hk (corresponding to a

factor of 9 x increase in the inertial phase shift).

5.2 Composite Raman Pulses

As mentioned above, composite pulses improve transfer efficiency by compensating for pulse

length and detuning errors, and are relatively simple to implement. Since these practical lim-

itations are closely analogous to the effects that composite pulses were designed to suppress

in NMR experiments, composite Raman pulses can be expected to improve the contrast,

and thus the phase SNR of large area atom interferometers. Achieving high efficiency with

composite Raman pulses, in contrast to NMR experiments, is ultimately constrained in total

pulse duration by decoherence from spontaneous emission. This precludes the use of almost

arbitrarily-efficient 'super-cycle' composite pulses, which can involve pulse areas exceeding

45- [90, 91]. Therefore, shorter composite pulses like the 7/2 0o - 7 90 o - 7F/2 0 o sequence

described above are more suitable in interferometry.

As previously discussed, Fig. 5-4 shows the population transfer of the w/2oo -o 90 o -7/2o

composite pulse as a function of detuning. Neglecting spontaneous emission, this profile is

identical to the one produced with the Raman pulse theory described in Chapter 2, highlight-

ing the power of the isomorphic relation of Raman pulse and NMR physics. Here, the three

subpulses are assumed to be contiguous (i.e., zero dwell times), since this maximizes the

bandwidth of population inversion and reduces sensitivity to atom temperature. Moreover,

in the context of large area atom interferometry with Raman pulses, broadband population

inversion is essential because of the differential Doppler shifts that occur between wavepack-

ets during augmentation pulses in the interferometer (this issue is discussed in more detail

in Section 5.3). Fig. 5-4 also shows the detuning profile of a slightly longer composite pulse

sequence, 7/2 0o - 7 18oo - 37/2 0 o, which was first proposed and demonstrated in NMR by

Shaka et al. [90, 93]. This composite pulse achieves efficient population inversion over an

even larger bandwidth. The reason for the large bandwidth of this composite pulse is not

as intuitive as the other (incidentally, this composite pulse was invented by numerical opti-

mization [90]). Fig. 5-5 illustrates a particular example in which, despite a large detuning



7;

n2-nt 180 -3 7E/20

Figure 5-5: Bloch sphere representation of population inversion by a 7r/2oo -180o - 37/2 0 o

composite pulse and a 7r pulse for a drive field detuned by 6 = 0.6Q0 . While the 7r pulse
achieves ~ 60% transfer, the non-trivial evolution of the composite pulse transfers 99% of
the population.

(0.6Q0 ), the non-trivial subpulse rotations manage to achieve near-perfect population inver-

sion, dramatically improving upon a 7r pulse. The next section describes the implementation

of these composite pulses, where it is seen that the 7r/2 0 o - 7is00 - 37/2 0. provides superior

robustness.

5.2.1 Experiment

Composite Raman pulses were implemented with the same apparatus described in Chapter 3.

Fig. 5-6 compares the observed transfer efficiency of both Doppler sensitive composite Raman

pulses as a function of Raman detuning, as well as the profile for a 7r pulse. These data were

acquired with ~ 0.5 pK samples (Ap ~ 1.5hk, achieved by velocity selection). The atom

cloud was approximately 1 mm across. Both composite pulses achieved broadband inversion,

but the w/2 0o - 7 9 oo - ir/2 0 o sequence (lower plot) exhibited a spurious asymmetric feature

near resonance. This resulted from transient phase and amplitude errors in the Raman

EOM drive signal, due to bandwidth limitations in the RF frequency mixer (see Section

3.5.1). These errors occurred between subpulses, when phase shifts were applied. While
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Figure 5-6: Detuning profiles of Doppler sensitive composite Raman pulses. A) Comparison

of a 7r pulse with a 7r/2 0o -7 180o -3w/2 0. composite pulse. B) Profile of the 7/2oo -7rgo --7/2o.

composite pulse. The profile exhibits lower transfer near resonance, due to amplitude and

phase shift errors occurring between subpulses. Each point represents an average of four

shots. Theoretical curves include thermal averaging and use frequency offset and overall

amplitude as free parameters.

the detuning profile of the r/2 0. - 7r18oo - 3w/2oo composite pulse also exhibits a slight

asymmetry, it is largely unaffected by these experimental defects. Interestingly, previous

NMR studies recognized insensitivity to phase shift errors in composite pulses using strictly

180' phase shifts ('phase-alternating') [93,94].

A model was developed for calculating composite Raman pulse detuning profiles, includ-

ing the velocity distribution of the ensemble (a Maxwell-Boltzmann velocity distribution was

assumed). Wavepacket amplitudes were calculated according to the diagrammatic method

described in Stoner et al. [60], which derives a Raman pulse operator for time-varying de-

tunings. For reference, a summary of the model is provided in Appendix B. In the case of

the 7r/2 0o - 7ri 80o - 37r/2 0. composite pulse, the observed peak transfer is 89%, an increase of



9% over that of a 7r pulse. For a Rabi frequency of Qef/2-F = 50 kHz, this sequence achieved

>80% transfer over a range of ±Qeff (approximately the FWHM of the w pulse detuning pro-

file). This composite pulse also exceeded the transfer efficiency of the r/2 0o - 79oo - 7r/2oo

sequence over a broad range of atom temperatures, especially for hotter atoms. With an

~ 8 pK sample, the r/20 o - 7iso- 37r/2 0o composite pulse achieved 84% transfer, while the

7r/2o - 79o - 7F/2 0o composite pulse and 7 pulse achieved 76% and 63%, respectively.

Both composite pulses demonstrated relative insensitivity to Rabi frequency inhomo-

geneities as well. This factor was measured by comparing the transfer efficiency of compos-

ite pulses with that of a 7r pulse, using Doppler insensitive Raman transitions to eliminate

sensitivity to atom temperature. As Fig. 5-7 shows, both composite pulses achieved a max-

imum transfer of 97% with a cloud of ~1 mm in diameter and a Raman beam diameter

of 5 mm (1/e 2 ). The maximum 7F pulse transfer was 91%. It is interesting to note that

the 7r/2 0o - 7is0o - 37/2 0o composite pulse achieved a transfer efficiency similar to the 7r

pulse near resonance, but yielded higher transfer at large detuning (- ±0.5Qeff). This result

indicates that the composite pulse is less sensitive to the Raman beam intensity distribution

when off resonance, and equally as sensitive as the 7r pulse on resonance. The latter fact is

expected. Due to the symmetry of the subpulse rotations, this composite pulse produces the

same transfer as a 7r pulse exactly on resonance for any drive field intensity. As mentioned

above, the large asymmetric feature in the profile of the -r/2 0o - 7 9oo - 7/2oo composite pulse

is the result of the transient amplitude and phase errors between subpulses (without thermal

averaging, the effect appears more dramatic here than in the Doppler sensitive case shown

in Fig. 5-6).

Robustness to intensity gradients over the atom cloud may also prove useful for atom

interferometers operating in a dynamic environment. If a sensor accelerates transversely to

the Raman beam axis, the cloud could be interrogated in regions of the beam with higher

intensity gradients (e.g., in a Gaussian beam profile), leading to pulse length errors and,

consequently, reduced contrast. In principle, composite Raman pulses would mitigate the

impact of these effects on sensor performance.

In summary, the 7/2 0o - ro18 0 0 - 37r/2 0 o composite pulse demonstrated superior trans-

fer efficiency and robustness to atom temperature and a non-uniform Raman beam. It is

possible that in other implementations the r/20o - 79oo - 7T/2oo composite pulse may per-
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Figure 5-7: Detuning profiles of Doppler insensitive composite Raman pulses (Qeff 20
kHz). The maximum transfer of the composite pulses is 97%, compared to 91% for a iF pulse,
demonstrating that the composite pulses are less sensitive to Raman beam non-uniformities.
The asymmetry in the profile of the w/2 0o - 9goo - 7/2oo is a result of amplitude and phase
errors occurring between subpulses.

form comparably well, but it has been shown here that the former composite pulse has clear

advantages in both theory and practice.

5.3 Large Area Atom Interferometry with Composite

Raman Pulses

As motivated above, the enhanced transfer efficiency demonstrated by composite Raman

pulses enables larger momentum splitting in large area atom interferometers. Section 5.1

described how the area enclosed by atomic wavepackets in a r/2 - - w/2 interferometer can

be increased by inserting extra Raman pulses (Figs. 5-1, 5-2)2. After the initial beam splitter

pulse, each augmentation pulse adds 4hk of relative momentum between the interferometer

arms. Some consideration must be given to how the Raman laser frequency difference is to

be tuned during the sequence. The primary reason for this is that, while each subsequent

2In the case of a gravimeter, the atoms are split over a longer baseline, so more spatio-temporal area is
enclosed.



pulse flips the target internal state from |F = 4, mF = 0) to IF = 3, mF = 0) and vice versa,

the external momentum states of the wavepackets in each arm differ, resulting in differential

Doppler shifts (i.e., the Raman fields cannot be simultaneously resonant in both arms).

For instance, with an initial state of IF = 3, po), where the second quantity represents the

momentum state, the basis states for the beam splitter are |F = 3, po) and IF = 4, po+hkeff)

For the first augmentation pulse in which the Raman beam propagation direction is reversed

(-keff), the upper arm target state basis is |F = 4, po + hkeff) and |F = 3, po + 2hkeff). The

target states of the lower arm are IF = 3, po) and |F = 4, po - hkeff). Therefore, the Raman

resonance conditions differ by 4wr, where w is the Doppler shift from two photon recoils

(wr/2r-~ 8.27 kHz for the cesium D2 transition). By the same argument, the resonance

conditions for the second augmentation pulse can be shown to differ by 8wr. The separation

continues to increase by 4Wr with each additional augmentation pulse in the beam splitter

sequence. Here, the large bandwidth of composite Raman pulses is a useful resource, since

it can accommodate larger splittings for a given laser power.

To analyze large area interferometer phase shifts, wavepacket amplitudes were calculated

by the model described in Appendix B (based on the diagrammatic method described in

Stoner et al. [60]), assuming a constant Rabi frequency and neglecting spontaneous emission.

In the short pulse limit (t,/T < 1), the phase shift due to a uniform acceleration a in an

N = 1 interferometer is A# = 3keff aT2 - 4kegfaTT, where T is the dwell time between the

first and middle pulse and T is the time between augmentation pulses. The second phase

term oc TT results from the momentum transfer occurring over time NT. This expression

agrees with the phase shift calculated in [45]. Table 5.1 lists the phase shifts for several

interferometers with higher N. The model also confirmed that for arbitrary N, the phase shift

introduced by a constant acceleration is canceled by chirping the laser frequency difference

at a constant rate, &a = keff -a (recall that this is a desirable mode for operating a sensor

with the standard three-pulse interferometer as well). For an N = 1 interferometer with 7

pulses as augmentation pulses, the model predicts a maximum contrast of

Cmax = ( eff sin ( r (5.1)
(Qf + 16bm2) 2  2 Qeff

A typical Rabi frequency of 50 kHz gives Cmax = 40%, meaning that the maximum
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Table 5.1: Large area atom interferometer phase shifts induced by a constant acceleration a.
N AOq5
1 3keff aT2 - 4keffaTw
2 5keff aT 2 - 12keffaTT
3 7keff aT 2 - 24keffaTT
4 9keffaT 2 - 40keffaTT

phase SNR improvement over the three-pulse interferometer is only ~20%. By contrast, an

N = 1 and N = 2 interferometer with 7r/2oo - ris0 o - 37/2oo composite pulses could achieve

a maximum contrast of >98% for the same Rabi frequency. Even after accounting for the

greater losses due to spontaneous emission over the increased pulse area, a large gain in

sensitivity is still possible without increasing the laser detuning.

5.3.1 Experiment

With standard i pulses as augmentation pulses, interference was observed for N = 1 and

N = 2 interferometers, with 29% and 10% contrast, respectively. To improve contrast, the

augmentation 7 pulses were replaced with 7/2oo - isoo -37/2 0. composite pulses, leaving the

mirror pulse as a 7 pulse since the Doppler shift in the upper and lower interferometer arms

is equal. To minimize spontaneous emission, the Raman laser detuning was set to A = +3.5

GHz from the F = 4 - F' = 5 transition. At this detuning, 0.3% of the atoms spontaneously

decay for each i pulse duration. At this rate, spontaneous emission made a relatively small

contribution to loss of contrast. With composite Raman pulses, large area interferometer

fringes were visible up to N = 4, corresponding to a momentum splitting of 18hk and factor

of nine increase in signal. Fig. 5-8 shows the contrast achieved for N = 1-4 with and without

composite pulses. The ir/2 0o - 79oo - 7/2oo composite pulse did not consistently improve the

contrast of large area interferometers. This result is likely implementation-specific, due to the

observed composite pulse defects discussed above; nevertheless, this result again highlights

the superior intrinsic robustness of the r/2 0o - risoo - 37r/20o composite pulse.

To verify that the observed interference was produced by large area interferometers,

the interferometer phase was measured as a function of the chirp rate of the Raman laser

frequency difference, oL = (1 - W2), providing a measure of the acceleration scale factor

(see Section 2.2.2 for relevant theoretical discussion). It is important to note that the laser
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Figure 5-8: Interferometer contrast versus N for large area atom interferometers using 7r or
7r/20- risoo - 37r/2 0o composite pulses as the augmentation pulses. The factor of enhance-
ment in intrinsic sensitivity is plotted for large area interferometers using composite pulses
(points represented by open diamonds).

phase of a large area interferometer is not changed, to first order, by substituting the wr/2 0o -

71800 - 37r/20o composite pulse in place of 7r pulses. The net phase of the composite pulse is

equal to the phase applied during the first subpulse. Fig. 5-9 and Fig. 5-10 show interference

fringes of 6hk, 10hk, 14hk, and 18hk (N = 1 - 4) interferometers. The 18hk interferometer

phase as a function of aL is plotted separately in Fig. 5-11. Theoretical curves with the

theoretical scale factor (ratio of interferometer phase to aL) are included, with only amplitude

and arbitrary phase offset as free parameters. All four cases show good agreement with the

theory.

Based on the measured contrast, the intrinsic sensitivity of the large area interferometers

is inferred as the ratio of the increase in the inertial phase shift (over the three-pulse inter-

ferometer) to the factor of contrast loss. This figure of merit describes the gain in sensitivity

assuming other sources of noise remain constant. Fig. 5-8 shows the factor by which each

large area interferometer enhances the intrinsic sensitivity over the three-pulse interferom-

eter. Currently, the maximum enhancement is approximately a factor of two, realized by

the 6hk (N = 1) interferometer, with lower improvements by the N = 2, 3 interferometers.

The N = 4 interferometer does not currently improve sensitivity. Interestingly, similar gains
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Figure 5-9: Interference fringes for 6hk, 10hk, and 14hk (N 1 - 3), using 7r/2oo - risoo -

37r/2 0. composite pulses as augmentation pulses, with 2T 2.5 ms and T= 40 p-s (each

point represents an average of four shots). The fringes were scanned by varying the chirp

rate of the Raman laser frequency difference (aL) about the linearly-increasing Doppler shift

induced by gravity (ag). The theoretical curves use only amplitude and arbitrary phase
offset as free parameters.
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Figure 5-10: Interference fringes of an 18hk (N = 4)
37r/2 0o composite pulses, with 2T = 2 ms and T = 40
of four shots.

5 10 15

interferometer using 7r/2oo - 7ioo-
ps. Each point represents an average
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Figure 5-11: Scale factor of the 18hk (N = 4) interferometer with 7r/2 0o - 7 1 0o - 37r/20o
composite pulses (2T = 2 ms and T = 40 ps), compared to the scale factor of a 2hk
interferometer with the same interrogation time. Each point was calculated from a least-
squares fit of four interferograms. The theoretical lines use only an arbitrary phase offset as
a free parameter.

in intrinsic sensitivity were also achieved when using atom samples at 1K temperatures (no

velocity selection after the MOT). This result underscores the advantages provided by com-

posite Raman pulses for sensors operating at high repetition rates, at which velocity selection

may be precluded by short MOT loading periods.

Several aspects of the experimental apparatus limit the realized gains in sensitivity with

large area interferometers. First, extended light pulse sequences are more susceptible to

phase shifts from Raman beam phase front distortions. In the presence of these distortions,

the transverse motion of an atom imprints a spatially-varying phase at each pulse. If the

atom were motionless, the local offset in phase would be common mode. Since the Raman

beam is retroreflected, only the vacuum cell window above the atoms, a quarter waveplate,

and the retroreflecting mirror introduce phase front errors. Nevertheless, the vacuum cell

windows are only rated to A/10 flatness. Since the total phase error is proportional to the

number of pulses, an 18hk (N = 4) interferometer with 19 pulses creates a spatial phase

distribution of nearly 27 (of course, each atom samples only a small fraction of the beam).

Secondly, large area interferometers are more susceptible to vibrations, which also intro-

duces phase noise proportional to the number of light pulses. As discussed in Chapter 4, the
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retroreflecting mirror that serves as the inertial reference is not actively stabilized, and ex-

periences high frequency vibrations from the laboratory environment. Finally, imperfections

in the composite pulses degrade their transfer efficiency. Small improvements in transfer

efficiency would result in large gains in contrast, scaling as ~ (4N, where ( is the transfer

efficiency.

Systematic phase shifts induced by AC Stark shifts in large area interferometers were also

measured to diagnose whether or not large area atom interferometers were more sensitive

to AC Stark shifts. The magnitude of these shifts were observed to be similar in large area

interferometers and the three-pulse interferometer (variation of - 0.01 rad for differential

AC Stark shifts of ~0.1eff); i.e., the insertion of extra pulses did not appear to significantly

increase the sensitivity of the interferometer to Stark shifts.

5.4 Summary and Improvements

Composite Raman pulses were demonstrated to improve transfer efficiency over that of a

single 7r pulse because of their insensitivity to atom temperature and the Raman beam

intensity distribution. The broadband population inversion realized by these pulses enabled

large area atom interferometry with Raman transitions, with momentum splittings up to

18hk. This is the largest reported momentum transfer for an inertially-sensitive Raman

pulse atom interferometer. An 18hk interferometer increases the inertial phase shift by a

factor of approximately nine, without increasing interrogation time. This work is also the

first reported demonstration of optical composite pulse techniques in an inertially-sensitive

atom interferometer. Raman atom optics offer the advantage of permitting hotter atoms than

other LMT atom optics (e.g., multi-photon Bragg transitions), which could allow for rapid

interrogation. Additionally, composite Raman pulses that are robust to Raman beam non-

uniformity may prove beneficial in dynamic applications, in which the ensemble of atoms is

not guaranteed to remain in the beam center throughout the interrogation. Atoms displaced

transversely in a Gaussian beam experience a broader distribution of laser power across

the ensemble, due to the larger local intensity gradient. Importantly, these advantages are

technologically favorable for inertial sensors demanding high repetition rates and robust

operation in dynamic environments.
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In the current implementation, the N = 1 - 3 interferometers achieve a net gain in in-

trinsic sensitivity, with a maximum gain by a factor of two. The N = 4 interferometer loses

contrast by a factor larger than the increase in the inertial phase shift, and so is not useful for

a sensor. Currently, however, the contrasts achieved with large area interferometers are far

from theoretical limits. Interferometer contrast is primarily limited in this apparatus by de-

fects in the implementation of composite Raman pulses, high frequency platform vibrations,

and the phase front quality of the optics. With realistic improvements to the Raman beam

optics and RF electronics, higher contrasts should be possible, enabling yet larger gains in

the realized sensitivity. Ultimately, for a given laser power, the performance of large area

interferometers are limited by differential Doppler shifts, and increasing decoherence from

spontaneous emission as the pulse area grows with N. Of course, spontaneous emission rates

could be reduced by using higher laser power and laser detuning, which would also accommo-

date larger differential Doppler shifts. With a Rabi frequency of ~100 kHz, a useful N = 4

or larger interferometer should be feasible, though a lower N interferometer might still yield

higher sensitivity in practice. In the future, more advanced composite pulse sequences with

temporal intensity or frequency shaping could improve upon the robustness offered by the

simple composite pulses in this work.
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Chapter 6

Coherent Population Trapping in

Raman Pulse Atom Interferometry

At present, most implementations of light pulse atom interferometers use stimulated Raman

transitions as atom optics. Both existing and future high precision measurements using atom

interferometry demand critical investigations of light-based error sources, such as higher or-

der light shifts [65]. Analyses of stimulated Raman transitions in the atom interferometry

literature commonly neglect the effects of spontaneous emission, or treat it solely as a source

of decoherence (e.g., [57] and the basic theory outlined in Chapter 2). As described in previ-

ous chapters, typical Raman atom optics use fields with GHz-scale single-photon detunings,

so that spontaneous emission produces a minor or negligible source of decoherence. An

additional consequence of spontaneous emission, however, is coherent population trapping

(CPT), or the coherent transfer of atomic population to a decoupled (dark) superposition

state.

CPT has been extensively analyzed and observed experimentally in three-level (A) atomic

systems where Raman resonances are excited by bichromatic laser fields [95-97]. Since the

discovery of the effect, it has been exploited for precision measurement applications including

chip-scale atomic clocks [98] and atomic magnetometry [99], in which narrow RF resonances

are achieved in steady-state laser operation. However, the possible impact of CPT in atom

interferometry with stimulated Raman transitions has not been discussed in the literature.

This chapter addresses the effect of transient CPT on Raman pulse atom interferometers, and
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it is argued that interferometer phase shifts of multiple milliradians in amplitude have likely

been produced in previous precision measurements. While the claimed accuracies in past

work were not significantly affected by neglecting this source of bias, due to the large phase

shifts being measured with long interrogation times, the characterization of such systematic

effects is critical for high precision inertial sensing. For instance, a 1 mrad bias for a T = 1

ms accelerometer amounts to an acceleration error of ~ 7 pg.

The chapter begins with a basic description of coherent population trapping, and then

presents an elementary density matrix theory for calculating Raman pulse output state pop-

ulations and coherences. It is shown that, by including spontaneous emission, the analytical

model predicts CPT effects. To complement the theory, experimental measurements are

presented of dark state coherences and population differences induced in cold cesium atoms

by Raman pulses. Finally, a simple argument is proposed that Raman pulse-induced dark

state coherences shift the phase of a r/2 - 7 - r/2 interferometer. This discussion also

suggests a method for suppressing the error.1

6.1 Background

Coherent population trapping is a quantum mechanical effect involving interference between

transitions in a multi-level atom. The simplest example is the irradiation of a three-level A

atom by two phase-coherent laser fields, whose frequency difference is close to the ground

state splitting (we -og), as shown in Fig. 6-1. For the case of large single-photon detuning A

from the optical transitions, this interrogation is of obvious relevance to atom interferometry

with stimulated Raman transitions. Initially, however, consider the case in which both fields

are optically resonant and satisfy the Raman resonance condition. One finds in experiment

that, despite the presence of two fields coupling to strong optical transitions, the fluorescence

of the atoms is dramatically suppressed around Raman resonance. The laser fields have

pumped the atoms into a non-absorbing state that is a superposition of the two ground

states. Figure 6-2 shows the steady-state excited state population as a function of the

Raman detuning, in which the trapping of population in this coherent dark state is evident.

'This chapter is based on Butts et al., "Coherent Population Trapping in Raman-Pulse Atom Interfer-
ometry,"' Physical Review A 84, 043613 (2011) [62].
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Figure 6-1: Diagram of the three-level (A) atom and laser fields considered in Section 6.2.
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Figure 6-2: Steady-state excited state population as a function of Raman detuning, assuming
typical parameters for an alkali atom and two laser fields with equal intensity. F is the
natural linewidth. The lineshape exhibits a narrow resonance induced by coherent population
trapping.

Interestingly, if one constructs the Hamiltonian for the atom and the two laser fields and

finds the energy eigenstates, two of the resulting eigenstates are

C)- Q1 g) +Q 2 1e)

f2 ) -2 2ie

INC)= Q2 1g) - Q1e) (6.1)

where Qj is the Rabi frequency associated with the field j (ignoring cross-coupling), and

the states |C) and INC) denote ground state superposition states that are coupled and

uncoupled, respectively, from the optical fields. These states are commonly referred to as

"bright" and "dark" states. The probability amplitudes for the two transitions interfere

destructively, and population accumulates in the dark state, from which the atom cannot be

excited. As mentioned above, this phenomenon has been theoretically and experimentally

investigated, as well as employed in precision measurements [100]. Previous work, however,

has focused on steady-state CPT with near-resonant optical fields. In this chapter, the

impact of transient CPT effects is investigated in the novel context of Raman pulse atom

interferometry, with GHz-scale single-photon detunings.
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6.2 Raman Pulse Theory including Spontaneous Emis-

sion

Stimulated Raman transitions have been previously described in atom interferometry using

Schr6dinger formalism [57,60,70], in which spontaneous emission effects were not considered.

The basic theory outlined in Chapter 2 uses such an approach. For typical ~GHz detuned

fields, spontaneous emission during Raman pulses causes minimal decoherence. However, it

will be shown that the occurrence of spontaneous emission also results in the formation of

dark state coherences, even in the large detuning regime of relevance to Raman pulse atom

interferometry.

This section summarizes a three-state density matrix theory for Raman pulse physics

that motivates and qualitatively describes the experimental results. While this model only

approximately treats the more complex structure of a real atom, it captures the essential

physics and permits an analytic solution. The theory includes spontaneous emission in

a three-level (A) atom, depicted in Fig. 6-1. Prior to exhibiting solutions, the problem is

recast in terms of a pseudospin vector polarization on a Bloch sphere, similar to the approach

outlined in Section 2.1.1. It is also seen that in addition to "torquing" the initial polarization

state in a fashion exactly analogous to RF spin resonance in nuclear magnetic resonance, the

Raman pulse also induces a dark state polarization.

Consider an atom with two closely-spaced ground states, lg) and le), and a single excited

state li) (Fig. 6-1). Ground state 1g) (le)) is coupled by electric field E1 (E2 ) to Ii). The

analysis is placed in a reference frame co-moving with the atom in 1g), and therefore the

frequencies of the applied fields depend on the motional state of the atom. The fields E1 ,

E2 are defined as2

E1= 8 cos [#1(t) + #0] (6.2)

E2 = 82E2 cos [#2 (t) + #2] (6.3)

with #51 (t) = f, [wi(t') - ki -62s(t)]dt', 02(t) = f [2(t') - 2 hke/m k2 szz(t)]dt', po-

larization vectors 6, amplitudes Ej, time-dependent frequencies wj, wavevectors kj, effective

2The notation used in this chapter differs slightly from the notation in Chapter 2, but should be clear in
given definitions.
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wavevector keff = k - k2, and phases #0 for field Ej. The two wavevectors are assumed

to be either parallel or anti-parallel to each other, with both aligned along Bz, so that the

derivation accounts for both co-propagating (Doppler insensitive) and counter-propagating

(Doppler sensitive) cases. The two-photon recoil velocity hkeff/m is included in the velocity

of an atom in state le), which couples to E2; the Doppler shift of E 2 thus contains a recoil

contribution. The optical phases are defined with time-dependent frequencies to address the

interrogation of atoms accelerating relative to the Raman beams, which is applicable to the

gravimeter configuration in the experiments. The choice of reference frame here is different

from the canonical laboratory frame approach described in Chapter 2, and the resulting

equations of motion have a slightly different appearance (of course, interferometer phase

shifts can be derived by either framework).

The energy origin for the atom is chosen to be the midpoint between the ground state

energies hwe and hog, as shown by Fig. 6-1. The laser detuning A from the optical res-

onances, as well as the Raman detuning 6 between the laser frequency difference and the

ground state energy level splitting, are indicated in Fig. 6-1. These detunings are defined

here as

6(t) [wi(t) - W2 (t)] - (We - Wg) ± hk- - h(k - k2) + keff - i(t) z (6.4)
I ~2m 2mn

Wi (t) + W2 (t) 1 (hk 2 f h 2
A 2 - k ) - (ki + ke (6.5)2 1 2 2m 2m

The total Hamiltonian, including both internal (diagonal elements) and atom-field interac-

tion (off-diagonal elements) Hamiltonians, is

We - ] 2e i2(t)
h = * Oe '02t) 2wi Qle--oent) (6.6)

0 1eie(t) -(We - Wg)

where Qj Q= | ele30 is the complex Rabi frequency associated with the coupling for field Ej.

The time dependence of the Hamiltonian can be factored out using a unitary transformation
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defined by

Uint = exp -Pe - + exp { 6 [P(we - g) +

+ exp -i i (A + wi)]

where Pe, Pi, P are the Hilbert space projection operators onto states le), 1i),

respectively. In terms of Eq. (6.6), the Hamiltonian can be written as

'(we - Wg) IQ2

Q2 mi - o(we + Wg)

0 1 2

0
1 1

- we g) J

The density matrix p for the three-level system is

Pee Pei
P Pie Ph

Pge Pgi

peg
Pig

Pgg

(6.9)

The time rate of change of the density matrix due to spontaneous emission is

F r 0I pii pe 0

PSE - Pie -FPii -

0 - 2 ~Pgi 2 Pi

(6-10)

where F is the average rate of spontaneous decay from the excited state [101]. For simplicity,

this decay rate matrix assumes a closed system in which excited state decay is restricted

to the two ground states with equal branching ratios, and neglects any decay of the ground

state coherences. The equation of motion for the density matrix is

dp 1
dt -( p] + sE (6-11)

This equation is then transformed to the interaction picture using Uint and by representing
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and |g),

H = h[int ai'nt (6.8)

S[(we - og) + 6(t)]



the interaction picture density matrix Rint as

Pee rei reg
R = ie pii rig = TintpUint

ge Fgi Pgg J
(6.12)

The equations governing the ground-excited state coherences rei and ri can be simplified,

first by noting that for typical experimental conditions l6(t)| < |AI. Adiabatic elimination,

wherein a large rate is taken to dominate time evolution, permits an approximate solution

for the ground-excited state coherences:

Pee 0
d d
di Rint dt 0 piidt dt

rge 0

reg

0

Pgg

(6.13)

It can then be shown, from the approximate equation of motion for Rint, that

QIreg - Q 2 (Pi1 - Pee)
rei =- i

2 A - z'F

rig Q* (pgg - Pii) + 2*reg
2A + iF

(6.14)

(6.15)

Substituting these relations back into the equation of motion, and making the additional

assumption that the excited state population pii < 1, reduces the original equation of motion

to an equation for populations Pee, pgg, and coherence reg. At this point, one can define

components for a pseudospin P(t) on a Bloch sphere (as before in Section 2.1.1):

P (t) = Tr Pee reg J o , = x, y, z
9L L 99Pg

(6.16)

where {oj} are the Pauli spin matrices. Thus,

P(t) = (t)
PZt )M

2Re[reg]

- 2Im[reg]

Pee - Pgg

(6.17)
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A similar transformation was used in [24], although spontaneous emission was not considered.

In a lengthy but elementary analysis, the pseudospin components from Eq. (6.17) are

substituted into the equation of motion for Riut and adiabatic elimination is applied as per

Eq. (6.13), assuming that pii < 1. The resulting vector equation of motion for P(t) is

dtd[P(t) - Pdark] Pt - Pdark] X 97 + Floss [P(t)

where, using notation similar to that of Chapter 2,

Qe,AC + Qg,AC

Fsource =

]Floss 2A '(Q,AC + Qg,AC)

|2

4A

6
AC Qe,AC - Qg,AC

= Q[cos O6 + sin O(cos #f + sin ##)]

Q_= / e| +e- )cosO -- nO = e

co0= , sm8

Q1Q*
Qeff 2A

|Q 1 \\Q 2 |e"i

2A

Eq. (6.18) is analogous to the dynamics for a classical magnetization subjected to a

magnetic field torque and decoherence, with a source of longitudinal magnetization. This

equation can be solved with the aid of a concise notation. Given a fixed vector a = aa, one

can define an exponentiated cross product operator acting on an arbitrary vector V as

exp (oa(& x))V = [cos(a)(1.) + sin(a)(& x) + (1 - cos a)&(&.)] V

= cos(a) V + sin(a) (6 x V) + (1 - cos a)& (6 -V) (6.20)

where 1 is the identity matrix. This exponentiated cross product operator acts to rotate
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j,AC-



V about & in the right-handed sense by an angle a. The expression in Eq. (6.20) can be

obtained by Taylor expansion and the application of cross product rules. It is simple to show

that the derivative of this operator is

d
exp [a( x)] = x exp [a(d x)) (6.21)

a

With the rotation operator, it can be shown that the solution to Eq. (6.18) for the time-

dependent pseudospin is

P(t) = exp [ (Q x) - ries1i) t] -P(0) (6.22)

+ exp [(Q( x ) - Fie1 s1) t] - 1 Park - [-Q (x) + Fiossi (Fsourceaz)

Note that Floss cannot vanish on physical grounds, so that the inverse in the final term of

Eq. (6.22) always exists. This solution represents the dynamics of the atomic pseudospin in

the rotating frame. As expected, the action of the Raman pulse on the initial polarization is

to rotate it about the Raman effective drive field, Q. There is also a slow loss of coherence

due to spontaneous emission. However, in addition to the torquing action on the initial

polarization, another polarization is induced, with an asymptotic value of

P(t -+ 00) = d -Park + [- Q x ) + Fioss1 - (sourcez) (6.23)

On resonance, this expression simplifies to P(t -+ oc) = -Park. Recalling the definition

for Pdark, note that for negative laser detunings (A < 0), the asymptotic polarization is

induced parallel to the effective drive field Q. The dark polarization is aptly named since

( X Pdark = 0, i.e., the optical fields do not couple to it.

As stated earlier, this simple three-level theory can only be expected to provide a quali-

tative description of Raman pulse physics in the real ground state hyperfine manifold of an

alkali atom. In this closed system, spontaneous decay must return atoms to one of the cou-

pled ground states. In an alkali atom, however, spontaneous emission can remove an atom

from further interaction via decay to an uncoupled ground state (e.g., any mF $ 0 level in the

ground state manifolds). The theory also neglects the effect of multiple excited states. Selec-
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tion rules permit two excited state sublevels to act as intermediaries for Raman transitions

in typical alkali atomic hyperfine structure. The coupling of the ground states to the two

intermediaries is comparable for the range of detunings considered here (F < A < we - Wg).

Therefore, one expects substantial deviations between the present theory and experiment.

Since no ground state superposition is be dark with respect to two possible intermediary

excited states, continued coupling to the field should result in decreasing magnitudes of in-

duced polarization at long pulse lengths. The theory, by contrast, predicts large asymptotic

polarizations, of magnitude approaching unity for excitation close to Raman resonance.

It is important to note that for off-resonant Raman pulses, the theory predicts that

a population difference between the ground states is induced in addition to a dark state

coherence (i.e., P, -# 0). In addition, the time evolution of the polarization, when scaled

by the pulse area Qt, is predicted to be independent of the effcctive Rabi frequency. The

approximations employed by the theory would not appear to compromise this prediction.

While a more accurate numerical simulation of a real atom is not included in this work,

such a study is certainly feasible, and constitutes an interesting step for future work. For

instance, such a simulation could address the potential for variation in the magnitude of the

effect in other atomic species (e.g., rubidium). In the next section, experimental tests of the

qualitative predictions of the theory are described.

6.3 Experiment

The approach of these experiments differs from previous CPT-related investigations in that

non-steady-state CPT effects were produced and detected with atom interferometry in a cold

atom ensemble, rather than the conventional approach in which pump and probe laser fields

induce and detect steady-state CPT effects in a vapor cell (e.g., [97]). The basic method

was to prepare a sample of cold cesium atoms in the |F = 3, mF = 0) ground state, apply

long Raman pulses in free space to induce CPT, and observe the resultant population and

coherences. As will be described in detail below, care was taken to discriminate against the

contribution of the initial polarization of the atoms.

CPT-induced population differences and coherences were observed to be induced by both

Doppler insensitive and Doppler sensitive Raman pulses. Use of Doppler insensitive Raman
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(a) (b) (c)
Figure 6-3: Bloch sphere representation of a two-pulse experiment for detecting coherently
trapped population induced by a velocity insensitive Raman pulse. (a) The first Raman
pulse rotates the initial polarization along -z about Q on the x axis. (b) At long first
pulse durations, the initial polarization of the ensemble is dispersed in the y - z plane by a
spatially-varying Rabi frequency. A polarization along the effective drive field (vector along
x) is induced by CPT. (c) After a brief dwell time, a 7r/2 pulse at a phase 900 (-90') relative
to the first pulse rotates the induced coherence onto z, where it is measured as a population
difference. The initial ensemble contributes no net polarization.

pulses afforded an expedient path to a first demonstration, because of the ease of implementa-

tion and the suppression of systematic effects due to atom temperature and laboratory vibra-

tions. However, inasmuch as Doppler insensitive Raman interferometers are used mostly as

an experimental diagnostic, Doppler insensitive CPT effects are of limited practical interest.

Doppler sensitive Raman pulses serve as atom optics in high precision atom interferometers,

so CPT effects induced by such pulses have implications for precision measurement results

obtained with Raman atom interferometry (e.g., [25,26]).

6.3.1 Doppler Insensitive Raman pulses

Experiments with Doppler insensitive Raman pulses probed the dependence of CPT effects

on Raman pulse duration, Raman detuning, Rabi frequency, and laser detuning. In addition

to providing an expedient demonstration of CPT effects, these measurements also provided

an estimate of the effect that could be expected to be produced by Doppler sensitive Raman

pulses.

To distinguish coherently trapped population from population remaining in bright states,

Raman pulses with duration greater than 10t, were applied to dephase the ensemble by the

spatial distribution of Rabi frequencies in the Raman beam. The resulting visibility of
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Figure 6-4: Dark state population observed with Doppler insensitive 757r - r/2 interferome-
ters at positive (filled circles: A = -1.25 GHz; open squares: A = +2.5 GHz. As predicted
by the theory in Section 6.2, CPT induces dark state polarizations at opposite phases for
positive/negative laser detunings.

Rabi oscillations of the initial polarization was less than 1% (in other words, (Pz) = 0 for

the ensemble-averaged pseudospin and the average transition probability was 50%). When

subjected immediately to population readout, the ensemble appeared completely dephased;

i.e., the population trapped in a dark superposition state had no P, component. However,

by subsequently applying a 7r/2 pulse, as depicted in Fig. 6-3, the coherence was rotated

into an observable population difference. An induced coherence parallel to the effective field

Q of the first pulse would then produce minimum (maximum) population transfer at ±900.

Interferograms obtained by varying the r/2 pulse phase (Fig. 6-4) indicate that the induced

coherence was parallel to the effective drive field for negative A and anti-parallel for positive

A, consistent with a CPT effect. Negative A data depicted in Fig. 6-4 are expressed in

terms of transition probability with peak-to-peak variation of about 23%. On the Bloch

sphere of Fig. 6-3, this corresponds to an induced polarization of magnitude 0.23 on a scale

where all atomic population exclusively in one ground state corresponds to a polarization of

magnitude unity.

Fig. 6-5 depicts the measured dark state population induced by resonant Raman pulses

for a range of pulse durations. Recalling that the theory predicts a trapped population

scaling with the pulse area, the pulse duration is scaled in units of t,. Similar curves were

obtained with Rabi frequencies over a range of 20-100 kHz, which is in accord with the

theory. For pulse areas less than 40ir, the trapped population increased linearly. Trapping
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Figure 6-5: Dark state population induced by resonant, Doppler insensitive Raman pulses

(A =-1.25 GHz).

appeared to saturate at 60 - 80 t,, and thereafter, losses due to spontaneous emission and

weak coupling out of the dark state dominated. A linear fit over the short pulse duration data

estimates that a ir pulse traps 1.5% of the population for A= -1.65 GHz (laser detunings

are referenced to the F =4 -9 F' =2 frequency). Direct measurements of CPT for Raman

pulses with pulse areas under 107r were not possible because of inadequate dephasing of the

initial ensemble. Nevertheless, as Fig. 6-6 shows, the phase of the observed coherences at

all longer pulse durations remained at the expected phase of A# = --w/2, an important

necessary condition for identification of the coherence as a CPT effect. Figure 6-7 shows

trapped population versus pulse duration curves for several laser detunings, from -1.25 GHz

to -3 GHz. Maximum trapping was observed at A ~-1.5 GHz. The theory in Section 6.2

predicts a constant asymptotic dark state polarization, independent of laser detuning, but

a trapping rate scaling as ~1/A. Figure 6-7 shows that induced polarizations over a 2x

variation in laser detuning are similar, reflecting only weak dependence on laser detuning

(one expects the slope of these curves at short pulse durations to exhibit the ~'- 1/A scaling).

This discrepancy with the theory is likely a result of more complex dynamics uncaptured

by the three-level model. Another possible contribution is the presence of other Raman-

resonant frequency pairs produced by phase modulation of the Raman laser. While the two

dominant frequencies (in terms of single-photon detuning) become farther detuned, other

pairs shift closer to single-photon resonance, and would also induce CPT.
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Figure 6-6: Phase of dark state coherences induced by Doppler insensitive Raman pulses. A
phase of -7/2 corresponds to induced polarization parallel to the effective drive field Q.
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Figure 6-7: Induced dark state population obtained with several Raman laser detunings. The
magnitude of trapped population is weakly dependent on Raman laser detuning, although
smaller detuning does appear to lead to a larger trapping rate.
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Lastly, measurements were made of population differences induced by off-resonant Raman

pulses. For the condition of non-zero Raman detuning, the effective drive field vector Q is

out of the plane, so that a dark state with a nonzero population difference results. In the

experiment, the initial sample of atoms was prepared in the |F = 3, mF = 0) level -)

and subsequently, a coherent superposition of the IF = 3, mF= 0) and |F 4, mF = 0)

levels was created with a Raman 7/2 pulse. After a brief dwell time, an off-resonant Raman

pulse dephased this initial coherence and induced a dark state polarization. Since the laser

frequency difference changed between the first and second pulse, the laser difference phase

for the second pulse was shifted such that the initial polarization was dispersed with an

average transition probability of 50% (i.e., (Ps) = 0). This phase offset was experimentally

determined for each chosen Raman detuning using a 7/2 - 7* interferometer (i* denotes

an off-resonant -F pulse) with the same dwell time between pulses. Fig. 6-8 illustrates

the concept of this diagnostic. Finally, the P component of the trapped population was

measured by reading out the transition probability and comparing to 50%. In order to

suppress systematic errors resulting from drifting Raman beam power, the Pz = 0 level in

the state detection was calibrated at every other measurement by applying a single resonant

15.5w pulse and measuring population transfer. It was also found that the precision of the 7/2

pulse length calibration was required to be within 1% in order to produce a symmetric profile.

This calibration was confirmed independently by comparing the phase shifts measured with

the 7/2 - w* interferometer at Raman detunings of equal magnitude but opposite sign. When

the observed phase shifts were equal but opposite in sign, the pulse length was correct.

Fig. 6-9 shows the induced population difference Pz for A = -1.25 GHz and a second pulse

duration of 40t,. This pulse duration was chosen because the induced polarization grows

linearly in this range, as shown above in Fig. 6-5. In agreement with the theory, the profile

is antisymmetric about the Raman resonance and the overall sign of Pz is opposite that of

the Raman detuning. Extrema were observed at 6 = ±Qeff, as predicted. For o < |Qefl,

the observed Pz dependence resembles the z-projection of a polarization aligned with the

effective drive field and with a magnitude equal to the polarization induced by a resonant

Raman pulse (0.19, or population ~ 9.5%, for a 407 pulse). Figure 6-9 also includes a

theoretical prediction from a simple extension of the theory presented above, which permits

spontaneous emission to uncoupled (mF # 0) ground states. An atom that decays to one
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Figure 6-8: Bloch sphere diagram of a r/2 - 7* sequence, used to calibrate the measurement
of CPT effects induced by off-resonant Raman pulses. After the initial polarization is placed
in the plane, a 7r pulse at the generalized (detuning-dependent) Rabi frequency rotates the
polarization back into the plane when the drive field is 900 out of phase. At this particular
phase, the drive field disperses the initial polarization in a disc so that the average population
difference is zero (as opposed to the case of a cone centered about the drive field vector).
However, dark state population accumulates along the drive field vector Q, and leads to a
population difference (see data in Fig. 6-9).
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Figure 6-9: Measurements of P of dark state population induced by off-resonant Raman
pulses. The dashed curve represents a theoretical prediction based on an extension of the
three state theory permitting spontaneous decay out of the two coupled ground states.

of these uncoupled states no longer experiences the effects of CPT, and does not contribute

to the observed population difference. The model assumed a probability of spontaneous

emission to uncoupled levels according to the dipole matrix elements for cesium. At larger

Raman detunings, observed CPT effects are smaller than predicted by the three level theory;

this discrepancy is expected since the theory does not account for the existence of multiple

intermediate states, which would affect the rate of population trapping. Nevertheless, these

measurements validate the prediction that CPT induces a polarization along the effective

drive field vector.

6.3.2 Doppler Sensitive Raman pulses

The detection of CPT effects with Doppler sensitive Raman pulses required a slightly different

method than that used with Doppler insensitive pulses. Fig. 6-10 provides a Bloch sphere

picture of the experiment. Initially, atoms were prepared in the IF = 3, mF state,

and subsequently a equal superposition was created by a microwave 7/2 pulse. Since the

wavelength of the microwave transition (~ 3.3 cm) is large compared to the cloud size

(~ 1 mm), all of the atoms experience a similar phase. After a brief dwell time, a long,

resonant Doppler sensitive Raman pulse dispersed the ensemble and induced CPT. The

atoms experience a distribution of Raman phases because of their initial spread in position
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Figure 6-10: Bloch sphere diagram of the pulse sequence for measuring CPT effects induced
by Doppler sensitive Raman pulses. First, a microwave pulse creates an equal superposition
with approximately the same phase for all atoms (the microwave wavelength is >10 x the
cloud size). A Doppler sensitive Raman pulse then disperses the initial ensemble because an
effectively random phase is seen by each atom (the effective wavelength is only 426 nm). A
dark state coherence is formed at the Raman laser phase, and is read out by a 7r/2 pulse.

over many effective wavelengths (2F/Ikeff ~ 426 nm), thoroughly scrambling the phase of the

initial coherence with respect to the position-dependent Raman effective drive field Q. After

a very short dwell time (typically 1-2 ps), a Raman 7r/2 pulse at variable phase projected

the induced polarization onto the z-axis.

Fig. 6-11 shows the profile of dark state population versus pulse duration, for a laser

detuning of A = -1.25 GHz and a Rabi frequency of 80 kHz. These data resemble the

measurements of dark state population for varying Raman pulse duration in the analogous

Doppler insensitive experiment (compare with Fig. 6-5). Again, the effect appears to satu-

rate between 60 - 80t, and decays at longer pulse durations. While the magnitude of the

dark state population appears smaller than what was measured with Doppler insensitive

beams, these measurements underestimate the trapped population because the interferome-

ter is only partially overlapping, and consequently exhibits poorer phase contrast (which is

the measure for the trapped population). To compensate for this inefficiency, the contrast

of a Doppler sensitive 7/2 - 7r/2 interferometer was measured for a range of dwell times.

Figure 6-12 shows that less than 30% contrast was obtainable for a ~7 PK cloud. With

velocity selection, however, interrogating atoms with a temperature of ~400 nK produced

greater than 55% contrast for the same dwell times (shown by the upper curve in Fig. 6-12).

In both cases, adjusting the measured dark state population by the two pulse interferometer
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Figure 6-11: Dark state population induced by Doppler sensitive Raman pulses. These values
have not been adjusted to compensate for the reduced contrast of the interferometer.

visibility leads to an estimated maximum induced dark state coherence of magnitude 0.18

(9% population), somewhat smaller than the maximum value observed with Doppler insensi-

tive Raman pulses. One also expects to detect less population trapping by Doppler sensitive

Raman pulses because of the Doppler broadening of the resonance, which leads to a spread

in the effective drive fields across the ensemble. Based on the slope at short pulse durations,

one can infer an induced dark state coherence of magnitude 0.0074 (population of 0.37%)

for a 7r pulse. These numerical results are, to some degree, implementation-specific, and

that systems with different Raman beam parameters (e.g., phase front quality) or Raman

frequency generation methods (e.g., a phase-locked pair of lasers) could observe different

dark state populations.

6.3.3 Impact of CPT on a r/2 - 7r- -r/2 Interferometer, Summary

Consider a simple estimate of the impact of an induced dark state coherence on a Doppler

sensitive 7r/2 - r - r/2 interferometer, which is the most common sequence for acceleration

and rotation rate measurements (see Fig. 6-13 for an illustration of this argument). The

first Raman pulse induces a small coherence 90' out of phase with the primary coherence

created by tipping the initial polarization into the x - y plane. The induced coherence

is orthogonal to the primary coherence, and effectively shifts the net phase by the ratio

of the induced coherence magnitude to that of the primary coherence. The second pulse
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Figure 6-12: Contrast achieved with a Doppler sensitive, non-overlapping ir/2 -- i/2 in-

terferometer with (circles) and without (diamonds) velocity selection. The contrast of this

non-overlapping interferometer indicates the efficiency with which it is possible to measure
dark state population induced by Doppler sensitive Raman pulses. Velocity selection clearly
suppresses decoherence due to cloud diffusion.

again transfers population to a dark state; however, each atom in the ensemble experiences a

different effective drive field phase because of the thermal velocity distribution. The ensemble

average of the phase shift induced by the second Raman pulse is then zero. The third pulse

also induces a coherence, but for near-resonant Raman pulses it does not affect the final state

population since the induced polarization is in the x - y plane. Thus, one expects a net

phase shift due to population trapped by the first Raman pulse only. Since the experimental

results have shown that the magnitude of CPT-induced polarization is roughly independent

of Rabi frequency, they can provide an estimate of the phase shift introduced by CPT in an

interferometer with cesium. The results in Section 6.3.2 exhibited coherences of magnitude

0.0074 per Doppler sensitive ir pulse. Correspondingly, one can infer that a xr/2 - - ir/2

interferometer should register a phase shift of A4q~ 0.0074/2 ~3.7 mrad phase shift.

In a previous high precision cesium gravimeter [25, 26], this phase shift corresponded to a

gravity offset of ~ 1 ng. An error of this magnitude is four times smaller than the claimed

experimental error, so a CPT-induced error of the estimated size would not significantly affect

their results. In the gravity measurement of this thesis, however, a much smaller inertial

phase shift was measured, due to the use of shorter interrogation times. Nevertheless, a

systematic phase shift of this magnitude is still not a dominant source of error (in Section
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Figure 6-13: Bloch sphere diagram of systematic phase shift, 6#, induced by CPT in a
7r/2 - 7r- r/2 interferometer. The first pulse induces a dark state polarization along the
drive field vector, shifting the phase of the initial coherence. The second pulse also creates
a dark state polarization, but the average contribution is zero over the ensemble because
of the velocity-dependent phase. At the third pulse, the dark state polarization induced by
the first pulse can be rotated to form a population difference and therefore register a phase
shift. Dark state population trapped by the third pulse (on resonance) does not lead to a
population difference.

4.4, AC Stark shifts are cited as the largest source of systematic error). Finally, since the

effect is only weakly dependent on Rabi frequency and laser detuning, a Raman beam with

well-controlled parameters should produce a stable phase shift, so that the principal effect

would likely pertain more to accuracy than stability. For a frequency-stabilized Raman laser,

the effect should be stable at the - prad level.

While it would be preferable to directly measure an interferometer phase shift induced by

CPT, the current apparatus lacks sufficient stability to resolve this phase offset. In principle,

the phase shift could be measured by alternately running (±7r/2) - 7r - 7r/2 interferometers

and comparing their phases. A deviation of the relative phase from 7r would be ascribed to

a CPT-induced shift.

It is worth noting that a CPT-induced interferometer phase shift would be independent of

the Raman beam wavevector keff. Therefore, the method of propagation direction reversal, in

which the sign of keff is alternated from shot to shot, should suppress the resulting bias with

averaged measurements because the keff-proportional contribution to the signal reverses sign

while the CPT interferometer phase shift does not. This method has been used in previous

work to suppress phase shifts from AC Stark shifts [34,102].
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The impact of CPT has been discussed in the context of an inertially sensitive 1r/2 -

-F - 7r/2 interferometer, but other Raman interferometers should also experience phase shifts

arising from this effect. A simple example is a Doppler insensitive Raman -r/2 - r/2 clock

measurement, in which the first pulse would induce a dark state coherence and offset the

phase read out by the second pulse. Moreover, the phase shift due to a detuning in this

interferometer is independent of keff, thereby precluding the use of propagation direction

reversal to suppress the bias.
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Chapter 7

Conclusion

An atom interferometer based on stimulated Raman transitions has been developed for

gravimetry using a compact vacuum cell. This work makes progress toward the realization

of rapid interrogation atom interferometric inertial sensors for practical inertial navigation

applications. High contrast, inertially-sensitive interferometry was demonstrated for inter-

rogation times of 2T < 15 ms, achieving an inferred acceleration sensitivity of 2 pg/ Hz at

2T = 10 ms (from measured phase SNR, scale factor, and repetition rate). This interferom-

eter was used to measure gravity, and was primarily limited in precision by high frequency

vibrations in the laboratory. These interrogation times reflect those expected to be used in

practical inertial sensors in dynamic applications.

An improved method for large momentum transfer by sequential Raman pulses was

demonstrated using composite Raman pulses. A composite pulse sequence, -r/20o - risoo -

37r/20o, was identified for efficient, broadband population inversion; with this composite

pulse, a large area atom interferometer with a relative momentum splitting of up to 9hkff

18hk (a 9x increase in signal) was modeled and demonstrated. This is the largest mo-

mentum transfer reported for an inertially-sensitive atom interferometer based on Raman

transitions. Intrinsic sensitivity was enhanced by up to a factor of two, but was limited

by defects in the implementation of the composite pulses and the Raman beam phase front

quality.

Finally, coherent population trapping (CPT) was identified as a significant systematic

effect in Raman pulse atom interferometers, and which was not considered in previous work.
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CPT effects were modeled in a three-level atom to provide qualitative predictions for exper-

iments. Experimental measurements resolved dark state coherences and population differ-

ences induced by transient CPT effects in both Doppler insensitive and Doppler sensitive

Raman pulses. These experiments detected transient CPT effects in cold atoms using atom

interferometry, whereas previous work focused on steady-state effects. For inertially-sensitive

atom interferometers, milliradian-scale systematic phase shifts due to CPT effects could be

suppressed in operation by averaging measurements with opposite Raman beam propagation

directions (±keff).

7.1 Future Steps

As previously mentioned, the measured gravimeter sensitivity of the apparatus is currently

limited by vibrations in the laboratory, primarily from floor vibrations and acoustic noise

from environmental control systems. Improved stabilization of the Raman beam retroreflec-

tor should suppress the effect of these vibrations, but better assessment of intrinsic perfor-

mance characteristics will likely require a more stable environment (e.g., a pier). Another

solution would be to install a second MOT and interrogate both ensembles simultaneously,

providing a differential acceleration measurement in which the vibrations are common mode.

Once vibrational noise is suppressed, the system will be limited by detection SNR. The cur-

rent readout SNR is far below the shot noise limit for even the velocity-selected ensembles

of 106 atoms (SNR limited to 1000). An improved readout that simultaneously imaged both

ground state populations would reduce the impact of frequency and amplitude fluctuations

of the probe beam. Increasing the experimental repetition rate will also improve the accel-

eration sensitivity, bandwidth, and dynamic range of the system. This entails increasing the

loading rate of the MOT, perhaps by installing a 2D MOT in a differentially-pumped, higher

pressure vapor cell. This may not be necessary, however, as a recent demonstration of a sim-

ilar cold atom gravimeter with repetition rates of over 300 Hz solely relied on recapturing

atoms from the previous measurement to reduce the loading time [103].

Improvements can also be made to the implementation of large area atom interferometry

with composite Raman pulses. As noted above, the maximum achievable momentum split-

ting was limited by Raman beam phase front quality and defects in the composite pulses.
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These issues could be mitigated with higher quality optics, as well as improvements to the

microwave frequency electronics. Together with realistic improvements to the repetition rate,

readout SNR, and large area interferometers, the sensitivity of the system could be improved

by over an order of magnitude (<1 pg/ /Hz).

It may also be technologically advantageous to use rubidium rather than cesium, since

the 780 nm cooling transition can be generated by frequency-doubling 1560 nm, availing

robust, fiber-based telecom electro-optic and laser components [104]. Finally, significant work

remains in developing vacuum cells and low or zero power vacuum pumps that can preserve

ultra-high vacuum for long lifetimes (many applications demand lifetimes of multiple years).

The principal challenge here is minimization of helium diffusion in the cell, which can only

be pumped efficiently by ion pumps.

Significant engineering remains in developing high precision atom interferometric inertial

sensors that meet the bandwidth, dynamic range, and size, weight, and power requirements

of inertial navigation systems. One major thrust for future work involves the integration

of multiple atomic sensors to provide a full inertial base (three accelerometers and three

gyroscopes). In addition to the challenge of interrogating multiple atom clouds simultane-

ously, engineering must carefully address how inertial information is to be extracted from

the set of interferometer phases, while optimizing the noise statistics. Together with matu-

ration of cold atom sensor technology, development of complete-atom interferometric inertial

measurements units may yet revolutionize a broad range of navigation applications.
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Appendix A

Cesium D2 Transition Data

Quantity Symbol Value
Atomic number Z 55
Atomic mass m 2.206 946 57(11) x 10-25 kg
Nuclear spin I 7/2
Transition frequency WO 2-Fx 351.725 718 50(11) THz
Wavelength (vacuum) A 852.347 275 82(27) nm
Lifetime T 30.405(77) ns
Natural linewidth F 2-rx 5.234(13) MHz
Oscillator strength f 0.7164(25)
Saturation intensity 'sat 1.1049(20) mW/cm2

Doppler temperature 125.61 pK
Recoil temperature T, 198.34 nK
Recoil velocity Vr 3.5225 mm/s
Two-photon recoil Doppler shift 2-Fx 8.2653 kHz
Hyperfine splitting frequency L 2HF 9.192 531 770 GHz (exact)

Table A.1: Relevant constants of 'Cs and the D2 (6 2 S1/ 2 - 6 2 P3/ 2 ) transition [105].
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Appendix B

Modeling of Large Area Atom

Interferometry

In Chapter 5, composite Raman pulses and large area atom interferometers were studied

with an analytical model. This chapter summarizes the method for calculating probability

amplitudes in multi-pulse sequences. The model is capable of:

* Calculating the phase and contrast for Doppler insensitive and Doppler sensitive in-

terferometers

" Analyzing arbitrary pulse sequences, including sequences with alternating keff and

composite Raman pulses

" Accounting for finite pulse duration in interferometer phase

" Estimating errors due to power or detuning offsets

The central element of the model is an operator that propagates probability amplitudes

through a sequence of Raman pulses, including phases accrued in the periods between pulses.

Analysis in [60] derives output probability amplitudes for a Raman pulse, and presents a

diagrammatic technique for analyzing interferometer outputs. A Raman pulse, denoted by

an operator Rj for the jth pulse, acts on an atom initially in either of the two ground state
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Figure B-1: Diagrammatic representation of the Raman pulse operator acting an initial state
purely in the lower ground state (left) and purely in the upper ground state (right).

levels |g) and le) as (represented graphically in Fig. B-1):

R 1g) = C 1g) - iSj e) (B.1)

R le) = Cjle) - iS g) (B.2)

The amplitude factors Ci and Sj are defined as

Ci cos T§ i)+ i cos(O6) sin (B.3)

Si eiOj sin(03 ) sin ( (B.4)

where Qj is the generalized Rabi frequency for pulse j, T is the pulse duration, 5j is the

effective laser phase at t = 0, and 0 is the state space mixing angle:

cos0 6 = , sin- Qeff (B.5)
Q Q

Like the theory presented in Chapter 2, this model neglects spontaneous emission and cross-

coupling of the fields to the two optical transitions. The above expressions are arrived at after

making the rotating wave approximation and adiabatically eliminating the excited state.

After a Raman pulse, the amplitudes for each state accrue a phase during the dwell

period between pulses j and j + 1, exp (i}@j-j+1), with the positive phase corresponding

to the upper ground state and the negative phase corresponding to the lower state. Figure

B-2 diagrams the amplitudes after a second pulse, including the phase introduced by the
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Figure B-2: Diagrammatic representation of probability amplitudes for a two-pulse sequence,
assuming the initial state is the lower ground state, 1g).

dwell time. The total integrated phase @jaj+1 is defined as

~J-4J+1 fT 3 dt'[6j +1 (t') - 6j (t') ] + I + 1t3 +Tj

(B. 6)

where the Raman laser detuning for pulse j, oj(t), is defined as:

6j (t) = [w1 (t) - w2 (t)], - [WH
hk2

F + m ef,j '2m
zi(t) (B.7)

This procedure is repeated for an n pulse sequence, creating a vector of 2n amplitudes.

At the conclusion of the sequence, the amplitudes that contribute to interference must be

identified. In Doppler insensitive interferometry, this generally includes all amplitudes. For

instance, at the end of the two-pulse sequence shown in Fig. B-2, the ground state amplitudes

are

pe(t 2 + T2 )|2-puise = -iC 1 S2* exp

TIg (t 2 + T2 )|2-pulse = C1C 2 exp

i 
'N2/

- iS*C2* exp (1-2

S* S2 exp i

from which the probability densities are calculated.

In the case of a Doppler sensitive interferometer, the analysis is more involved. The

vector of amplitudes after a 7r/2 - -r - -r/2 sequence has length eight (shown in Fig. B-3).
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Figure B-3: Diagrammatic representation of probability amplitudes for a three-pulse se-
quence, assuming the initial state is the lower ground state, 1g).

Summing all the amplitude terms for the lower ground state produces exponential terms

exp [j(I2-3 - (1-2)] and exp [{(2,3 + Gi-,2)]. The latter term can be shown to have

initial velocity-dependent terms, such as keff (t 0)T. The RMS phase for an interfer-

ometer with interrogation time T =1 ms and 0.5 pK cloud is keff - 2i(t =0)2T ~ 102

rad. Therefore, when these amplitudes are averaged over the ensemble, they are heavily sup-

pressed and do not result in visible interference. Probability amplitudes with the difference

of the integrated phases, however, give the expected phases derived in Chapter 2, as well as

phase terms resulting from finite duration of the light pulses.

For large area interferometer analysis, probability amplitudes were calculated in Mathe-

matica, using this diagrammatic method. Both constant and swept laser frequency difference

cases were analyzed for interferometer phase, acceleration scale factor, and contrast. Com-

posite Raman pulses were analyzed as multi-pulse sequences without dwell time periods,

using the same approach. All composite Raman pulse detuning profiles and large area inter-

ferometer theoretical curves reported in Chapter 5 were produced with this model.
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