
University of New Mexico
UNM Digital Repository

Physics & Astronomy ETDs Electronic Theses and Dissertations

9-1-2015

High Data-Rate Atom Interferometry for
Measuring Dynamic Inertial Conditions
Akash Rakholia

Follow this and additional works at: https://digitalrepository.unm.edu/phyc_etds

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been
accepted for inclusion in Physics & Astronomy ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Rakholia, Akash. "High Data-Rate Atom Interferometry for Measuring Dynamic Inertial Conditions." (2015).
https://digitalrepository.unm.edu/phyc_etds/55

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fphyc_etds%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/phyc_etds?utm_source=digitalrepository.unm.edu%2Fphyc_etds%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/etds?utm_source=digitalrepository.unm.edu%2Fphyc_etds%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/phyc_etds?utm_source=digitalrepository.unm.edu%2Fphyc_etds%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/phyc_etds/55?utm_source=digitalrepository.unm.edu%2Fphyc_etds%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


           
eeeeeeeeeeeeeeee

           
teteteteee

                                                                                              

:ttt::eee::ee:eete::eteeee:eee:tteeeee:

  n          

           

           

           

           

           

            

            

            

¿¿¿¿¿ ¿¿¿¿¿¿¿¿

­¿­¿¿­¿

²²¿²² ²¿²²²²²¿²²

­¿²¿²¿² ­¿­²¿

¸­¿² ¸²¸²¿­¿

­²²²² ¬­¿¬¿²²²



High Data-Rate Atom Interferometry for
Measuring Dynamic Inertial Conditions

by

Akash Vrijlal Rakholia

B.S., Physics, Harvey Mudd College, 2009

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Physics

The University of New Mexico

Albuquerque, New Mexico

July 2015



iii

Dedication

To my family, for their unwavering support and encouragement.

“Science is a way of thinking much more than it is a body of knowledge.” – Carl

Sagan



iv



v

Acknowledgments

This work would not have succeeded without the contributions and experience of my
fellow scientists at Sandia. I am of course indebted to my advisor, Grant Bieder-
mann, for his guidance and expertise. The project surely would not have succeeded
without his knowledge and experience in the field of atom interferometry. Beyond
his technical skill in cold atom physics, I find myself fortunate to have an advisor
who spent so much of his time and energy in the laboratory.

I started in lab working with graduate student Thomas Loyd who instructed me
in the fundamentals of laser system construction and magneto-optical traps. I thank
him for getting me started in my first venture into modern experimental physics.
Hayden McGuinness joined the lab as a postdoc under the project which forms the
bulk of this work. I thank him for being an excellent mentor who solidified my
understanding between theory and experiment, as well as his guidance towards our
first paper. I will certainly miss our poker games. Yuan-Yu “Superman” Jau provided
a rare mix of theoretical and experimental expertise which I have come to admire. I
always found our discussions to be enlightening, especially those outside the context
of our work. The closed loop interferometer demonstration would not have succeeded
without the collaboration of Draper scientists Rick Stoner, Dave Johnson, and Dave
Butts.

I surely would not have enjoyed my time in lab as much without the compan-
ionship of graduate students Aaron Hankin and Andrew Ferdinand. In particular,
I found Aaron Hankin to be highly motivated and approachable. I would also like
to thank the remaining members of our group, Paul Parazzoli, James Chou, Cort
Johnson, Peter Schwindt, George Burns for their contributions and insight. My time
at Sandia overlapped with graduate students Francisco Benito and Boyan Tabakov.
In fact, we found ourselves working on our dissertations simultaneously, and were
able to keep each other motivated to finish. My experience at Sandia would not be
complete without the support of other members of my organization, including John
Sterk, Anthony Colombo, Todd Barrick, Kevin Fortier, Micheal Mangan, Amber
Young, Susan Clark, and Rob Boye. In particular, John Sterk was always willing to
discuss whatever random discrete mathematical problem I was fixated on.

I would like to thank Ivan Deutsch for enabling me to work at Sandia my first
year. I also thank Ivan and Carl Caves for their time as my academic advisors. I
found their lectures in class to be engaging, and I was happy for their support when
I needed clarification or was pursuing lecture topics further.



vi

I will never be able to repay the debt to my parents, Vrijlal and Kailas, who
sacrificed so much so that my brother Milap and I could enjoy a comfortable life.
From a young age, they always supported my education to the maximal degree,
motivating me to pursue a career in science. I am also fortunate to have a large and
close extended family who are a source of constant encouragement.

The bulk of this work was funded by Sandia National Laboratories [1] through
the Laboratory Directed Research and Development program. I found the program
to be sufficiently structured to motivate our work, while being flexible enough to
enable other veins of research, for which I am thankful. Additional funding provided
by DARPA [2].



vii

High Data-Rate Atom Interferometry for
Measuring Dynamic Inertial Conditions

by

Akash Vrijlal Rakholia

B.S., Physics, Harvey Mudd College, 2009

Ph.D., Physics, University of New Mexico, 2015

Abstract

Light pulse atom interferometers have demonstrated remarkable sensitivity and sta-

bility for acceleration and rotation rate measurement. However, typical manifesta-

tions are designed for laboratory environments and thus rely on a fixed magnitude

and direction of gravity, and limited ambient rotation rate. We have enhanced the

application space of atom interferometers towards more dynamic environments, with

special attention for inertial navigation.

I present our work in the domain of short time-of-flight atom interferometry,

whereby the magnitude of ensemble excursion is constrained. The limited interroga-

tion time results in a significant loss of sensitivity. We recover a fraction of the lost

sensitivity by operating with an enhanced duty-cycle and data-rate. To demonstrate

this concept, we construct an atom interferometer accelerometer capable of operating

at data-rates as high as 300 Hz with sensitivities at µg/
√

Hz levels, which represents

a competitive figure for inertial navigation application.

For the bulk of this work, we demonstrate a dual-axis sensor capable of simulta-

neous acceleration and rotation-rate measurements. The sensor relies on a technique
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we refer to as “ensemble exchange” which provides a high flux source of ultracold

atoms by swapping atomic ensembles between two MOTs. We achieve a steady-state

atom number of 7× 106 atoms/shot using a minimal loading time of a few millisec-

onds each shot. Furthermore, we find this technique to be robust under dynamic

conditions as large as 10 g of acceleration and 20 rad/s of rotation rate, representing

a significant enhancement in ultra-cold atom sample preparation.

The sensor achieves µg/
√

Hz and µrad/s/
√

Hz sensitivities, making this tech-

nique a compelling prospect for inertial navigation applications. Through the use of

auxiliary cosensors and a real-time combinatorial loop with feedforward and feedback

mechanisms, we demonstrate an unprecedented enhancement of the sensor dynamic

range up to ±20 mg . Finally, I will discuss a novel manifestation of short time-of-

flight atom interferometry in a warm atomic vapor, which avoids the complication

of cold sample preparation and has the potential for significantly simplified laser

systems.
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Chapter 1

Introduction

Since the de Broglie hypothesis, and subsequent Davisson-Germer experiment, atom

interferometry has proven to be a useful tool for fundamental tests of quantum me-

chanics and precision metrology [4]. Modern techniques involve using pulses of light

to impart a specific and controlled momentum recoil, in order to coherently separate,

redirect, and recombine atomic wavepackets [5, 6]. One particular application space

involves precise measurement of an atom’s inertial dynamics, i.e. acceleration and

rotation.

An atom in vacuum is an exquisite inertial reference. A long mean free path

ensures the kinematics are purely Newtonian. Atom interferometers seek to exploit

this inherent stability for a precise measurement of the atom’s motion under grav-

ity or the motion of the platform with respect to the atom. Such techniques have

yielded a wide variety of applications, including gravimetry [7], gravity gradiome-

try [8, 9], seismology [10], near-surface force characterization [11, 12], and inertial

navigation [13, 14]. Other more fundamental applications have been suggested in-

cluding measurement of the fine-structure constant [15, 16], measurement of the

Newtonian gravitational constant G [17, 18, 19, 20], gravitational wave detection

[21, 22], and tests of the equivalence principle [23, 24, 25]. There are also many
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proposed experiments for atom interferometers in space [26, 27, 28]. In this work,

we are primarily concerned with adapting light pulse atom interferometry towards a

field-worthy navigation-grade inertial sensor.

1.1 Atom Interferometry

The most basic light pulse atom interferometer uses Doppler-sensitive Raman tran-

sitions [29] in a π/2 − π − π/2 pulse configuration to coherently separate, redirect,

and recombine atomic wavepackets. The stimulated Raman transition drives atomic

population between two typically long lived states via an intermediary interaction

state. In the Doppler-sensitive configuration, the lasers are aligned such that the

net photon recoil is on the order of the intermediary state, which is typically that of

an optical photon. This enables the atomic wavefunction to separate beyond several

times its de Broglie wavelength, while maintaining state coherence.

The concept behind the Doppler-sensitive Raman transition and construction of

the interferometer is shown in Fig. 1.1. A π/2 pulse refers to a Doppler-sensitive

Raman pulse tuned such that the atomic state is driven to an equal superposition

of ground and excited state. The excited state arm of the interferometer receives an

additional momentum recoil of h̄keff , where keff is the effective Raman wavevector.

This causes the states to separate spatially and coherently over time. After some

interrogation time T , a π pulse inverts the atomic populations, such that the the

states are redirected towards one another. After another period of T , a final π/2

pulse recombines the wavepackets, forming the interferometer.

At each pulse, the optical phase of the laser is imprinted onto the atomic state.

This phase is a function of the frequency of the laser, time, the wavevector of the laser,

and position. With this pulse configuration, the frequency and time components drop

out, and the result is a position-dependent phase encoded in the atomic state of the
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|g〉

π/2 π/2π

|g〉

|e〉
|e〉

TTkeff

2ħk

Initial Final

Figure 1.1: Concept behind the Doppler-sensitive Raman transition and light pulse
atom interferometer. Left: The stimulated Raman transition drives atomic popu-
lation between two states via a third intermediary state. In the Doppler-sensitive
configuration, the atom absorbs from one of the optical fields and emits into the other,
in the opposing direction. This results in a net momentum recoil, the magnitude of
which is twice the photon recoil from each field. Right: By using a π/2 − π − π/2
pulse sequence of these transition, we coherently and precisely separate, redirect, and
recombine atomic wavepackets, forming the interferometer.

atom. To first order, the phase shift is given by

∆φ = keff · (a− 2v ×Ω)T 2, (1.1)

where a is the acceleration of the atoms, Ω is the rotation rate, and v is the initial ve-

locity. A precise readout of the phase ∆φ results in a precise determination of a and

Ω. The fundamental limit of phase readout is given by the shot noise limit 1/
√
N ,

where N is the number of atoms participating in the interferometer. Furthermore,

the sensitivity scales as the square of the interrogation time T . Thus, atom inter-

ferometers typically use cold atomic ensembles prepared by magneto-optical traps

[30], which have been demonstrated to be a robust and adaptable source of ultracold

atoms. Atomic fountains are often employed, which launch the atoms in the verti-

cal direction and allowing them to fall under gravity, increasing the total available

interrogation time. Typical implementations use cold atomic ensembles with on the

order of a million atoms and an interrogation time on the order of a couple hundred

milliseconds, resulting in a sensitivity on the order of 10 ng/
√

Hz. The most sensitive
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atom interferometer uses a 10 m tall vacuum chamber to increase the interrogation

time to 1 s, achieving an inferred sensitivity of 6.7×10−12 g per shot [31, 32]. Similar

to atomic clocks, these systems have also demonstrated remarkable stability [33, 20].

These systems may also be configured as gyroscopes by using a flux of atoms either

from an atomic beam [34] or fountain-launched cold atom ensembles [13].

These atom interferometers are typically designed for a laboratory environment

in which the direction and magnitude of acceleration (including gravity) and rota-

tion rate (including Earth’s rotation) are fairly constant. This poses a number of

challenges for adapting such a technology for inertial navigation applications where

the inertial conditions are far more dynamic. To better understand some of these

challenges, we present a brief overview of inertial navigation technology and require-

ments.

1.2 Inertial Navigation

Inertial navigation refers to a technique which dynamically calculates the position

and velocity of a moving object using accelerometers and gyroscopes without the

need for an external reference [35]. Typical applications involve navigation for ships,

aircraft, spacecraft, and guided missiles. The acceleration and rotation rate from the

sensors are integrated twice to deduce the position. Thus, the error is proportional to

the square of time. For long travel times, highly sensitive and stable accelerometers

and gyroscopes are imperative.

The first use of inertial navigation is generally considered to be in 1942 by the

German V-2 missile [37]. While the sensor technology consisting of mechanical ac-

celerometers and gyroscopes had been available for decades, this was the first ap-

plication combining the sensors for full navigational information. The first of such

systems were gimballed [36]. A set of motorized gimbals stabilizes the inertial plat-
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GEC REVIEW, VOL. 13, NO. 3, 1998

Inertial Navigation – Forty Years of Evolution

by A. D. KING, B.Sc., F.R.I.N.,

Marconi Electronic Systems Ltd.

For over forty years, this Company has been one

of the world's significant players in the field of iner�

tial navigation. From its inception, as an almost�

impossible, barely�affordable technology for

guiding strategic missiles, to today's acceptance of

it as an everyday fact of life, the art and craft of iner�

tial navigation still retains some of its mystique,

and continues to provide stretching challenges in

engineering.

This article doesn't pretend to be a textbook -

there are plenty of excellent and readable texts

available (see, for example, refs. (1�3)�). This paper

will attempt to explain only what is necessary in

order to understand the significance of the current

and future trends.

Principles of Inertial Navigation

Consider an accelerometer as an instrument

that measures acceleration along a single axis.

Integrate the output once, and you have velocity.

Integrate again, and you have position - or rather,

change of position - along the accelerometer's

axis. If you know the direction of travel, you can

deduce current position. Inertial Navigation is sim�

ply a form of `dead reckoning'. You need to know

the starting point - an inertial navigation device/

system (I.N.) can't find its initial position on the

earth (it can find latitude, with difficulty, but not

longitude).

Take three accelerometers, with their sensing

axes orthogonal. Arrange them so that their axes

are aligned north�south, east�west, and vertical. To

maintain this orientation when the vehicle man�

�uvres, the accelerometers are suspended in a set

of three gimbals that are gyro�stabilized to main�

tain the direction. I will be describing `strapdown'

arrangements later, but it always seems easier to

explain the principles by starting with the

`gimballed' configuration (see fig. 1).

The gyros, similarly, are single�axis devices, of a

type known as `integrating' gyros - that is, they

give an output proportional to the angle through

which they have been rotated (about their input

axes). The gyros are used as the sensing elements

in null�seeking servos, with the output of each gyro

connected to a servo�motor driving the appropri�

ate gimbal, thus keeping the gimbal in a constant

orientation in inertial space.

Integrating gyros also have what is called a

`torquer', a means of precessing the input axis at a

A. D. King joined Ferranti in 1966, initially

working on development of navigation displays

for aircraft, including the Harrier and Tornado.

In 1975 he became Chief Engineer of a group

with responsibility for many inertial navigation

systems including the guidance system for the

Ariane launcher. In 1981 he became manager of

the Company's gyro business, and in 1989

became Chief Engineer of the Navigation and

Electro�optic Systems Division. Ferranti Defence

Systems was acquired by GEC�Marconi in 1990

and is now part of Marconi Electronic Systems.

(E�mail: anthony.king@gecm.com)

rate proportional to input current. This forms a

convenient means of cancelling out any drift errors

in the gyro, and also provides another function that

will be described below.

The gimbals, as shown, have a bearing at each

end. Each has a motor, built around one of the

bearings, and at the other end a synchro (an elec�

tromagnetic angle�measuring device). No matter

how the vehicle man�uvres, the innermost gim�

bal maintains its orientation in inertial space. The

synchro on the innermost gimbal thus measures

azimuth (or heading), the synchro on the middle

gimbal measures pitch, and that on the outer

gimbal measures roll.

The innermost gimbal can be thought of as a

`stable platform' on which are mounted the gyros

and accelerometers (although, in practice, it looks

like anything but a platform, being a miracle of

mechanical packaging). The whole arrangement

is generally called a `gimballed platform'. Fig. 2

shows the interior workings of a Marconi FIN1000

inertial platform, which is used in virtually all the

RAF's combat aircraft and many others world�

wide, as well as in space launchers, missiles, land

vehicles, etc.

The system described can thus measure the air�

craft's position, velocity, acceleration, attitude, and

heading. There are, of course, complications ...

1 Gimballed inertial platform
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2 Gimballed inertial platform

Schuler Tuning

The earth is not flat. As we move, close to the sur�

face, we need to keep tilting the platform (with

respect to inertial space) to keep the axes of the N

and E accelerometers horizontal. To do this, we can

use the gyro torquers, and feed them with a signal

proportional to the N and E velocity. The angular

torquing rate �
.

 that we apply is equal to v/R, where

v is the linear velocity from the first integrator, and

R is the radius of the earth (fig. 3).

Hence �
..

� �� a�R, where a is the acceleration

sensed by the accelerometer, which may be real

acceleration, or a component of the gravitational

field if the platform is not horizontal.

This is recognizable as the equation of motion of

a simple undamped pendulum of length R, which

has a period of oscillation of around 84 minutes,

known as the Schuler period, after M. Schuler, who 

published a definitive text in 1923(4).

3 The ‘Schuler Pendulum’

The block diagram of the system so far described

is shown in fig. 4.

Figure 1.2: Concept and implementation of a gimballed inertial measurement unit.
Figures from [36]. Left: A set of gimbals keeps an accelerometer and gyroscope
relatively stable using inertial information derived from the sensors. Right: Picture
of a Marconi FIN1000 inertial platform.

form upon which the accelerometer and gyroscope are mounted. Feedback from the

accelerometer and gyroscope is directed to the motorized gimbals.

However, there are a number of limitations to gimballed systems in terms of me-

chanical complexity. The gimbals add sources of complication such as extra motors,

thermal drift, and mechanical resonances. A strapdown system is desirable, where

the accelerometer and gyroscope share the same inertial frame as the target vehi-

cle. However, to accommodate this the sensors must have the same performance as

before, but with an increased dynamic range by about 105.

The enabling technology for strapdown systems was the ring laser gyroscope

(RLG) [36]. First demonstrated in 1963 [38], the RLG consists of a cyclic opti-

cal resonator having two counter-propagating lasers over the same path. In what

is known as the Sagnac effect [39], rotations induce a small difference in the time

it takes each path to propagate through the cycle. This causes a tiny shift in the

frequency of the two laser paths, resulting in a standing wave moving around the

ring which may be detected. The fiber optic gyroscope (FOG) works on a similar

principle except the light is injected into an optical fiber circuit from an external
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coherent source [40]. This technology represents the state of the art in inertial navi-

gation, and development of this technology is still proceeding. A high performance

modern inertial navigation system achieves a sensitivity at 1 mdeg/
√

Hr levels [36],

or approximately 0.3 µrad/s/
√

Hz, stable for 1 hr. A navigation grade accelerometer

achieves a bias error on the order of 10 µg [36]. This provides a metric by which we

will evaluate the performance of our sensor.

Since the advent of GPS, it has proven to be a reliable, robust, and economical

method for navigation, even down to the consumer level. Nevertheless, there remain

applications where an alternative to GPS is desirable [35]. First, GPS operates at

frequency bands in the GHz range, which are susceptible to jamming. Secondly,

GPS doesn’t operate in space beyond the network of satellites, which orbit at 20, 000

kilometers. Finally, while GPS has been demonstrated to be highly robust, a backup

option is desirable.

1.3 Measurement Overview

The requirements for a successful inertial navigation system are high sensitivity, high

stability, large dynamic range, and compact size [36]. Atom interferometers have

clearly demonstrated the first two. The inertial sensitivity of atom interferometers

remains unparallelled. The stability of such systems derives from that of cold atomic

fountain clocks [41], which have since become the de-facto standard for timekeeping

in the United States [42, 43] and around the world [44, 45]. Recent developments in

optical transition based clocks [46, 47] have surpassed the performance in microwave-

based clocks. Furthermore, compact atomic clock devices have been proposed [48, 49]

and successfully demonstrated [50, 51]. As an added advantage the system requires

no external calibration, as the scale factor ultimately derives from a well-known and

fixed atomic transition. Because of these merits, there is great interest in adapting

atom interferometers for field use [9, 52, 53, 54, 55].
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a Ω

Figure 1.3: Concept behind the dual-axis atom interferometer. Two atomic ensem-
bles are launched towards one-another. During the trajectory of the ensembles, the
optical phase of the laser is imprinted onto the atomic state. The laser functions
analogous to a ruler, encoding inertial information into this phase. A readout of this
phase corresponds to a measurement of the curvature of the path. This curvature
contains information of both the acceleration and rotation rate. In the case of an ac-
celeration, the ensembles displace in the same direction, and oppositely for rotations,
enabling us to decouple the signals.

Unfortunately, large dynamic range and compact size remain elusive. Indeed, to

achieve many of these advantages atom interferometers are configured under labo-

ratory conditions with a fixed direction of gravity and limited dynamic conditions.

In particular, the ballistic trajectory of the ensemble remains largely constant over

a distance of centimeters or even meters. Furthermore, the length of the trajectory

requires the use of large vacuum chambers. We seek to address both of these issues

by moving to a small time-of-flight.

To restrict the displacement of the ensemble during a ballistic trajectory, we

limit the time-of-flight (ToF) to a few milliseconds [56, 57]. This prevents excessive

excursion of the ensemble even under dynamic conditions. However, this significantly

reduces the sensitivity of the interferometer, due to the T 2 scaling of the atomic phase
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shift. As such, it is imperative to maximize the bandwidth of the interferometer

and recover some of the lost sensitivity. However, MOTs typically take 100s of

milliseconds to load a significant atomic ensemble from vapor. Compared with a

few milliseconds of interrogation, this severely limits the duty cycle and thus the

potential performance of our apparatus. Fortunately, the short time-of-flight enables

us to employ recapture [58].

As stated earlier, by limiting the time-of-flight to a few milliseconds, even under

∼ 1 g of acceleration the atomic ensemble is still well within the capture volume

of the MOT. Thus, by enabling the trap immediately after the experiment, we are

able to recapture a significant proportion of the ensemble (∼ 90%) into the MOT.

This significantly reduces the time required to load atoms for the next shot of the

experiment. In fact, we are able to achieve a comparable atom number (∼ 106) to

many cold atom experiments by only loading for a few milliseconds each shot. This

significantly increases the duty cycle from less than 5% to above 50%.

Our first apparatus thus employed recapture to operate a high data-rate atom

interferometer accelerometer. For this device, we were only concerned with construct-

ing an accelerometer. By starting from rest, the rotation sensitivity vanishes and we

are left with the acceleration sensitivity. However, an accelerometer is insufficient for

inertial navigation. A full sensor requires acceleration and rotation sensitivity along

3 orthogonal axes, which we refer to as a 6-axis sensor. We wish to demonstrate

this principle by constructing a dual-axis sensor (acceleration and rotation) using

the same techniques as our accelerometer. To include rotational sensitivity, we need

to impart a large initial velocity to the atoms. However, this makes recapture prob-

lematic. With the large initial velocity, even after a short time-of-flight the ensemble

is too far away from the trap to be recaptured. Another problem is that the atomic

phase shift is the sum of acceleration and rotation components. To extract these

terms, we require some means of decoupling them. We solve both of these problems

using a technique which we call ensemble exchange [59].
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Figure 1.4: Concept behind the dual-axis high data-rate atom interferometer. We
restrict the time-of-flight of the ensemble to a few milliseconds. This limits the
displacement of the ensemble to less than 1 mm in inertial conditions on the order
of 1 g . This enables us to recapture the ensemble in the opposite trap after the
interrogation. In turn, the time required to load the ensemble for the next cycle is
significantly reduced, enabling high data-rate operation.

The basic principle is that we use two ensembles separated by some distance

and launch them towards each other with opposing velocities which are equal in

magnitude (va = −vb) [60, 10]. By operating interferometers on each ensemble, we

read out phase shifts φa and φb. We may then read out the acceleration and rotation

components as

φacc = keff · aT 2 (1.2)

φrot = keff · (−2v ×Ω)T 2, (1.3)

where φacc = φ+ = (φa + φb)/2 and φrot = φ− = (φa − φb)/2. This is shown in

Fig. 1.3. To support a small time-of-flight, we decrease the distance between the

ensembles down to a few centimeters.
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The second half of this technique deals with the recapture problem. After the ex-

periment, instead of recapturing in the same trap, we simply recapture in the opposite

trap. Hence, the ensembles “exchanged” positions. By timing this recapture, we can

ensure sufficient overlap between the ensemble and the trapping volume. Thus, our

plan is to launch, interrogate, and recapture the atoms, all within a few milliseconds

to minimize displacement of the ensemble. This concept is shown in Fig. 1.4.

We also seek to demonstrate a compact design. While our laser systems are still

bulky free-space optics, we develop a compact sensor head with a volume on the

order of a few liters. This isn’t representative of the absolute size constraint of the

device, but rather facilitates development while demonstrating the feasibility of a

compact design.

1.4 Overview

This dissertation details work performed at Sandia National Laboratories in the do-

main of applied atom interferometry, with primary focus on the ensemble-exchange

device. Chapter 2 details the theory behind atom interferometry and magneto-optical

traps, with emphasis on application of this theory to practical systems. Chapter 3 dis-

cusses the high data-rate atom interferometer accelerometer, with results published

in Applied Physics Letters ([58]). This experiment provided key insights towards the

construction of the dual-axis device, presented in the next three chapters. Chapter

4 details the construction of the apparatus, laser system, and operational details.

Chapter 5 characterizes the performance of the device as both an inertial sensor and

a source of ultracold atom flux. Chapter 6 investigates the dynamic limits of the

apparatus, as well as an enhancement of the dynamic range of the sensor by a factor

of 40 through closed-loop operation. Many of these results are published in Physical

Review Applied ([59]). Chapter 7 explores the novel warm vapor atom interferome-

ter concept (in preparation [61]). Finally, Chapter 8 concludes with the prospect for
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high data-rate atom interferometry.
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Chapter 2

Theory

We present the theory of light-pulse atom interferometry. Beyond the fundamental

principles of light-pulse atom interferometry, we also consider the effect of ensemble

spatial and velocity distribution on Raman pulse efficiency. Furthermore, we present

the theory of magneto-optical traps, with an emphasis on the kinematics as atoms

are being captured.

2.1 Light Pulse Atom Interferometer

The light-pulse atom interferometer uses stimulated Raman transitions to coherently

separate, redirect, and recombine atomic wavepackets. The Raman beams are con-

figured in a Doppler-sensitive configuration whereby the photon recoil is on the order

of that of an optical photon, which represents an increase over that of a microwave

photon by 5 orders of magnitude.
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Δ

δ
|g〉

|e〉

|i〉

Ω1,	k1 Ω2,	k2

Figure 2.1: The three-level atom model. Two ground states |g〉 , |e〉 interact via
an intermediary third state |i〉. Two laser beams with Rabi frequencies Ω1,Ω2 and
wavevectors k1, k2 couple each of the ground states to the interaction state. The
difference in the laser frequencies is detuned from the hyperfine transition by δ, and
the magnitude is detuned from the interaction state by ∆.

2.1.1 Stimulated Raman Transitions

We follow an analysis similar to [29] and consider a three level atom in a λ config-

uration with ground states |g〉 , |e〉 and interaction state |i〉. We assume the energy

difference between the ground and interaction state Egi is much greater than that

of the ground and excited state, Ege. We also assume two optical fields coupling |g〉
and |e〉 to the interaction state, as shown in Fig. 2.1.

The Hamiltonian for the system is given by the sum of the atomic Hamiltonian

and the interaction Hamiltonian: Ĥ = Ĥa + Ĥint, where

Ĥa = ωge |e〉 〈e|+ ωgi |i〉 〈i| (2.1)

is the atomic Hamiltonian. The interaction Hamiltonian is Ĥint = −d̂ · Ê, where d̂

is the electric dipole moment operator for the transition. The electric field operator
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for the two optical fields is given by

Ê =
1

2
E1e

i(k1·x−ω1t) +
1

2
E2e

i(k2·x−ω2t) + c.c. (2.2)

By the rotating wave approximation, we assume the first term couples only states

|g〉 and |i〉, while the second couples |e〉 and |i〉. We thus define the Rabi frequencies

as

Ω1 = − 1

2h̄
〈g| d̂ · Ê |i〉

Ω2 = − 1

2h̄
〈e| d̂ · Ê |i〉 , (2.3)

and write the interaction Hamiltonian,

Ĥint = h̄Ω∗1e
i(k1·x−ω1t) |i〉 〈g|+ h̄Ω∗2e

i(k2·x−ω2t) |i〉 〈e|+ c.c., (2.4)

where we assume ∆ is sufficiently large to neglect spontaneous emission. For now

we will ignore the momentum component. We will revisit it later. The equations of

motion are then,

ih̄ċg = h̄Ω1e
−iω1tci

ih̄ċe = h̄Ω2e
−iω2tci + h̄ωgece

ih̄ċi = h̄Ω∗1e
iω1tcg + h̄Ω∗2e

iω2tce + h̄ωgici. (2.5)

We now make the substitution

cg = c̃g

ce = c̃ee
iωget

ci = c̃ie
iωgit, (2.6)
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and Eq. 2.5 becomes

i ˙̃cg = Ω1e
−i(ωgi−ω1)tc̃i

i ˙̃ce = Ω2e
−i(ωgi−ωge−ω2)tc̃i + ωgec̃e

i ˙̃ci = Ω∗1e
i(ω1−ωgi)tc̃g + Ω∗2e

i(ω2−ωgi+ωge)tc̃e + ωgic̃i. (2.7)

We now define the single and two-photon detunings as ∆ = ωgi − ω1 and δ =

(ω1 − ω2)− ωge, as shown in Fig. 2.1. Writing Eq. 2.7 in terms of these, we have

˙̃cg = −iΩ1e
−i∆tc̃i

˙̃ce = −iΩ2e
−i(∆+δ)tc̃i

˙̃ci = −iΩ∗1ei∆tc̃g − iΩ∗2ei(∆+δ)tc̃e. (2.8)

We now assume that ∆� Ω1,Ω2, δ. In an approximation known as adiabatic elim-

ination, we note that the terms ˙̃cg and ˙̃ce oscillate much more slowly than ˙̃ci. We

thus integrate this last expression assuming constant values for c̃g and c̃e. We then

have,

c̃i = −Ω∗1
∆
ei∆tc̃g −

Ω∗2
∆ + δ

ei(∆+δ)tc̃e. (2.9)

Substituting this equation into the ground and excited state equations in Eq. 2.8, we

find

˙̃cg = i
|Ω1|2

∆
c̃g + i

Ω1Ω∗2
∆

eiδtc̃e, (2.10)

˙̃ce = i
Ω∗1Ω2

∆
e−iδtc̃g + i

|Ω2|2
∆

c̃e, (2.11)

where we ignored the higher order terms in the expansion of Ω2/(∆ + δ). We find

the dynamics thus reduce to that of a two-level system, with the two-photon Rabi
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frequency Ωeff = 2Ω1Ω2/∆ and detuning δ. The solution is then given by,

|cg(t)|2 =
Ω2

eff

Ω2
eff + δ2

sin2

(√
Ω2

eff + δ2 t

2

)

|ce(t)|2 =
δ2

Ω2
eff + δ2

+
Ω2

eff

Ω2
eff + δ2

cos2

(√
Ω2

eff + δ2 t

2

)
. (2.12)

The atomic population thus undergoes coherent Rabi oscillations between the

ground and excited state at the generalized two-photon Rabi frequency Ω̃eff =√
Ω2

eff + δ2. A pulse of duration t = π/Ω̃eff (known as a “π pulse”) inverts the

atomic population. Similarly, a pulse of duration t = (π/2)/Ω̃eff (known as a “π/2

pulse”) generates an equal superposition between ground and excited states. The

atom interferometer is constructed from a sequence of such pulses.

2.1.2 Atom Interferometer

We construct the atom interferometer using a π/2−π−π/2 pulse sequence of Doppler-

sensitive Raman transitions. In the Doppler-sensitive configuration, the laser beams

are counter-propagating, each containing one of the two frequencies needed for the

transition. The atom absorbs a photon from one laser and receives a momentum

recoil of +h̄k. The excited atom then undergoes stimulated emission into the other

laser, and receives a momentum recoil of approximately −(−h̄k). There exists a

small difference due to the hyperfine frequency. The total momentum recoil is thus

approximately 2h̄k = h̄keff . The important thing to note here is that the total

momentum recoil is that of an optical photon, which is orders of magnitude larger

than the momentum recoil of a microwave photon. Secondly, the momentum recoil

has a very precise magnitude, limited in principle by the frequency stability of the

Raman laser. Typical experiments readily achieve a fractional stability of 10−8 in this

respect. However, there are additional sources of error stemming from the direction
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of the wavevector which must be considered, such as the wavefront of a Gaussian

beam.

The atom interferometer utilizes this large, precise momentum transfer to co-

herently separate, redirect, and recombine atomic wave packets. Assume the initial

state of the atom is given by |ψ0〉 = |g,p0〉, where |p0〉 is the initial momentum state

of the atom. The first pulse (π/2) generates a coherent superposition state,

|ψ1〉 =
1√
2

(
|g,p0〉+ eiφ1 |e,p0 + h̄keff〉

)
, (2.13)

where φn = keff · xn − ωtn is the phase of the light field during the nth pulse. The

internal state of the atom becomes entangled with its external momentum state. For

some interrogation time T1, the atomic wavepackets separate beyond several times

its de Broglie wavelength. The second pulse (π) reverses the momentum state so

that

|ψ2〉 =
1√
2

(
eiφ2 |e,p0 + h̄keff〉+ ei(φ1−φ2) |g,p0〉

)
, (2.14)

thus redirecting the wavepackets. After a time T2, the final pulse (π/2) recombines

the wavepackets, so that

|ψ3〉 =
1√
2

(
ei(φ2−φ3) |g,p0〉+ ei(φ1−φ2) |e,p0〉

)
. (2.15)

The relative phase between the states is given by ∆φ = (φ1 − φ2)− (φ2 − φ3) =

φ1 − 2φ2 + φ3. If we assume T1 = T2 = T , the frequency component of the phase

drops out and we are left with

∆φ = keff · (x1 − 2x2 + x3)

= keff ·
(

x1 − 2x2 + x3

T 2

)
T 2, (2.16)

where we multiplied and divided by T 2. We note that the factor (x1− 2x2 + x3)/T 2

represents the finite difference formula for curvature, which we deconstruct into ac-
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celeration and rotation components as

x1 − 2x2 + x3

T 2
≈ ẍ = a− 2v ×Ω, (2.17)

where v is the initial velocity of the atoms, and a and Ω are the acceleration and

rotation, respectively. Note that these inertial quantities are measured with respect

to the laser, which we refer to as the “platform”. Thus, these inertial quantities are

encoded in the total phase shift as,

∆φ = keff · (a− 2v ×Ω)T 2. (2.18)

2.1.3 Inhomogeneous Rabi Flopping

In practice given an ensemble of atoms, we usually do not have each atom experience

the same Rabi frequency and detuning. A Gaussian laser beam results in a spatial

distribution of Rabi frequencies. The Doppler-shift gives rise to a velocity-dependent

detuning. Typically we use large beams with high intensity (large transform-width)

to mitigate this effect. However, there is only a limited amount of power available.

Thus, it is important to make optimal use of the power available. We wish to model

Rabi flopping under these conditions. The probability of state transfer from Eq. 2.12

is given by,

P (t,Ω, δ) =
Ω2

Ω2 + δ2
sin2

(√
Ω2 + δ2 t

2

)
. (2.19)

Assuming the interrogation laser travels along keff = keff ẑ, Ω and δ are given by,

Ω(x, y) = Ωeff exp

(
− x2 + y2

2(σx,laser)2

)
(2.20)

δ(vz) = keffvz, (2.21)

where σx,laser is the spatial extent of the Raman beam (half the beam waist). For

the ensemble, we assume a Gaussian spatial distribution and a Maxwell-Boltzmann
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velocity distribution. These are given by,

gx(x, y, z) =
1

(2π)3/2(σx,ensemble)3
exp

(
− x2 + y2 + z2

2(σx,ensemble)2

)
(2.22)

gv(vx, vy, vz) =
1

(2π)3/2(σv)3
exp

(
−v

2
x + v2

y + v2
z

2(σv)2

)
, (2.23)

where σx,ensemble is the spatial extent of the ensemble, and σv =
√
kT /m. We find

the ensemble average Rabi flopping by integrating over these distributions,

Pavg(t) =

∫ ∞
−∞

∫ ∞
−∞

P (t,Ω(x, y), δ(vz)) gx(x, y, z) gv(vx, vy, vz) d3x d3v. (2.24)

We note that the integrals over z, vx, vy average to 1. We numerically evaluate

this integral as a function of t, the ratio of the ensemble size to Raman beam size

rx = σx,ensemble/σx,laser, and the ratio of the Doppler width to the transition width

rδ = keffσv/(Ωeff/2). First, we plot the Rabi flopping for various values of rx and

rδ from 0 to 2 in Fig. 2.2. We note here that the population transfer efficiency

drops to 50% around rx = 1, rδ = 1. Also the π pulse lengths increase for larger

rx and decrease for larger rδ. This is expected since for larger rx, we are averaging

atoms that see slower Rabi frequencies. For larger rδ, the Rabi flopping occurs at the

generalized Rabi frequency Ω̃eff =
√

Ω2
eff + δ2, and is thus faster for higher detuning.

Now, we consider the maximum population transfer efficiency, E as a function

of rx and rδ. This was numerically calculated by finding the maximum transfer

probability at each point (rx, rδ) from 0 to 2. A plot of this function is shown in

Fig. 2.3. As expected, the pulse efficiency is maximal with small rx and rδ and falls

off when they approach unity. We find we may estimate the efficiency in this range

with

E(rx, rδ) ≈ exp

(
− r2

x

2σ2
x

− r2
δ

2σ2
δ

)
, (2.25)

where we numerically fit and find σx = 1.3 and σδ = 1.7. The rms error over this

range is 3%.
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Figure 2.2: Rabi flopping under an inhomogeneous Rabi frequency and detuning.
The parameters rδ and rx represent the ratio of ensemble detuning (via the Doppler-
shift) and spatial distribution with respect to the transition with and Raman beam
waist. We observe significant loss of atomic coherence when either of these ratios is
1 or greater.

We now assume a fixed ensemble size and temperature, as well as a finite amount

of power for the Raman laser. We leave the beam waist of the laser ω as a free

parameter. Clearly rx ∝ 1/ω by definition. The peak intensity scales as I ∝ 1/ω2.

The single-photon Rabi frequencies scale as Ω1,2 ∝
√
I, so that the two-photon Rabi

frequency scales as Ωeff ∝ I. Thus, we have rδ ∝ ω2. With these relationships and

data from Fig. 2.3, we may optimize the size of our Raman beams given a known

ensemble size and temperature.
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Figure 2.3: Raman pulse efficiency as a function of rx and rδ. We find the pulse
efficiency decreases similarly with respect to each of these parameters. Left: Data
calculated by numerically integrating Eq. 2.24. The surface is a guide for the eye.
Right: Contour plot of the same data. We find the pulse efficiency decreases to 50%
in approximately a circle defined by r2

x + r2
δ = 1. This presents a useful metric for

evaluating our experimental pulse efficiency.

2.2 Magneto-Optical Trap

The Magneto-Optical Trap (MOT) uses principles of laser cooling to produce a cold

sample of neutral atoms. Since the first demonstration [30], it has become the

workhorse of modern cold atom physics. The relatively simple design enables the

MOT to serve as the starting point for many experiments. For our purposes, sim-

plicity is necessary to facilitate miniaturization of the sensor. Furthermore, for our

particular application it is imperative to understand the dynamics of MOTs, so that

we may understand their response to inertial motion. While many experiments use

the MOT simply as a source of some number of cold atoms before proceeding to the

physics, in a sense the MOT is the physics for our experiment. Thus, we present

the theory of the magneto-optical trap with an emphasis on the dynamics as atoms

relax into the trap.

The MOT consists of a set of lasers which provide the dissipative cooling force and

a set of magnetic field coils which in combination with the lasers forms a trapping
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Figure 2.4: A diagram depicting the laser and magnetic coil configuration in a
typical MOT. Six cooling lasers form optical molasses in three dimensions. The
magnetic field generated by a pair of anti-Helmholtz coils, in conjunction with laser
polarization, provides a three dimensional harmonic trapping force.

force. A diagram depicting the coil and laser configuration is shown in Fig. 2.4.

Typically alkali metals are used due to the relatively simplicity of the atomic energy

levels. We will consider the interaction of a two level atom with a near-resonant

laser. This interaction is described by the optical Bloch equations [62, 63]. From

this, we calculate the photon scattering rate,

γ =

(
Γ

2

)
s0

1 + s0 + (2∆/Γ)2
, (2.26)

where Γ is the excited state lifetime, s0 = I/Isat is the saturation parameter, Isat is

the saturation intensity of the transition, I is the intensity of the laser, and ∆ is the

detuning. Now we consider the scattering rates from a pair of counter-propagating

lasers detuned by −δlaser. As the atoms move towards one of the lasers, the Doppler

effect shifts the frequency of that laser closer to resonance by δdoppler = k·v, increasing
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Figure 2.5: MOT cooling force in one dimension. The force is linear when the
magnitude of the velocity is less than the capture velocity, given by vc = Γ/k.

the photon scattering rate. Thus, the photon scattering rate increases in the direction

opposite to the velocity, producing a damping force over a large number of photon

recoils [64]. Three such pairs of such lasers oriented orthogonally provide a damping

force in all directions, known as optical molasses [65]. We take s0 = 2, δlaser = Γ/2

and plot this damping force in Fig. 2.5. We note that all velocity classes feel some

damping force in the “colder” direction, even for k · v� Γ. However, it is useful to

define a capture velocity vc = Γ/k within which the force is approximately linear.

Expanding the force in the linear regime gives us,

Fcooling ≈ −
8s0δh̄k

2

Γ(1 + s0 + (2δ/Γ)2)2
v, v < vc. (2.27)

Theoretically this damping force should cool to zero velocity. However, this nearly

continuous force is the result of many discrete photon scatters. We can thus treat

these photon scatters as generating a random walk of momentum with step size

∆p = h̄k and frequency 1/∆t = 2γ [63]. This corresponds with a diffusion coefficient

D0 = 2(∆p)2/∆t = 4γ(h̄k)2. From Brownian motion theory, we may calculate the

temperature in steady-state as kBTD = D0/β. This is the Doppler temperature
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given by kBTD = h̄γ/2. There are many independent derivations of this parameter.

Interestingly, this parameter is independent of wavelength, mass, and intensity [63].

In practice, due to sub-Doppler processes the ensemble temperature is well below

this level.

We now note that real atoms are not two-level atoms. Fortunately, alkali metals

have what are known as cycling transitions, which allow us to make this approxima-

tion. In the D2, n2S1/2 → n2P3/2 manifold, the transition
∣∣F = I + 1

2
,mF = ±(I + 1

2
)
〉
→∣∣F ′ = I + 3

2
,m′F = ±(I + 3

2
)
〉

forms a closed system under appropriate light polar-

ization. In practice however, off resonant scatter leaks population out of this system.

Thus, typically a repumping laser is used to cycle atoms out of the
∣∣F = I − 1

2

〉
manifold and back into

∣∣F = I + 1
2

〉
.

Thus far, we have described the damping force of the MOT. The spatially-

dependent potential utilizes the Zeeman effect, where magnetic sublevels of an atomic

state shift by an amount proportional to the applied magnetic field. This results in a

frequency shift given by δZeeman = µ′B/h̄, where µ′ is the effective magnetic moment

for the transition used. In the case of the cycling transition described above, µ′ = µB.

The total detuning is then given by

∆ = −δlaser + δDoppler + δZeeman

= −δlaser + k · v + µ′B(x) · p̂/h̄, (2.28)

where p̂ is the polarization vector of the light field. If we assume a linear magnetic

field, the atomic transition experiences an energy shift proportional to the distance

from the trap center. Then similar to the Doppler shift k ·v, the atom experiences a

trapping force from the Zeeman shift µ′A ·x/h̄, where A = ∇|B| is the magnetic field

gradient. Following this analogy, we find the capture distance to be xc = Γh̄/(µ′A)

and the capture volume Vc as the sphere which corresponds to this distance. The

potential which corresponds to this force is shown in Fig. 2.6. Making a similar
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Figure 2.6: MOT trapping potential in one dimension. The length-scale of the trap
is determined by the capture distance xc = Γh̄/(µ′A).

approximation as 2.27, we find the trapping force

Ftrapping ≈ −
8s0δµ

′Ak

Γ(1 + s0 + (2δ/Γ)2)2
x, x < xc. (2.29)

We may thus write the total force as,

F = Fcooling + Ftrapping

≈ −βv − κx, (2.30)

where β and κ are read directly from 2.27 and 2.29. This equation represents a

damped harmonic oscillator, with spring constant κ and damping coefficient β. The

oscillation frequency is thus ωMOT =
√
κ/m, where m is the mass of the atom.

The damping ratio is given by ζMOT = β/(2
√
mκ). Substituting in values for 87Rb

and assuming a typical 10 G/cm field gradient, we find ωMOT ≈ 2π × 1 kHz and

ζMOT ≈ 2. Thus, the motion is overdamped with a characteristic restoring time of

τMOT ≈ 2 ms.

In practice, we use a pair of quadrupole magnetic field coils which create a zero

of the magnetic field and a linear gradient in all directions. The closed form solution
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for the magnetic field from a pair of coils of radius a, separated from the origin by a

distance b with current I is given by (in cylindrical coordinates) [66] ,

B = Brr̂ +Bzẑ

Br =
Iµ0

2a

γ1

π
√
Q1

(
E(k1)

1 + α2 + β2
1

Q1 − 4α
−K(k1)

)
−Iµ0

2a

γ2

π
√
Q2

(
E(k2)

1 + α2 + β2
2

Q2 − 4α
−K(k2)

)
Bz =

Iµ0

2a

1

π
√
Q1

(
E(k1)

1− α2 − β2
1

Q1 − 4α
+K(k1)

)
−Iµ0

2a

1

π
√
Q2

(
E(k2)

1− α2 − β2
2

Q2 − 4α
+K(k2)

)
, (2.31)

where α = r/a, β1 = (b − x)/a, β2 = (−b − x)/a, γi = βi/α, Qi = (1 + α)2 + β2
i ,

ki =
√

4α/Qi, and K(k) and E(k) are the complete elliptic integral functions of the

first and second kind, respectively. To first order, we may approximate this near the

origin as,

B ≈ −1

2

dB

dz
rr̂ +

dB

dz
zẑ, (2.32)

where we refer to A = dB/dz as the axial field gradient and dB/dr = −(1/2)A as

the radial field gradient. This approximation is valid assuming r � a and z � b.

We presented the full analytic solution so that we may consider the effect of small

magnetic field coils where these assumptions may not necessarily be valid. Given the

parameters above, we have A = 3µ0Iab
2/(a2 + b2)5/2 [67]. For a review of coil design

including inductance and thermal management, see reference [68].

There were many assumptions made here in this derivation of MOT dynamics.

First off, that the saturation parameter is constant in space. In reality, the saturation

parameter follows the Gaussian intensity profile of the laser beams. Secondly, we were

largely concerned with the dynamics within the capture velocity and capture volume.

As stated previously, being outside of this regime doesn’t necessarily preclude the

possibility of falling into the trap. Finally, the model does not take into account
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beam alignment, polarization purity, and practical magnetic field geometry. These

factors are particularly important when discussing recapture, which depends heavily

on the atoms’ kinematics as they fall into the trap. As such, we have developed a

simulation which takes all of these factors into account. Details of the simulation are

shown in Appendix B. Application of the simulation to the recapture problem is the

subject of future work.

2.2.1 Recapture

The well-known MOT loading equation [69] describes the number of atoms in the

MOT as a function of time. The model assumes a constant loading rate of atoms

from vapor with a loss rate dominated by background collisions in proportion to the

number of atoms in the trap. This background limited lifetime is typically on the

order of 1− 60 s depending on the quality of the vacuum. We extend this equation

by including recapture between discrete shots of the experiment. We model the atom

number of each shot n as a constant recapture fraction r0, with a loss rate β and

linear loading rate α. Furthermore, we assume a cycle time Tc, and a fraction of

the cycle η reserved for recapture. The atom number may then be modeled as the

sequential sum of atoms loaded from vapor, atoms recaptured, and atoms lost of

background collisions. If we assume no density-induced losses, the atom number is

given by the geometric sequence,

Nn+1 = αηTc + (r0 − βTc)Nn, (2.33)

with solution,

Nn =
αηTc
1− r (1− rn), (2.34)

where r = r0 − βTc is the net recapture efficiency. This assumes that the recapture

time ηTc is sufficiently larger than the MOT relaxation time, in order to recapture

most of the available atoms. When the number of atoms which were not recaptured
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equals the number of atoms loaded from vapor, we achieve a steady-state atom

number Ns, given by

Ns = lim
n→∞

Nn =
αηTc
1− r =

αηTc
βTc + (1− r0)

. (2.35)

For r0 < 1 under low vapor pressure (βTc � 1 − r0), the loss rate is dominated

by imperfect recapture. Thus, the steady-state atom number Ns = αηTc/(1 − r0)

grows linearly in α. Under higher vapor pressure (βTc � 1 − r0), the loss rate is

dominated by background vapor collisions, resulting in steady state atom number

Ns = ηα/β. Assuming constant trap parameters, α and β are both proportional to

vapor pressure. Therefore, similar to canonical MOT loading, the ratio α/β and thus

the total atom number are constant. By simulating MOT loading from background,

with r0 = 1, η = 1, and in the limit of small Tc, Nn becomes the usual MOT loading

equation,

N(t) =
α

β
(1− e−βt), (2.36)

thus demonstrating correct behavior of the model in the appropriate limits.

We will use these equations to obtain an accurate calculation of the MOT recap-

ture efficiency. In particular, Eq. 2.34 provides a method by which we can measure

the recapture efficiency independent of the total atom number. By turning on the

trap and fitting this expression as a function of n, we may extract the recapture ef-

ficiency independently of the total atom number, the scale factor of which generally

contains large uncertainties.
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Chapter 3

High Data-Rate Accelerometer

In this chapter, we present a high data-rate atom interferometer accelerometer. While

the device functions as a stand-alone accelerometer, it also served as a prototype ex-

periment for the dual-axis sensor. The experimental apparatus was designed to illus-

trate many of the principles which will be employed in the dual-axis sensor, including

small MOT beams, small quadrupole coils, recapture, and high data-rate. We inten-

tionally omit may of the details concerning laser system design and construction as

the system is similar to the final version, presented in the next chapter.

The experiment itself is fairly straightforward. We prepare an ensemble of cold

atoms in a MOT. The trap is released, and the atoms fall ballistically for a few

milliseconds. We perform the Raman interrogation, and readout the atomic state.

From the atomic population in each of the hyperfine states, we may extract the

inertial information. After the experiment, the atoms are still well within the capture

volume of the MOT. We reactivate the trap, recapturing most of the ensemble. After

the ensemble relaxes back to the center of the trap and atoms are loaded from vapor,

the cycle begins anew.
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Figure 3.1: A diagram and picture of the high data-rate accelerometer apparatus.
Left: The arrangement of laser beams for the experiment. The Raman beam axis
is oriented to coincide approximately with the direction of gravity. Right: We build
the optomechanical frame using free-space optical components mounted around a
T-shaped vacuum cell. We employ compact trapping and bias magnetic coils to
investigate the feasibility of a compact arrangement. Figure reprinted from [58].

3.1 Experiment

The experimental apparatus is shown in Fig. 3.1. It consists of a magneto-optical

trap of 87Rb with cooling light, repump light, quadrupole coils, and bias coils. The

vacuum cell is a quartz cell of dimensions 14 × 16 × 80 mm3 at a vapor pressure of

2× 10−9 torr. The source for the atoms is a getter driven at 3.6 A. Additionally, the

experiment has a probe laser, a pump laser, the two Raman lasers, and an avalanche

photodiode. The cooling laser provides a total of 70 mW of power locked 9 MHz

red of the |F = 2〉 → |F = 3′〉 D2 transition in 87Rb. The light is split into three

beams collimated to a 1/e2 diameter of 5.2 mm and retro-reflected. The repump

laser consists of 1 mW of light resonant with the |F = 1〉 → |F = 2′〉 transition to

prevent accumulation in the dark state. The trapping field is generated from a pair

of quadrupole coils of diameter 32 mm. The corresponding axial field gradient is

7.8 G/cm. The resulting loading rate of atoms into the MOT is 4× 104 atoms/ms.

The experiment proceeds as follows. At the start of the experiment, the MOT
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atoms are sub-Doppler cooled to 5.5 µK. The atoms are then pumped into the

|F = 1〉 manifold with a 100 µs depump pulse resonant with the |F = 2〉 → |F = 2′〉
D2 transition. This was chosen over the more traditional D1 transition (which limits

the off-resonant scatter) due to a simplified laser system whereby an AOM simply

downshifts the master laser to this transition. Furthermore, this depump pulse is

performed without any repumping light, enabling the entire |F = 1〉 manifold to be

populated. This simplified optical pumping scheme reduces the number of atoms

available in the clock transition to approximately 43% of the available atoms. How-

ever, we find that this pumping scheme greatly simplifies the apparatus by making

the D2 off-resonant scatter negligible and maintaining the cold ensemble tempera-

ture. Furthermore, while the atoms remaining in the m = ±1 sublevels contribute

a small amount of background noise, they are easily recaptured allowing for shorter

recapture time, thus enabling a faster data-rate. After pumping, the atoms are

interrogated with the Raman beams.

The Raman master laser consists of a home-built external cavity diode laser

(ECDL) locked 1.2 GHz red of the |F = 2〉 → |F = 3′〉 transition. The two phase-

coherent fields are generated by injection locking two laser diodes to the zero and

first order sideband of an electro-optic modulator (EOM) driven at the hyperfine

frequency, νhf ≈ 6.8 GHz. These beams are coupled into orthogonal axes of the same

polarization maintaining fiber, where they are once again separated at the experi-

ment and redirected so that one of the frequencies travels upwards and the other

downwards. The beams are collimated to a 1/e2 diameter of 5.5 mm, corresponding

to a Rabi frequency of Ωeff = 2π × 161 kHz.

This method adds additional phase noise from the optical path length when

compared with other methods which use a common path for both beams [56]. These

methods involve the atoms falling ballistically under gravity for greater than 10 ms.

The atoms accumulate velocity until the resulting Doppler-shift separates the two

resonance conditions for the interferometer, and enables operation of a Doppler-
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sensitive interferometer. We find this delay of 10 ms to be excessively constraining

in the operation of a high data-rate accelerometer, and thus opted for separate beams

which have no such delay but generate additional phase noise.

After the interferometer, the population in |F = 2〉 and total atom number are

detected by atomic florescence from two 100 µs pulses consisting of probe and probe

with repump. The probe beam consists of 5.2 mW of light locked resonant with the

|F = 2〉 → |F = 3′〉 D2 transition. This beam is retro-reflected to balance the photon

scattering force and facilitate recapture. 1.2% of the atomic florescence is collected

into an avalanche photodiode (Hamamatsu c5640-1). This figure is calculated from

the imaging optics, as well as a window which defines the imaged area. At the time

of detection, the atoms have fallen approximately 1 mm or less dependent on the

interrogation time of the interferometer. This places them well within the capture

volume of the MOT, so the trapping coils and cooling light are immediately enabled

to recapture the ensemble. Additional loading from vapor replenishes the remaining

atoms, and after a few milliseconds the cycle begins anew.

3.2 Performance

We evaluate the performance of the apparatus in two stages. We first consider the

number of atoms in steady-state operation which presents an absolute limit to the

sensitivity. This is driven primarily by the recapture efficiency. We then evaluate the

interferometer itself, and discuss methods by which we may enhance the sensitivity

and stability.
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3.2.1 Recapture

Given a fixed cycle time, there exists some optimal recapture duration and interroga-

tion time. The recapture duration must be sufficiently long to maintain reasonable

atom number while sufficiently short to allow for maximal interrogation. We optimize

this parameter for maximal sensitivity, and we find this optimal recapture duration

to be on the order of 2 ms over a range of data-rates, which is comparable to the

trap relaxation time τMOT = 3 ms. This optimal sensitivity occurs at approximately

the same atom number of 2 × 105. We typically find this number to favor longer

interrogation times over higher atom number. This is clearly indicative of the T 2

scaling of the sensitivity. Furthermore, this suggests the dominant noise sources are

not atom shot noise limited.

We find the recapture efficiency to range from 95% to 85% at this optimal recap-

ture duration, depending on data-rate and time-of-flight. This recapture efficiency

is primarily limited by the recapture duration relative to the relaxation time of the

trap, as the vast majority of atoms are well within the MOT capture volume and

would be recaptured given sufficient time. We find the total atom number is primar-

ily limited by the loading rate of the atoms. Our vacuum limited lifetime of τ = 1 s

is well above what is necessary for such a short interrogation. According to Eq. 2.35,

we may expect to gain over an order of magnitude more atoms by moving to a higher

vapor pressure. However, we found that the quality of our getters was limiting the

purity of the source at higher currents.

3.2.2 Interferometer

We demonstrate operation of the interferometer with a cycle time of 10 ms (100 Hz)

and an interrogation time of 3.415 ms. We believe this represents a favorable trade-off

between being sufficiently fast for the dynamics we intend to investigate, while also



Chapter 3. High Data-Rate Accelerometer 34

0 2 4 6 8 10 12

0.4

0.5

0.6

0.7

0.8

Phase (rad)

P
 (

F
=

2,
 m

F
=

0)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−50

0

50

Time (s)

δg
 (

µg
)

10
−2

10
−1

10
0

10
1

10
0

10
1

τ (s)

σ g (
µg

)

a)

c)

b)

Figure 3.2: High data-rate accelerometer fringe results. a) We plot the interferomet-
ric fringe by sweeping the phase of the third Raman pulse. This plot is normalized to
the number of atoms pumped into |F = 1,mF = 0〉. b) A trace of the interferometer
output at mid-fringe demonstrates high data-rate operation. c) The Allan deviation
of a mid-fringe trace reveals the presence of systematic drift in the interferometer
phase. Figure reprinted from [58].

demonstrating favorable sensitivity. Results are shown in Fig. 3.2. Part (a) shows

the interferometer fringe by scanning the relative phase of the third Raman pulse.

Part (b) shows a mid-fringe time record converted to units of acceleration. Part

(c) is the corresponding Allan deviation. The shot to shot phase noise of 31 mrad

corresponds to a sensitivity of 1.1 µg/
√

Hz. However, the stability of the device

vanishes on a timescale of approximately 1 s. The dominant contribution to this

noise source is found to be the optical phase due to path length variations. We

find the magnitude of this noise to be 21 mrad at 100 Hz. Furthermore, we use a

magnetometer to measure variations in the ambient magnetic field. We calculate the
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noise contribution from the second-order Zeeman effect to be 15 mrad. This may be

readily mitigated through the use of magnetic shielding. We attribute the remainder

of the noise to a combination of detection, atom shot noise, and platform stability.

We seek to demonstrate the performance of the device over a range of data-rates.

This is done by varying the time-of-flight, optimizing the duty-cycle at each rate

for maximal sensitivity. We varied the data-rate from 50 Hz to 330 Hz. During this

measurement, we noted the phase noise was approximately constant at 30 mrad/shot

dropping by a mere 25% at higher data rates. This demonstrates that the noise in our

system is largely due to the systematics described above. Additionally, we generally

found each data point to optimize in favor of higher interrogation duration and lower

atom number. This again indicates that the experiment was not limited by atom

shot noise. The results are shown in Fig. 3.3. We find the sensitivity to vary from

approximately 0.5 µg/
√

Hz to 40 µg/
√

Hz. The duty cycle varies from 75% to 30%

at higher bandwidths. This is consistent with an approximately constant recapture

time, limited by the trap relaxation time τMOT. Additionally, the state-preparation

and sub-Doppler cooling durations were also constant. Thus, there is a favorable

increase in interrogation time at lower data-rates. This experiment also indicates

successful operation with a 16 ms time-of-flight. That is, a significant number of

atoms are still recaptured.

3.2.3 Gravity Measurement

As a demonstration of the acceleration sensitivity of the interferometer, we con-

ducted a measurement of local gravity in the laboratory. This measurement was not

intended to be a highly sensitive or accurate measurement of local gravity, but rather

a demonstration of a high data-rate, absolute gravimeter.

We measure local gravity by measuring the interferometer phase shift as a func-

tion of the interrogation time T , as it is varied from 0 ms to 7 ms. The result is
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Figure 3.3: Performance of the accelerometer over a range of data-rates. We vary
the data-rate of the experiment and optimize the interrogation time for maximal
sensitivity at each data-rate. Inset: The duty cycle varies from 70% to 30% due to
the optimization of the interrogation time and constant-time stages in the experiment
(such as sub-Doppler cooling). Figure: The sensitivity of the device ranges from
0.5 µg/

√
Hz to 40 µg/

√
Hz. It follows a T 3/2 scaling, indicating the phase noise to

be largely constant. Figure reprinted from [58].

a chirped sine wave from which we may read out a continuous phase exceeding 2π

radians. The total phase is given by,

φ = keff · g((1 + 2/π)τπT + T 2), (3.1)

where τπ is the duration of a π pulse [70]. This equation varies from Eq. 2.18 as it

contains the next higher order term proportional to T , which takes the finite Raman

pulse duration into account. We note that in the limit of T � τπ, this additional

term vanishes. There exists an additional term with this correction proportional

to τ 2
π , which we ignore. The result of the measurement is shown in Fig. 3.4. The

Raman beam was aligned to gravity using a weighted mass. We estimate the error

of this procedure to be approximately 1 mrad. We find the value of local gravity to

be g = 9.79164± 1× 10−5 m/s. This is in agreement with the measured benchmark

[71] when taking into account the height difference of the measurements and the

uncertainty of the direction of gravity. We note that this measurement was not
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Figure 3.4: Demonstration of local gravity measurement with the accelerometer. A
sweep of the interrogation time T results in a chirped sine wave (inset). Fitting to the
local phase of this curve enables us to track the global phase over several thousand
radians. We then fit the global phase and find the value of local gravity to be
g = 9.79164±1×10−5 m/s. This is in agreement with an independent measurement
[71]. Figure reprinted from [58].

intended as a precision measurement of gravity, but rather a demonstration of the

device as an absolute accelerometer.

3.3 Sensor Enhancements

This prototype experiment confirmed many of the fundamental techniques which our

ensemble exchange device will employ. First of all, recapture of the ensemble after

interrogation has been successful at reaching target atom number and duty cycle.

In fact, we find recapture enables significantly enhanced duty cycle, even with a

16 ms time-of-flight, and likely beyond. Secondly, the apparatus has demonstrated

operation at and beyond our target data-rate. This demonstrates sufficient flexi-

bility of our control system, and validates the use of high data-rate as a means of

recovering some of the lost sensitivity. Finally, the apparatus has demonstrated the

feasibility of a compact design, including compact trapping and bias coils, as well as
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optomechanics.

The experiment also revealed many optimizations which we may apply towards

the next apparatus. The first of these is the vapor pressure limitation from getters.

At higher getter currents there was significant outgassing of species other than rubid-

ium, which increased the background vapor pressure without comparable increases of

loading rate. One possibility is to use higher quality getters, but a more permanent

solution which doesn’t require replacement and testing is desired. This inspired the

use of a pure rubidium source from a crushed ampoule. These are typically used in

conjunction with a differential pump to control the vapor pressure. However, this

would represent a significant increase in system size and complexity. Thankfully,

the vapor pressure of rubidium at room temperature corresponds to a background

limited lifetime on the order of 0.1 s, which is sufficient for our purposes. Thus, we

opted for a solution with a temperature controlled pure rubidium source without the

use of a differential pump.

Another optimization lies with the Raman delivery system. While using separate

fibers enabled the increased data-rate, the resulting phase noise due to optical path

length fluctuations ended up limiting the sensitivity. Fortunately, the launch veloc-

ity of the atoms in the ensemble exchange device enables us to use techniques which

places the two Raman colors on the same optical fiber and uses the Doppler shift

to separate the resonance conditions. This is described in greater detail in the next

section. The third optimization is in the size of the MOT beams. Increasing the size

of the MOT beams increases the MOT capture volume. While this may not signifi-

cantly improve recapture efficiency for the static device, it would likely increase the

magnitude of dynamic stimuli the apparatus may endure. Finally, this experiment

clearly demonstrated the need for magnetic shielding, as well as the necessity of a

mechanically-stable design.
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Chapter 4

Dual-Axis Sensor Apparatus and

Experiment

We now present the construction of the sensor head and laser system for the ensemble-

exchange device. This apparatus is designed to load and cool two MOTs from vapor

located a few centimeters apart. The ensembles are then launched towards each

other, and the Raman interrogation takes place during their ballistic trajectory.

Finally, the atomic populations in each of the hyperfine states are detected, and

the ensembles are recaptured in the opposing trap. We design the sensor head as

a compact device which would serve as the physics package of an inertial sensor.

The laser system is designed using bulk optics in free-space, and occupies a couple

square meters. The engineering of a compact laser system was beyond the scope of

this project. Our objective instead was to demonstrate successful operation within a

compact physics package, in contrast to bulky vacuum systems and optomechanical

delivery systems. We present this chapter in three sections describing the laser

system, sensor head design, and the timing of the experiment.
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4.1 Laser System

The laser system consists of the light and electronics necessary for trapping, launch-

ing, interrogating, and detecting the cold atomic ensembles. The system consists

of a seeding and locking stage, an amplification and frequency-shifting stage, and a

Raman stage. Each stage is on separate breadboards connected with optical fiber,

should a mobile application be desired.

4.1.1 Seeding and Locking Stage

The seeding and locking stage provides a stable reference frequency for trapping,

detection, and Raman light. The master laser consists of a Vescent Photonics CECL

Laser Module, which provides 30 mW of light at 780 nm. Using standard saturated

absorption spectroscopy techniques (sat. spec.) and an acousto-optic modulator

(AOM), the laser is locked 53 MHz red of the |F = 2〉 → |F = 2′/3′〉 crossover transi-

tion in 87Rb. This provides access to the |F = 2〉 → |F = 2′〉 and |F = 2〉 → |F = 3′〉
pumping and detection transitions using approximately 80 MHz AOMs single and

double passed, respectively. However, we currently use a separate pumping laser on

the D1 line, but opted to preserve the original master laser configuration.

We use 1 mW of the master laser light as a reference for the Raman offset lock.

The remaining power is directed towards a double passed AOM which performs the

sub-doppler cooling frequency and intensity ramp. This light, which is 140 MHz blue

of the |F = 2〉 → |F = 3′〉 probe transition with a power of 5 mW is directed towards

the amplification and frequency-shifting stage.

Additionally, this stage contains a separate repumping laser (EYP-DFB-0780-

00080-1500-SOT02-0000) at 780 nm. This laser is locked to the |F = 1〉 → |F = 1′/2′〉
crossover transition using sat. spec. An AOM shifts the frequency to the |F = 1〉 →
|F = 2′〉 transition and acts as a shutter, so 10 mW of power is directed towards
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Figure 4.1: Diagram of the master laser stage. For clarity, certain optical elements
such as half-wave plates and quarter-wave plates are omitted. A master laser at
780 nm provides the seed light for cooling and detection, resonant with |F = 2〉. A
second laser at 780 nm provides the repumping light resonant with |F = 1〉. A laser
at 795 nm provides the optical pumping light, resonant with |F = 2〉.

the sensor head for trapping, pumping, and detection. Another laser (EYP-DFB-

0795-00080-1500-TOC03-000x) on the D1 transition at 795 nm provides the light for

optical pumping. This laser is locked using sat. spec. to the |F = 2〉 → |F = 2′〉.
By using a D1 laser, we suppress off-resonant pumping and achieve a 92% state

polarization.
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4.1.2 Amplification and Frequency-Shifting Stage

The reference 5 mW seeds an injection locked laser, amplifying it to 30 mW. This

then serves as a seed laser for a tapered amplifier (Eagleyard EYP-TPL-0780-01000-

3006-CMT03-0000). The 300 mW output is split into four branches: probe, and three

cooling beams. Each branch is double passed through AOMs, bringing the frequency

down to the |F = 2〉 → |F = 3′〉, and tunable by 20 MHz. The probe beam is locked

on resonance, while the remaining beams are detuned 11 MHz red of resonance to

serve as the cooling beams. One beam (designated L0) is directed orthogonal to

the launch direction of the ensembles, and contains zero frequency shift. The other

two beams (designated L+ and L−) are directed 45◦ to the launch direction, and are

blue and red detuned 2.2 MHz from the cooling frequency (respectively) to generate

optical molasses in a moving frame at 2.5 m/s. These beams are delivered to the

sensor head with optical fiber, where the L0 beam is combined with repump light

from the seeding and locking stage.

4.1.3 Raman Stage

The Raman master laser is an external cavity diode laser (ECDL) which generates

40 mW of power at 780 nm with a linewidth of 1 MHz. We use 1 mW of power with

1 mW of power from the master laser to generate a beatnote signal on a 12 GHz

photodiode (Newfocus 1580-B). An error signal is generated by mixing in a reference

oscillator and detecting a frequency-dependent phase shift introduced by a delay line

[72]. This provides a robust and tunable locking scheme, locking the Raman beam

1 GHz red of the |F = 2〉 → |F = 3′〉 transition.

The remaining power seeds an injection locked laser, amplifying it to 100 mW.

This output is split and directed towards two electro-optic modulators (EOMs),

driven at the hyperfine frequency. The zero and a first order sideband of this light
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Figure 4.2: Laser amplifier and frequency-shifting stage. This stage amplifies light
from the master 780 nm laser. This light is then split into the MOT and probe beams
according to the detuning necessary to achieve the moving molasses.

generates the stimulated Raman transition. Two independent frequencies are needed

to lock in to the Doppler shift and phase shift of each interferometer. A schematic

of the microwave frequency chain is shown in Fig. 4.4. The hyperfine RF frequencies

are generated from a 10 MHz oven-controlled crystal oscillator (OCXO), which is

then multiplied up to 100 MHz by a phased locked oscillator (PLO). This is then

directed to a distribution amplifier which provides a stable reference frequency for

the whole lab. A Dielectric Resonator Oscillator (DRO) multiplies the frequency up

to 6.8 GHz. Finally, the two channels of a DDS supply 34 MHz frequency modulation

through two single-sideband modulators, configured to enhance the upper sideband.

These are amplified, and directed towards the electro-optic modulators. The RF

power is set so that the first order sidebands are approximately the same amplitude

as the carrier. Further tuning is optimized to nullify the differential light shift.
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Figure 4.3: Raman laser stage. The Raman master laser is locked 0.9 GHz red of
the master laser reference using a phase-sensitive beatnote lock. This light is then
amplified and delivered to two electro-optic modulators which generate sidebands
near the hyperfine frequency. The light is again amplified and delivered to the
Raman laser modules. The original design contained a single EOM and TA, and
provided light for all three Raman beams.

Each of these beams is amplified by a TA (Eagleyard EYP-TPL-0780-01000-3006-

CMT03-0000), and switched using AOMs. The beams are delivered to the sensor

head via optical fiber, with a peak power of 80 mW per beam. One tapered amplifier

supplies power for the leftmost Raman beam (labeled A), while the other is switched

between the middle and right beams (labeled B and C, respectively). Earlier designs

featured just a single EOM and TA supplying power for all three beams.
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Figure 4.4: Schematic of microwave frequency generation. An oven-locked crystal
oscillator and phase locked oscillator form a stable 100 MHz reference for the lab.
A dielectric resonance oscillator multiplies the frequency to 6.8 GHz, and the RF
is split. A modulation of approximately 34 MHz is mixed in using a DDS and two
single-sideband modulators to reach the hyperfine frequency. The use of a single DDS
ensures phase coherence between the two frequencies. The output of the SSBMs is
amplified and directed to two EOMs. The original design used a single SSBM and
EOM.

4.2 Sensor Head

There has been great interest in constructing compact magneto-optical traps for

field deployment. Some of the techniques employ fabrication [73] of pyramid MOTs

[74] or diffraction MOTs [75]. This has motivated investigations in the number

of atoms achieved as a function of laser beam size and intensity [76] and other

experimental parameters. A review of these techniques and advances in this field may

be found in [77]. Unfortunately, the requirement of launching the atoms prevents

the use of many of these techniques, as most of them employ the use of a single laser

beam. However, application of these techniques towards an atom interferometer

accelerometer is feasible.

As such, we have opted to use a traditional six-beam MOT engineered with a

compact design. The sensor head consists of a vacuum system and a compact optome-

chanical assembly. The assembly resides in a 2 foot by 2 foot magnetically shielded
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box constructed from Mu-metal. Optical fibers and electrical cabling are delivered

through a 1.5 inch cylindrical Mu-metal sleeve. The light is split using evanescent

waveguides configured as coupler arrays located inside the magnetic shielding.

4.2.1 Vacuum System

The vacuum system is built around a 20× 30× 60 mm3 quartz cell with 3 mm thick

walls. The system consists of the cell, a pure Rb source from a crushed ampoule,

an ion pump, and vapor density window probe. The Rb vapor pressure is controlled

through the use of a cold point, typically maintained at 20 ◦C using a thermoelectric

cooler mounted to the neck of the Rb source. This maintains a vapor pressure of

approximately 2× 10−7 torr.

4.2.2 Optomechanical Frame

The optomechanical frame is built around the vacuum cell and supports the nec-

essary optics for trapping, launching, interrogating, and detecting the cold atomic

ensembles. A conceptual diagram of the sensor is shown in Fig. 4.5. Additionally,

a CAD model is shown in Fig. 4.6 and pictures of the sensor in Fig. 4.7. It was

machined out of the insulator G10 to diminish eddy currents [78], and maintains a

thermal expansion coefficient similar to that of aluminum. The time-constants for

magnetic field switching are on the order of 20 µs. This ensures a sufficiently stable

magnetic field during the interrogation time of our high bandwidth experiment.

The optomechanical frame uses optical access along four independent geometric

planes to densely pack the required 19 optical beams and achieve a compact design.

Furthermore, the frame is designed to be modular with detachable cooling, detection,

and Raman assemblies. In fact, throughout the lifetime of the apparatus both the

detection and Raman assemblies were replaced. The cooling assembly uses compact
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Figure 4.5: Diagram of the sensor head design. a) Front view. The cooling beams
are shown in blue, probe beams in pink, and Raman beams in yellow. Detuning the
outer and inner cooling beams blue and red of the cooling frequency (respectively)
results in optical molasses moving towards the center of the cell. The ensembles
then undergo state-preparation, Raman interrogation, and detection before being
recaptured on the opposing trap. b) Side view. The design boasts four planes of
optical access in a compact geometry. The direction of acceleration measurement is
given by the direction of the Raman beams. The rotation measurement direction is
keff × v, pointing towards the front at a slight angle. Figure reprinted from [59].

flexure mounts with free space fiber mounts and polarization control. We find that

a useful and compact simplification is to employ uncollimated cooling beams that

diverge freely from the fiber at a half-angle of 5 degrees [8]. The detection modules

feature counter-propagating and balanced detection beams for each ensemble, and

polarization control. The detection beams each consist of a probe locked to the

|F = 2〉 → |F = 3′〉 transition to measure the population in |F = 2〉 and a repumper

locked |F = 1〉 → |F = 2′〉 transition to measure the total atom number.

The Raman beams are delivered to the experiment by a common optical fiber.

The Raman assembly collimates the light, and splits it into three beams using half-

wave plates and polarizing beamsplitters. Normally, this would generate a Doppler-

free interferometer, since the beams are traveling along the same direction. However,

we orient the beams 10◦ from the perpendicular of the launch direction, and retro-

reflect by a common mirror. This projects a component of the beam along the launch
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Figure 4.6: CAD model of the sensor head. Half the cooling assembly, one probe
module, and the mounting frame are not shown for clarity. The optomechanical
frame is machined from G10.

velocity. This results in a Doppler shift for both the original beam and the retro-

reflected beam, but opposite in direction. Thus, by selecting a detuning of magnitude

keff ·v = keffv sin(10◦), we generate a resonant Doppler-sensitive interaction using one

of the original beams and the other retro-reflected beam. This eliminates systematic

phase noise from having the beams be delivered by different fibers, using the mirror

as a common inertial reference. The second advantage of this technique is that

the alignment is simplified immensely. If the beams were independent, each beam

would have to be precisely aligned to close the interferometer. That is, at the end

of the experiment the two arms of the interferometer must align to within the de-

Broglie wavelength of the atom. With our experiment, this corresponds to an angular
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Figure 4.7: Pictures of the assembled sensor head. The vacuum cell is not visible
from this viewpoint. The front detection module is removed for clarity. The right
picture shows the magnetic shielding and Raman retro-reflecting mirror.

resolution of approximately 1 µrad or 0.2 arcsecond. Fortunately, by this technique

and the law of reflection, the direction of keff = k1 − k2 is orthogonal to the surface

of the mirror, independent of the direction of the input light. However, this input

light must be aligned to the mirror orthogonal to preserve the Rabi frequency, due to

the finite beam size. This constraint is significantly more relaxed, with a resolution

of 10 mrad which is 4 orders of magnitude higher.

The original Raman module contained a single fiber input which was split into

three with half-wave plates and polarizing beamsplitters. There were a couple draw-

backs to this design. First, the beamsplitters were fixed, and thus so were the Raman

beam orientations. The Raman wavevector was still fixed, but any deviation in the

input beam results in reduced pulse efficiency. Furthermore, there was a fixed offset

between the center of the Raman beam and the center of the ensemble. Secondly, by

using a single Raman beam the detunings and offset phase for each interferometer

were fixed. Finally, there was additional dead-time in the experimental cycle as the

ensembles traveled from pumping region to the Raman beams, and from the Raman

beams to the detection region. This limited our interrogation time to T = 4.0 ms.

Since then, we have upgraded to a system which supports three independent Raman
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beams which may be individually positioned and oriented. This allows us to align the

center of the beam with the center of the ensemble, and separate the beams further,

increasing our interrogation time to T = 4.5 ms. Furthermore, the separate beams

allow us to set independent phases and frequencies for all but the middle (second)

pulse, which is shared between the interferometers.

4.2.3 Magnetic Field Geometry

The quadrupole trapping magnetic field is generated from two pairs of trapping coils

(approximately 16 mm in length) located 36 mm apart. At this separation distance,

there is a great deal of interference between the quadrupole pairs. Therefore, the

magnetic field geometry changes based on the relative alignment of the quadrupole

field polarities (parallel or anti-parallel). In particular, we are concerned with two

factors. First, how significantly the location of the trap center shifts. Second, the

distance over which the field gradient is maintained may limit the capture volume of

our MOT.

We calculate the magnetic field geometry in both the parallel and anti-parallel

case. See Fig. 4.8. First, we note that the parallel case shifts the magnetic field

zero by 2 mm towards the center. The anti-parallel case shifts the zero 2 mm away

from the center. Thus, the magnitude of the shifts is the same in both cases, and

must be taken into account when aligning the cooling beams. Next, in the parallel

case we observe an additional zero at the center of the cell. However, the polarity

of the field is opposite to that of the primary traps. Thus, taking into account both

the alignment and polarization of the cooling beams, it is highly unlikely that any

atoms would be trapped in the center. Finally, we observe that in the parallel case,

the magnetic field gradient vanishes approximately 5 mm towards the center of the

cell. In the anti-parallel case, the gradient in maintained for over 10 mm. Thus, we

decided to configure our magnetic field coils to use the anti-parallel alignment.
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Figure 4.8: Magnetic field geometry from quadrupole coil pair in close proximity.
The left and right arrangements are configured with the quadrupole axes parallel and
anti-parallel, respectively. The bottom plots depict the magnitude of the magnetic
field in an axis between the coils, along which the ensembles would launch and travel.
The parallel geometry reveals the presence of an additional field zero at the center
of the cell. While this wouldn’t trap atoms (since the cooling beams are polarized
oppositely to this) there is a significant reduction of the magnetic field gradient. The
anti-parallel geometry maintains this gradient. Both configurations generate a slight
offset in the magnetic field zero, which much be accounted for when aligning the
cooling beams.

We also employ compact bias coils in three directions which are slightly larger

than the size of our vacuum cell. Thus, we must consider any fringing effects of the

magnetic field during the interrogation, which would result in frequency errors due

to the second-order Zeeman shift. We calculate the magnetic field of our bias coils

numerically, and find the error to be less than 1 mG over the ensemble trajectory.

4.3 Timing Sequence

Given a fixed interrogation time on the order of a few milliseconds, it is imperative

to minimize the cycle time of the experiment in order to increase bandwidth and
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maximize sensitivity. Therefore, a strict timing sequence must be maintained which

makes optimal use of the available cycle time. Even a loss of 1 ms could result in

significant loss of sensitivity.

4.3.1 Ensemble Exchange Timing

A conceptual diagram of the timing sequence is shown in Fig. 4.9. The timing cycle

begins with atoms trapped in a MOT, and the quadrupole field is shut off. Over

0.2 ms, the L+ and L− beams are detuned to generate optical molasses in the moving

frame and launch the atoms. A detuning of 2.2 MHz results in an ensemble velocity

of 2.5 m/s.

Then, over 1 ms all cooling beams are ramped down by 40 MHz and the power

is lowered by 90% to sub-Doppler cool the atoms. In this process known as Sisyphus

cooling or polarization-gradient cooling, the oppositely-polarized MOT beams inter-

fere, and form a standing-wave pattern which has a spatially-dependent polarization

[79]. As atoms move through this potential landscape, they lose kinetic energy in

favor of potential energy at the potential maxima. They then undergo optical pump-

ing into the lower energy state, having shed their potential energy into the light-field.

The process is repeated over many cycles, drawing analogy to the figure Sisyphus

from Greek mythology, who for all eternity was condemned to roll a boulder up a

mountain only to have it roll down again. The decrease of cooling power and increase

in optical detuning are to suppress resonant photon scatter which limits the ensemble

temperature to the Doppler temperature. Theoretically, the temperature limit for

this process is given by the recoil limit, which is 362 nK for the D2 transition in 87Rb.

In practice, this temperature is difficult to achieve, limited by the time available for

cooling, polarization purity, and intensity & frequency control. Typical experiments

achieve a temperature of a few µK [80].

After the cooling process, the cooling beams are shut off, and the atoms are illu-
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minated by the D1 pumping beam for 100 µs, which pumps 92% of the atoms into

|F = 2,mF = 0〉. This optical pumping technique uses the fact that the |F = 2,mF = 0〉 →
|F ′ = 2,mF = 0〉 transition with π-polarized light is forbidden. Thus, by tuning a

laser resonant with |F = 2〉 to this transition and repumping the atoms from |F = 1〉,
the atomic population cycles until it reaches the |F = 2,mF = 0〉 state, which is dark

to the pumping laser. By leaving the repumping laser on for 10 µs longer than the

depumping laser, we ensure the |F = 1〉 state is completely depopulated. Many cold

atom experiments perform additional state purification where a microwave π pulse

transfers the atoms from |F = 2,mF = 0〉 to |F = 1,mF = 0〉. The atoms remaining

in the |F = 2〉 manifold are then blasted away with resonant light. However, we find

it beneficial to maintain these spectator atoms in the ensemble in order to facilitate

loading for the next shot of the experiment. At this stage, the temperature of the

ensemble is approximately 30 µK. We believe this temperature is limited by the en-

semble velocity, as the atoms leave the cooling beam volume during the sub-Doppler

cooling process. The atoms are now traveling ballistically towards the other end of

the cell. At this stage, we would perform the interferometer which we describe in

subsection 4.3.2.

After the interferometer, the atoms are now located near the opposite end of

the cell, just before the traps. The transition probability is detected by fluorescence

detection from two 100 µs pulses. These pulses are comprised of probe and probe

with repump light to measure the population in |F = 2〉 and the total atom number.

The scattered light is imaged into a multi-mode fiber and directed into an Avalanche

PhotoDiode (APD) [Hamamatsu C5460-01]. A total of 0.5% of the scattered light

reaches the APD. The atom number is calculated from the photodiode signal by

calculating the photon scattering rate from the probe, which in conjunction with the

fraction of scattered light imaged, photodiode quantum efficiency, and amplifier gain

results in a scale factor for volts into atom number.

Finally, the traps are activated and the ensembles are recaptured in the opposing
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Figure 4.9: Timing diagram of the experiment (not to scale). This diagram depicts
the entire experimental cycle, lasting approximately 10 ms to 20 ms. Unlike many
cold atom experiments, the loading and recapture duration of a few milliseconds is
on a timescale similar to the other stages of the experiment. Optimizing this cycle
to make optimal use of the allotted time is critical to achieving maximal sensitivity.
Most of these parameters were determined empirically by optimizing for maximal
atom number and sensitivity.

trap zone. One optimization we discovered was to activate the traps before the

ensemble reaches the trap center. This allows the ensemble to relax into the trap

while loading atoms from vapor as early as possible. Atoms are recaptured and

loaded over 4 ms, during which the atom number reaches the original steady-state

value. Then, the next cycle of the experiment begins again. Another technique we

discovered was to begin the recapture process with a high magnetic field gradient,

limited by the maximum current supplied to the coils. This decreased the trap time-

constant τMOT , and thus allowed the ensemble to quickly relax towards the trap

center. Then, as the number of trapped atoms increased we slowly ramped down the

field gradient over 2 ms to increase the trap volume. We found that this increased

our steady-state atom number by 10%. Furthermore, we believe it is possible to
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optimize this technique further and observe additional gains.

We constructed a video of the ensemble exchange process by varying the delay

trigger of a CCD camera (Lumenera LM135) over multiple shots of the experiment.

Select frames from this video are shown in Fig. 4.10, with the full video available

at [81]. At the middle of the video, the trapping beams are turned off so that the

Raman interrogation may take place without additional photon scatter. We found

that by taking a series of pictures at a fixed time prior to recapture (13 ms), we may

optimize the alignment of the cooling beams in favor of ensemble size and position

with respect to the trap center.

4.3.2 Interferometer Timing

The timing of the Raman pulses is constrained by the ensemble velocity and Raman

beam separation. We assume an ensemble velocity of 2.5 m/s which was used for

most of the experiment. The original Raman module used a single input fiber with

beams separated by 1 cm. The interferometer begins with all three beams pulsed

3 ms from the start of the cycle, separating the wavepackets. At this point, the

atoms have been ballistic for 1.5 ms. Then, 4 ms later the beams are pulsed again

as the two ensembles are spatially overlapped, redirecting the wavepackets. Finally,

after another 4 ms the beams are pulsed, recombining the paths and forming the

interferometer. After 0.5 ms, the detection takes place as described previously, and

the atoms are recaptured for the next shot.

An FPGA maintains a set of frequency and phase registers for the first two pulses,

and a second set for the final pulse. The frequency and phase values are programmed

to the Raman DDS 20 µs before the first and third pulses. The second pulse uses the

frequency and phase values of the first pulse. The frequency values are chosen to be

an intermediary value between the two ensemble resonances. This will be described

in greater detail in the next chapter.
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The timing for this experiment is constrained by the fixed separation of the

Raman beams. Indeed, as described previously there is additional dead time of

0.5 ms between the optical pumping and Raman interrogation, and between Raman

interrogation and detection. This is due to the time it takes the ensemble to travel

between the various laser beams. Ideally, the separation distance of the Raman

beams is increased to eliminate this dead time. This is one of the issues addressed

with the upgraded Raman module, as will be described later.
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Figure 4.10: Frames from a movie [81] demonstrating ensemble exchange. The
launching step includes sub-Doppler cooling which decreases the intensity of the
cooling light, resulting in reduced photon scatter. The cooling beams are shut off
during the Raman interrogation to reduce photon scatter. The traps are activated
prior to the ensemble reaching the trap center. This allows the ensembles to deceler-
ate into the traps, while giving an extra millisecond for vapor loading. The recapture
duration is extended to 7 ms for this video to allow for higher atom number and thus
a more clear picture. Figure reprinted from [59].
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Chapter 5

Dual-Axis Sensor Performance

We now demonstrate and evaluate the performance of the apparatus in two parts. We

first consider the magnitude of the flux of ultracold atoms provided by the ensemble-

exchange technique, independent of the interferometer. This enables us to evaluate

the potential of the ensemble-exchange technique when applied to other cold atom

experiments. The latter half deals with the performance of the interferometer itself.

5.1 Ensemble Exchange

We quantify the performance of the ensemble exchange technique by both the achieved

atom number and recapture efficiency. By treating these metrics independently, we

may consider both our achieved performance loading the ensemble from vapor, as

well as an enhanced (although more complex) system loading from another source,

such as a 2-D MOT. The performance of such a system may be predicted by using

the same recapture efficiency, but scaling up the loading rate accordingly.
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5.1.1 Recapture Efficiency

We measure our recapture efficiency using two methods. First, we observe the atomic

fluorescence as atoms load into the trap, on a timescale of τMOT. There are two

elements to this process. First, atoms are loaded into the trap from a nearby ensemble

(recapture). This is a highly complicated process based on a wide set of parameters

including MOT capture volume, imaging volume, capture velocity, ensemble spatial

distribution, and ensemble velocity distribution. However, we have found we can

approximate this loading process as a Gaussian curve, with width τr which is on the

order of τMOT. The second element to this loading process is loading atoms from

atomic vapor. In this timescale where τMOT � τbkgd, we may approximate the vapor

loading as linear in time. Thus, the total trap loading function is given by:

N(t) = N0(1− e−t2/(2τ2r )) + αt. (5.1)

By fitting to this curve, we calculate the recapture efficiency as r = N(tr)/N0, where

tr is the total time spent recapturing. Fig. 5.1 shows the signal from an APD as

atoms enter the trap. By fitting this function, we find a recapture efficiency of 85%.

We note that this recapture efficiency includes the background collisional loss as the

ensemble travels to the loading region.

The second method we use to determine recapture efficiency is based on equation

Eq. 2.33. Here, we monitor the total atom number over multiple shots of the exper-

iment, and over a range of vapor pressures. Given an independent measurement of

α vs β, this enables us to calculate the recapture efficiency and steady-state atom

number as a function of vapor pressure, which we quantify with the parameter β.

This independent measurement was carried out by measuring MOT loading rates

without ensemble exchange, over a range of vapor pressures. As expected, we found

a constant ratio for α/β.

We now carried out the experiment with ensemble exchange. Beginning with zero

atoms, we trigger the cycle to begin and ensemble exchange builds the population
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Figure 5.1: APD signal as the ensemble is being recaptured. The initial bump
represents recapture of the ensemble. There is an overall linear trend corresponding
to the loading of atoms from vapor. By subtracting out this contribution and dividing
by the total atom number, we find a recapture efficiency of 85%. Figure reprinted
from [59].

to a steady-state over approximately 40 cycles. This growth is depicted in the inset

of Fig. 5.2. By fitting Nn as a function of shot index n, as per Eq. 2.33, we are

able to derive the recapture efficiency r and steady-state atom number Ns. In this

particular inset, we have r = 89% and Ns = 4.2 × 106. Given the ratio of α/β

calculated previously, we may derive the atom loss coefficient β = 3.3 1/s.

We now perform this measurement over a range of vapor pressures, again quan-

tified by β. We control the vapor pressure by closing the valve to the Rb source

for 1 week and allowing the system to pump down. Then, we opened the valve and

took the measurement periodically as the pressure built over the course of a few

hours. Fig. 5.2 shows the recapture efficiency r and steady-state atom number Ns as

a function of the vapor pressure. We find the recapture efficiency to be linear in β,
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Figure 5.2: Atom number and recapture efficiency over a range of vapor pressures.
Inset: Atom number as a function of shot index. The atomic population builds
over approximately 40 cycles until it reaches steady-state. This is fit to Eq. 2.34
to extract the recapture efficiency and total atom number. Figure: We plot this
recapture efficiency r and total atom number Ns as a function of vapor pressure,
quantified by the background-limited loss rate β. Dashed circles show the typical
operating regime for the interferometer. Figure reprinted from [59].

as expected by the definition r = r0 − βTc. We extrapolate this expression to zero

background loss (β = 0) and find a base recapture efficiency r0 = 96%. This indicates

that simply as a function of the ensemble overlap with the trapping volume, 96% of

atoms are recaptured. This suggests that increasing the time-of-flight even further

is feasible. The figure also depicts our typical operating parameters, corresponding

to approximately 7× 106 atoms.

From these measurements, we find the ensemble-exchange technique provides a

consistent and robust flux of ultracold atoms with minimal loading time. Further-

more, we find our data agrees well with the theory presented earlier. By increasing

the size and power of the MOT beams, we suspect achieving 1×107 atoms is feasible,

along with a higher time-of-flight.
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5.2 Interferometer

We now conduct an analysis of the interferometer performance. We construct the

interferometer using a π/2 − π − π/2 pulse sequence of Doppler-sensitive Raman

transitions. The Raman laser is split into three beams which provide the light for

the transition at three places along the atomic trajectory. The available light must

be optimized for each of the three pulses, as well as the two ensembles. As such,

the data below represents the performance when optimizing conditions for all three

pulses simultaneously, thus optimizing the interferometer readout.

5.2.1 Doppler-Sensitive Raman Pulse

Rabi flopping of the Raman pulse is shown in Fig. 5.3. These plots are generated by

sweeping the duration of a Raman pulse, delayed by 0, 4, 8 ms from the start of the

interferometer. This pulses all three beams simultaneously, enabling us to observe

Rabi flopping when the ensemble is overlapped with any of the three beams. The

spatial and velocity distribution of the ensemble reduce the π pulse efficiency to 70%

for the first pulse. The expanding spatial distribution decreases the pulse efficiency

over time, down to 40% for the final pulse 9 ms later. The Rabi frequency is tuned

to be approximately equal for all three pulses by balancing the beam intensity. Since

both ensembles share the same duration Raman pulse, it is necessary to optimize the

alignment to be balanced between the ensembles as closely as possible to ensure the

same Rabi frequency. In practice, this is a difficult alignment as for this experiment,

the relative alignment of the Raman beams is fixed. However, we manage to find a

sufficient compromise.

A frequency scan of the Raman hyperfine detuning is shown in Fig. 5.4. We

generate this plot by sweeping the Raman DDS frequency which drives the EOM.

The two resonances result from the Doppler shift as a component of the Raman beams
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Figure 5.3: Rabi flopping for each of the three interferometer pulses. The expanding
spatial distribution of the ensemble causes the pulse efficiency to decrease from 70%
to 40%. The Rabi frequency is approximately Ωeff = 2π × 300 kHz.

is projected along the launch velocity of the atoms, as described in subsection 4.2.2.

By choice of resonance, this enables us to select a particular direction of the Raman

wavevector keff , generating the Doppler-sensitive transition. Due to the sign of the

Doppler shift, given a choice of resonance we have one interferometer operating at

+keff and the other at −keff . From our launch velocity of 2.5 ms, we calculate a

Doppler shift of keffv sin(10◦) = 2π × 1.1 MHz, which is what we observe in the

figure.

The two plots in the figure correspond to the time of the Raman pulse, either

2 ms or 11 ms from launch. As the atoms travel their ballistic trajectory, the res-

onances separate. This is due to the Doppler shift corresponding to the atoms’

velocity as the accelerate under gravity. The magnitude of this chirp is given by

keff ·g = 2π×24.7 kHz/ms. With a single Raman beam apparatus, we are unable to

correct for this chirp. Thus, we select an intermediate frequency for all three pulses.

This maintains interferometer contrast for both ensembles, although at a reduced

amplitude. Furthermore, this drives pulses off resonance, which compromises the

stability of the interferometer. With our closed loop interferometer where we add

an independent Raman laser, we may correct for this shift in the first and third

pulses. However, the second pulse uses a single Raman beam which is shared for
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Figure 5.4: Frequency scan of the Raman hyperfine detuning, δ. (a) Two resonances
are revealed corresponding to opposite directions of the Raman wavevector. (b)
Gravitational acceleration and the Doppler-shift cause the resonances to separate by
keff ·g = 2π×24.7 kHz/ms. We choose an intermediate resonance frequency to drive
both interferometers simultaneously. Figure reprinted from [59].

the interferometers, and is still driven off-resonantly. Unfortunately, this represents

a fundamental limitation in the stability performance of the design, which will be

explained in further detail.

5.2.2 Interferometer

The interferometer fringe is shown in Fig. 5.5 for a T = 4.1 ms interferometer.

We construct this figure by scanning the phase of the RF oscillator for the Raman

EOM just before the final pulse. We achieved an interferometer contrast of 20%.

This fringe includes the components from Earth gravity and rotation. We note

that the gravitational phase shift is opposite for each interferometer, due to the
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reversed keff vector. Thus, it is possible to set an arbitrary relative phase between

the interferometers with appropriate choice of interrogation time T . This allows us

to choose a phase φ such that both interferometers are mid-fringe. As shown in the

figure, we choose a T such that there is a relative π phase between the interferometers.

Furthermore, we find that this rejects detection noise in the rotation component of

the signal.

We set the interferometers to mid-fringe and monitor the noise in the signal over

60 seconds. We find the phase noise of each interferometer to be δφa = δφb =

22 mrad/shot. The corresponding acceleration and rotation rate components of the

phase noise are δφ− = 19 mrad/shot and δφ+ = 11 mrad/shot. The acceleration com-

ponent of the phase is noisier by a factor of 2 due to vibrations of the retro-reflecting

mirror. The resulting acceleration and rotation rate sensitivities are 0.9 µg/
√

Hz and

1.1 µrad/s/
√

Hz, which represent competitive figures for inertial navigation.

It is worth noting the potential performance of this approach under optimal

conditions. Let us assume a shot noise limited signal on the 4 × 106 atoms we

achieved, with 100% fringe contrast. The corresponding phase noise is 0.5 mrad

per interferometer. Using an identical interrogation time and bandwidth, we find

optimal sensitivities of 33 ng/
√

Hz and 70 nrad/s/
√

Hz. While the estimates of shot

noise limited sensitivity and maximal fringe contrast may be overzealous, we believe

a sensor achieving 100 ng/
√

Hz and 100 nrad/s/
√

Hz is feasible.

5.2.3 Noise Analysis

To account for sources of noise in our experiment, we conduct an investigation of

a microwave interferometer and Doppler-sensitive Raman interferometer with ultra-

short interrogation time T = 10 µs. This eliminates many of the systematic effects

such as magnetic field gradient and high Doppler-sensitivity. The results are shown

in Fig. 5.6. We find the contrast of the microwave interferometer is much higher,
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Figure 5.5: Interferometer fringes. We measure a fringe contrast of approximately
20%. We find that by tuning T to set a π phase shift between the interferometers,
we may reject detection noise in the rotation signal. Figure reprinted from [59].

again indicating the limited pulse efficiency of the Raman transition. The phase

noise of the microwave interferometer is δφ = 3.3 mrad/shot. The phase noise of the

Raman interferometer is δφ = 9.6 mrad/shot. We find the signal noise of the inter-

ferometers to be comparable, at 1.15×10−3 per shot and 1.36×10−3 per shot for the

microwave and Raman interferometer, respectively. This indicates that the noise of

the interferometers derives primarily from background detection noise, rather than

any sources of phase noise. The detection background noise overwhelms the total

noise in the Raman interferometer, due to reduced fringe contrast. Furthermore,

we find the Raman interferometer noise to be comparable to that of the rotational

component of the phase noise. This again indicates the contribution of vibrational

noise on the acceleration component of the signal. We find increasing the interroga-

tion time adds a negligible amount of noise after accounting for the reduced fringe

contrast.
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Figure 5.6: Microwave and Raman interferometers with ultra-short interrogation
time T = 10 µs. Left: Microwave interferometer with 70% fringe contrast. The
spatial separation of the ensembles results in a substantial difference in Rabi fre-
quency. The interferometer was optimized to favor interferometer B. Right: Raman
interferometer with 28% fringe contrast.

Thus, we determine the primary source of noise in our system stems from reduced

fringe contrast and detection noise. As discussed previously, the population transfer

efficiency is limited is limited by ensemble spatial distribution and ensemble tempera-

ture. Furthermore, selecting an intermediate resonance frequency for the second and

third pulses further reduces population transfer efficiency. A combination of these

effects results in a reduced fringe contrast of 20%. Accounting for the fraction of the

ensemble imaged, 1× 106 atoms contribute to the noise while 2× 105 contribute to

the signal. This represents a non-inertial phase noise of 5 mrad per interferometer.

We find the electronic noise, background scatter, and photon shot noise to be below

0.1 mrad, and thus are negligible. We thus attribute the remainder of the noise to

frequency and intensity noise of the probe.

Improving this fringe contrast would immediately represent a higher sensitivity,

as the apparatus is not phase-noise limited. One possibility is the use of composite

pulses. A composite pulse refers to a sequence of a small number of pulses which act

analogous to a π or π/2 pulse, but with enhanced robustness to field strength and
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Figure 5.7: Allan deviation of the interferometer phase. We find a stability floor of
approximately 3 mrad.

detuning. These have been employed since early NMR based systems [82]. Recent

work [83, 84, 85] demonstrates successful application of composite pulse techniques

towards atom interferometry.

5.3 Stability

Throughout the experiment, achieving long-term stability remained elusive. We

believe the technical challenges associated with achieving long-term stability have

been demonstrated in other systems, and do not limit the potential of our technique

towards a fieldable device. Nevertheless, we present an analysis of the sources of

systematic error in our experiment.

A plot of the Allan deviation of the interferometer phase is shown in Fig. 5.7.

This plot was generated from a mid-fringe time record of the interferometer. We

find these results to be fairly typical, with a stability floor of a few milliradians.
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Figure 5.8: Allan deviation of the interferometer phase, rejecting detection noise
errors. We sweep the interferometer fringe over 1 s and extract the phase by a fit.
The noise floor is approximately 3 mrad.

Our first assumption was that our detection method was unstable. Uncertainties

in the arrival time and position of the ensemble result in a systematic error of the

population readout. This in turn results in a systematic error in the readout of the

interferometric phase. To mitigate this, we sweep the interferometer fringe over 1 s

and fit the resulting sine wave. The fringe offset and contrast should mirror any

detection readout error, and enable us to make a precise readout of the phase. An

Allan deviation of those results is shown in Fig. 5.8. We again observe a similar

noise floor of a few milliradians. This suggests that there is indeed a systematic

phase error, independent of detection noise.

To simplify our analysis, we conducted an investigation of the stability of a mi-

crowave interferometer. This will allow us to determine if the systematic error is a

consequence of clock stability or something specific to the Raman transition. How-

ever, we first demonstrate a phase readout algorithm robust against detection errors.
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5.3.1 Fringe-Compensation Algorithm

We seek to make the interferometer robust against systematic long-term instabilities

involving the ensemble exchange and detection. Fortunately, the ensemble exchange

operates at a rate greater than the timescale for many of this systematic effects. In

this section, we describe an algorithm we use to dynamically scan the fringe and

mitigate many of these systematics.

The naive method is to simply scan the entire fringe rapidly with respect to the

drift timescale. This allows us to correct errors in the mid-fringe offset and fringe

amplitude. However, this comes with a loss of sensitivity as the interferometer passes

the top and bottom of the fringe. Averaging the sensitivity over the fringe, we have

δφavg =
δφ

2π

∫ 2π

0

| cos (φ)|dφ =
2

π
δφ. (5.2)

Thus, we find that we lose approximately 40% of our sensitivity. We may mitigate

this by only scanning points close to the middle of the fringe, thus maintaining

maximal phase sensitivity. Suppose we were to scan the points δφ, −δφ, π − δφ,

π + δφ, where δφ < π/2. We assume our signal s(t) is governed by a slowly varying

amplitude a(t), offset c(t), and phase φ(t). Thus, we have

s(t, φ′) = a(t) sin(φ(t) + φ′) + c(t), (5.3)

where φ(t) is our true signal and φ′ = [δφ,−δφ, π − δφ, π + δφ]. Let s1, s2, s3, s4

represent a successive data points through this scan. We then find that we can

cancel the slowly varying fringe and offset as follows.

A =

[(
s1 + s2

2

)
−
(
s3 − s4

2

)]
/(2 cos(∆φ)), (5.4)

B = (s3 − s4)/(2 sin(δφ)), (5.5)

φ = arctan(A/B). (5.6)

A simulation of this algorithm is shown in Fig. 5.9. The simulated data assumes a

white noise background phase with varying amplitude and fringe offset. The direct
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Figure 5.9: Simulation of the fringe-scanning algorithm. Left: Tracking the phase
by sitting mid-fringe. The Right: Correcting the fringe with π/8 phase modulation.

calculation which sits mid-fringe and assumes constant contrast and offset is shown

on the left. The Allan-deviation corresponding to this data is qualitatively similar

to the results we observe, with the phase starting to wander from 1 − 10 s. The

data on the right implements this algorithm with a phase modulation δφ = π/8.

While this cuts down the data rate by a factor of 4, we see the algorithm successfully

maintains fringe stability up to 1000 s. It is possibly to modify this algorithm by

maintaining a memory of previous fringe amplitudes and offsets and maintaining a

running, weighted average. This would enable calculation of the interferometer phase

with each data point, maintaining the original data rate.

We note that this algorithm only corrects for systematic errors in the amplitude

and offset which are uncorrelated with φ, such as detection. It is possible that

a change in fringe contrast is due to a shift in resonance frequency, which would

result in a systematic phase. In fact, analysis of the systematic noise sources in our

experiment indicate this to be the case.

Using this algorithm, we investigate the stability of a microwave clock. We find

the algorithm is effective in enhancing the noise floor past the detection-limited

stability. The result is shown in Fig. 5.10. We find a noise floor of 6×10−5 rad, which
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Figure 5.10: Allan deviation of the microwave interferometer phase. The noise floor
rests below 10−4.

is far below the noise floor of the Doppler-sensitive interferometer. This suggests that

the atom interferometer noise floor is technical in nature, rather than fundamental.

5.3.2 Off-Resonant Pulses

We present an analysis on the effect of off-resonant Raman pulses on the interfer-

ometer phase. While resonant pulses are robust against variations in pulse duration

and intensity (i.e. second order sensitivity), such is not the case with off-resonant

pulses [86].

For simplicity, we will consider an off-resonant microwave pulse on a two-level

atom. This enables us to ignore the effects of ensemble spatial and velocity distribu-

tion. In the case of a Raman pulse, we would have to integrate over these quantities.

Nevertheless, we find this analysis to be illuminating in understanding sources of

long-term instability in the atom interferometer.
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Let Ĥ be the Hamiltonian for the two level atom,

Ĥ = − h̄δ
2
σ̂z +

h̄Ω0

2
σ̂x, (5.7)

where Ω0 is the Rabi frequency and δ is the detuning. The corresponding time-

evolution operator Û(t, φ) with phase φ is given by,

Û(t, φ) = e−iĤt/h̄e−iφσ̂z . (5.8)

We construct the interferometer with our π/2−π−π/2 pulse sequence and scanning

the phase of the third pulse,

pg =
∣∣∣〈g| Û(π/2, φ)Û(π, 0)Û(π/2, 0) |g〉

∣∣∣2 , (5.9)

where we expressed time in units of 1/Ω0, such that Ω = Ω0/t. This expression has

components which are in-phase and in-quadrature with the applied oscillator phase

φ. We calculate the total phase with respect to this offset and find a systematic

phase shift given by

∆φ = cot−1

(
3

2Ω

√
1

δ2
+

1

Ω2

δ2 + Ω2 cos2(θ/2)

sin(θ) + 2 cos(θ/4) sin(θ/2)

)
, (5.10)

where θ = (1/Ω0)
√

Ω2 + δ2. Defining ∆Ω = Ω − Ω0 and expanding this expression

to first order in δ and ∆Ω, we find the approximation

∆φ =
2

3

δ

Ω0

∆Ω

Ω0

. (5.11)

Thus, the combination of a frequency shift with Rabi frequency variation results

in a first-order systematic shift on the interferometer phase. To investigate this

systematic phase shift, we carried out this experiment using microwave pulses on our

apparatus. The microwave intensity and detuning were scanned by approximately

±0.1Ω0 near resonance. Results of the experiment are shown in Fig. 5.11. Red dots

correspond to measured data points, while the plotted function is Eq. 5.10 with no

free parameters. The experiment reveals the model to accurately describe sources of
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Figure 5.11: Demonstration of systematic phase shift with off-resonant pulses. Red
data points are experimental data from the phase of a microwave interferometer as
a function of detuning and Rabi frequency error. The surface is a plot of Eq. 5.10
with no free parameters.

systematic phase errors. The deviation from the function is within the stability of

the fringe, as limited by Rabi frequency.

This analysis has revealed a limitation of the apparatus, suggesting an avenue for

further development. While we may tune the first and third pulses to resonance with

the upgraded two Raman beam system, the second (middle) pulse must be shared

by the two interferometers. Thus, this pulse will always be driven off-resonantly.

This causes variations in Raman beam intensity to result in a systematic phase shift.

While it may be possible to servo the intensity of this beam, this comes at the cost

of increased system complexity. Furthermore, the ultimate stability of the apparatus

will be tied to the stability floor of this laser beam.

5.3.3 Differential AC Stark shift stability

The AC Stark shift, also known as the light shift, is a change in the atomic energy

levels due to the presence of a time-varying (AC) electric field, typically due to a

laser. For a far off-resonant laser, the atomic energy levels shift by Ω2/(4∆). With

our two Raman lasers, the shift to the hyperfine ground states have the same sign.

However, there is a residual energy difference known as the differential AC Stark
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shift, which is given by (Ω2
1−Ω2

2)/(4∆). Traditionally, this shift is nullified by tuning

Ω1 = Ω2. In our experiment, we achieve this by tuning the RF power delivered to the

Raman EOMs, thus changing the relative power between the carrier and sideband.

To calculate the differential light shift δAC, we note that the two resonances observed

in Fig. 5.4 are derived from δ± = δAC ± keff · v. Thus, the differential light shift is

revealed by the average of these two resonances.

We thus conduct a measurement of the stability of this frequency shift. We

monitor the resonance conditions for the Raman transition as a function of time. The

differential light shift is revealed by the average of the resonances corresponding to

+keff and −keff . A plot of the light shift as a function of time is shown in Fig. 5.12 for

each of the interferometers. We see a substantial change in the resonance condition

as a function of time. The differential light shift varies by 40 kHz on a timescale

of a few minutes. We recall that the Rabi frequencies typically differ between the

interferometers. We choose an intermediary Rabi frequency, which results in an error

of a couple percent. Thus, from Eq. 5.11 we find this light shift in conjunction with

Rabi frequency error is sufficient to account for the observed fringe stability. We

note that the shifts are highly correlated between the interferometers, indicating the

source of the instability to be common mode.

To further investigate the instability of the differential AC stark shift, we inves-

tigate the output of the EOM. The EOM we use is a Photline 800 nm band 10 GHz

phase modulator (NIR-MPX800-LN-10). We assume the light field of the input laser

beam is given by Aeiωt. The phase of this expression is modulated by the input RF

field with modulation depth β and frequency Ω. The output of the EOM is given by

[87],

Aei(ωt+β sin(Ωt) = Aeiωt

(
J0(β) +

∞∑
k=1

Jk(β)eikΩt +
∞∑
k=1

(−1)kJk(β)e−ikΩt

)
, (5.12)

where we applied the Jacobi-Anger identity [88] and Jk(β) is the Bessel function of

the first kind. This expression represents sidebands which vary from the carrier wave
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Figure 5.12: Differential light shift of each interferometer as a function of time.
The light shift varies as a function of time by approximately 40 kHz every few
minutes. The lights shifts of the two interferometers are well correlated, indicating
the instability to be common to both interferometers.

by a frequency Ω and with amplitudes given by the Bessel functions. The modulation

depth β is proportional to the applied RF power. We typically tune β such that the

amplitudes of the zero and first-order sidebands are approximately equal. We achieve

fine tuning in this by minimizing the differential light shift in the experiment. Thus,

the ratio of the amplitude of the two laser frequencies is governed by the stability of

the RF source. We find this source to be stable to a level of 10−4, which does not

explain the observed differential light shift instability.

We thus seek to measure the optical sideband amplitude stability directly. The

most direct way of observing this is to monitor the sideband intensity in a FabryProt

cavity. However, we find this measurement to be imprecise beyond fluctuations on

the order of 1%. This is limited by the stability of the cavity. We thus seek an

alternative method of measurement. One possibility is to monitor the light on a fast
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photodiode and measure the beatnote between the sidebands. However, as shown in

Eq. 5.12, the sidebands have opposite phase with respect to the opposing sideband

(for example, the +1 sideband with respect to the −1 sideband). This results in

destructive interference so that no beatnote is observed.

We conducted this measurement with the light out of the EOM, and found a

minimal beatnote at the hyperfine frequency indicating the two sideband amplitudes

to be equal to within a level of 0.1%. However, in the experiment the light out of the

EOM is directed towards a tapered amplifier. The amplifier has a gain profile over

which some sidebands are amplified with different gains. A variation in this gain

profile over time would cause the relative sideband amplitudes to fluctuate, resulting

in an unstable differential light shift. We thus repeated this measurement using

light out of the TA, and found a sideband amplitude mismatch as large as 10%. This

does indeed indicate that the TA gain profile selectively amplifies different sidebands.

Furthermore, by monitoring the beatnote amplitude over time, we find that over the

course of several minutes the amplitude varies on the order of a few percent. When

compared with the Rabi frequency of 2π × 300 kHz, this variation corresponds to

a differential AC stark shift of ten kilohertz. This is in qualitative agreement with

the observed drift in the differential light shift from Fig. 5.12. Despite the lack of

sufficient resources to conclude this analysis, we have provided strong evidence for

the source of our interferometer instability.

There are many methods by which we may correct for this source of instability.

The first method involves interlacing shots of the Doppler-sensitive interferometer

with a Doppler-free interferometer. From the Doppler-free interferometer, we find the

systematic phase shift independent of inertial conditions which we may use to correct

the Doppler-sensitive interferometer. However, the polarization of the Raman beams

is configured to suppress the Doppler-free transition. This would require an upgrade

to the Raman beam module to dynamically switch the polarization of the light;

for example, with a Pockels Cell. Furthermore, the software control system would
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require significant upgrades to support this measurement and feedback. While data-

rate operation would support such a solution by increasing the number of interlaced

Doppler-free scans, this comes at the cost of a reduced number of Doppler-sensitive

scans and thus a reduction in sensitivity. Another solution involves re-engineering

the Raman laser system. One such system involves two independent lasers for each

frequency, combined and phase-locked on a common optical path. This enables the

intensity of each laser to be locked independently, ensuring a stable differential light

shift. The combination of the lasers results in a significant loss of optical power,

which may be recovered through the use of high power lasers [89].
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Chapter 6

Dual-Axis Sensor Dynamics

We now seek to demonstrate the aspects that make our interferometer unique, namely

robustness against dynamic inertial environments. We do so in three parts. First,

we consider the current dynamic performance of the device as measured with the

capabilities we have in the laboratory, and demonstrates that this far exceeds typical

atom interferometer performance. Along with this, we consider the potential per-

formance of the ensemble-exchange approach in terms of providing a robust flux of

ultracold atoms. We then consider the device as an open-loop interferometer whereby

auxiliary sensors provide information on which fringe the interferometer is operat-

ing, providing a means of enhancing the dynamic range. Finally, we demonstrate

our implementation of a closed-loop sensor which should enable the interferometer

to function as a fieldable device.

6.1 Demonstrations

A demonstration of the interferometer’s sensitivity to acceleration and rotation is

shown in Fig. 6.1. The first plot shows the interferometer outputs, while the second

decouples these into acceleration and rotation rate components. We generated two
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oscillations by pushing the optical table, restricting the magnitude to remain within

one fringe. The first oscillation is generated by applying a force near the center of

mass of the table, in an attempt to minimize the applied rotation. Indeed we observe

the acceleration signal and a minimal rotation rate. The data-rate of the apparatus

is high enough to capture dynamics of interest. The second oscillation corresponds

to applying a force away from the table center of mass orthogonal to the direction of

rotation sensitivity. This generates a small rotation about this axis which is seen in

the figure. A residual acceleration signal is present, as the apparatus is not perfectly

situated on the table center of mass, and thus a residual acceleration is present. The

magnitude of force required for this demonstration is minimal. Indeed, to maintain

the interferometer within one fringe for this oscillation frequency of 3 Hz, the optical

table moves by a mere 30 µm. We will revisit the issue of dynamic range later in the

chapter.

As a second demonstration, we compared the output of the interferometer with a

seismic sensor (Kinemetrics EpiSensor ES-T) and gyroscope (ARS 16). These results

are shown in Fig. 6.2. Calibration errors in the contrast of the interferometer fringe

result in higher errors at larger accelerations and rotations. A residual delay between

the interferometer and gyroscope is the subject of investigation. Nevertheless, this

comparison increased our confidence in the accuracy of the sensor, and motivated

the use of auxiliary consensors as will be described in Sec. 6.5.

Finally, we would like to note that these sensors are both AC coupled, and thus

are not sensitive to slower DC accelerations and rotations. We have previously

demonstrated sensitivity to DC accelerations from the absolute gravimeter in the

high data-rate accelerometer. To demonstrate the DC rotation sensitivity of the ap-

paratus, we carry out a measurement of the Earth’s rotation rate [32]. To carry out

this measurement, we rotate the apparatus in the ẑ direction by use of a turn table.

This changes the projection of the Earth’s rotation vector along the rotation mea-

surement axis, ŷ. By measuring the rotation rate component of the interferometer
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Figure 6.1: Demonstration of acceleration and gyroscopic sensitivity of the interfer-
ometer. Top: Phase readout of each interferometer. Bottom: Decoupled acceleration
and rotation signals. The first oscillation corresponds to an induced acceleration,
while the second is an induced rotation with residual acceleration. The amplitude of
the impulses is restricted to one fringe.

fringe as a function of the rotation angle θz, we may fit to the amplitude sweeping

the full range of projections. With knowledge of our latitude, we may deduce the

Earth’s rotation rate.

Constraints in the length of fibers and electronic cables supplying the sensor head

limit the angle of rotation to ±60◦. Nevertheless, we carried out the experiment and

found this range to be sufficient. We scan the fringe at each angle to achieve an

accurate measurement of the phase independent of detection drift. Results are shown

in Fig. 6.3. The fit reveals a rotation rate of 57±5 µrad/s, which in conjunction with

our latitude (35.1◦ for Albuquerque) reveals one sidereal day to be 25±2 Hours. We

would like to note that this was not intended to be a precision measurement of the

Earth’s rotation rate, but rather a demonstration of the DC rotation sensitivity of

the device.
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Figure 6.2: Comparison of the interferometer with commercial accelerometer and
gyroscope. The amplitude of the impulses is restricted to one fringe. We find excel-
lent agreement to the commercial accelerometer. There is a systematic delay between
the interferometer and gyroscope of approximately 10 ms.

6.2 Observed Dynamic Performance

We evaluate the dynamic performance of our apparatus given the range of inertial

conditions we may apply in our laboratory. A more rigorous testing platform would

be necessary to exceed these limitations.

6.2.1 Tilt Test

Gravitational acceleration in conventional atom interferometers with T ≈ 100 ms

displaces the atomic ensemble by tens of centimeters. Thus, they are designed ac-

counting for a fixed orientation of gravity. Given an arbitrary orientation of gravity,

the apparatus will not function due to excessive displacement. The strength of our

apparatus is that the short time-of-flight minimizes the deflection, and allows the

apparatus to operate in any orientation. Furthermore, it is likely the apparatus can

withstand accelerations beyond this range.

To demonstrate the immunity to orientation, we ran the interferometer while
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Figure 6.3: Measurement of the earth’s rotation rate. We measure the rotational
component of the interferometer phase as a function of orientation angle θz. This
changes the propagation of the Earth’s rotation axis on the interferometer rotation
measurement direction. By fitting this to a cosine, the amplitude reveal a rotation
rate of 57± 5 rad/s. The reduced ξ2 of the fit is 1.16.

varying the orientation of the apparatus over a range of angles in the plane defined

by v and keff . This changes the projection of gravity on both the launch velocity

and the Raman wavevector. We oriented the apparatus using hinges attached below

the base of the apparatus (outside the magnetic shielding) while a winch bore the

weight. The angle was measured with respect to gravity, using a Bosch Sensortec

BMA150 accelerometer, ranging from 0◦ to 65◦. We plot the fringe contrast and

atom number as a function of this angle in Fig. 6.5. To within the measurement

uncertainty, the fringe contrast and atom number remain unchanged up to a 65◦

tilt. This measurement uncertainty is limited by the typical drift in the contrast and

atom number over the 1 hour timescale the experiment took place. This demonstrates

robustness up to at least 1 g and likely beyond.



Chapter 6. Dual-Axis Sensor Dynamics 84

Figure 6.4: Picture of the interferometer subjected to variations in the orientation
of gravity. A winch bears the approximately 100 kg load of the apparatus as it is
secured. Not shown: One incredibly nervous graduate student.

6.2.2 Rotation Rate Limit

We note that the ensemble velocity distribution contributes an inhomogeneous inter-

ferometer phase shift in Eq. 2.18. This causes a phase gradient across the ensemble,

the magnitude of which is proportional to rotation rate Ω. This gradient is averaged

across the ensemble, and results in a systematic phase shift and contrast loss as a

function of Ω. The systematic phase can be corrected by knowledge of the ensemble

temperature and use of an auxiliary sensor. However, resolving the contrast loss is

more difficult. We present an analysis and measurement of this contrast loss, as well

as potential solutions to mitigating this effect.

Let φ0 be the inertial phase shift we intend to measure. There is an additional

phase from the atomic velocity with respect to the mean ensemble velocity, given by

φ′ = 2keffv
′ΩT 2 sin(θ), where θ is the angle between the Ω and keff . Integrating the
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Figure 6.5: Immunity of the atom interferometer to orientation with respect to
gravity. We plot the interferometer contrast and atom number as a function of
orientation angle, θ6. This changes the projection of gravity on both the Raman
wavevector keff and launch direction v. Error bars represent the typical long term
drift over the 1 hr which this experiment took place. Figure reprinted from [59].

interferometer signal over the ensemble velocity distribution,

s(φ) =

∫ ∞
−∞

sin(φ0 + φ′)gv(v
′)dv′ (6.1)

= A sin(φ) +B cos(φ), (6.2)

A =

∫ ∞
−∞

cos(2keffv
′ΩT 2)gv(v

′)dv′, (6.3)

B =

∫ ∞
−∞

sin(2keffv
′ΩT 2)gv(v

′)dv′, (6.4)

where the coefficients A and B represent the signals in phase and in quadrature

with the inertial signal. The total contrast is then given by χ =
√
A2 +B2 and

systematic phase shift tan(δφ) = B/A. These integrals are readily evaluated as the
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Figure 6.6: Picture of the interferometer mounted to a rotation table. A rotary
encoder measures the rotation angle. The optical fiber and electric cabling restricts
the range of movement to approximately ±60◦. This was used in both the Earth
rotation rate measurement and the rotation contrast loss investigation.

Fourier transforms of Gaussian functions. The contrast is then given by,

χ = exp(−Ω2/(2(σΩ)2)), (6.5)

σΩ =
1

2

√
m

kT
1

sin θkeffT 2
. (6.6)

We carried out an experiment to measure this effect. The apparatus was placed

on a 22 cm rotation platform located outside the magnetic shielding. We rotated

the apparatus manually about ±ĝ up to ±1.5 rad/s. This direction is offset from

the Raman wavevector by θ = 10◦. While the platform had to be rotated manually

over a small range, the high data rate of the apparatus enabled us to scan the

fringe amplitude in a tenth of a second. Thus, despite manual rotation the rate

was relatively constant over this interval. Fig. 6.7 shows the fringe amplitude as

a function of rotation rate. As expected, the loss is Gaussian with respect to Ω.
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Figure 6.7: Contrast loss under high rotation rate. The interferometer fringe is
scanned rapidly (2π radians over 100 ms) and the normalized contrast (black dots)
is plot as a function of rotation rate. The red line is a Gaussian fit with a width of
σ = 0.60(1) rad/s. Figure reprinted from [59].

The width σΩ = 0.60(1) rad/s corresponds to a temperature of 36 µK, which is in

agreement with independent temperature measurements. We note that by Eq. 6.6,

the contrast loss is most severe with θ = 90◦, in a direction perpendicular to keff .

This would cause the contrast to vanish sin(90◦)/ sin(10◦) ≈ 6 times faster.

This limit may be extended by a couple methods. First, the ensemble may be

cooled more efficiently reducing the velocity spread. However, as shown in Eq. 6.6

the contrast loss scales as
√

1/T . Thus, even cooling to a value of T = 5 µK (ap-

proximate limit for many cold atom experiments with polarization gradient cooling),

we would only expect the rotation range to increase by a factor of 2.7. Another

solution involves placing the apparatus on gimbals. This has been employed in other

inertial measurement units [37, 36]. However, this comes with the cost of increased

system size and complexity.

We now note that although the ensemble contrast is diminished, the individual
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atoms still maintain phase coherence and inertial purity. If the ensemble meets

the condition 2Tσv � σx0 , where σx0 is the initial spatial width, at the end of the

interferometer the position of each atom corresponds strongly with its velocity. Thus,

the phase gradient becomes a function of position. The inertial information for each

velocity class may then be retrieved with a sufficiently well-resolved detector [32, 90].

6.3 Atom Number Limitations

We now seek to observe the maximum acceleration and rotation rate the apparatus

can endure. We do this in two parts. First, we consider just the ensemble exchange

independent from the interferometer. We may think of this as estimating the limi-

tation on the flux of available atoms, which sets an upper bound on interferometer

performance. We will then consider the interferometer limitations separately. Un-

fortunately, there was no practical method for us to subject the apparatus to inertial

forces exceeding 1 g of acceleration and 1 rad/s of rotation. Thus, we will seek to

estimate these limitations by a variety of other methods.

6.3.1 Delayed Recapture

The first of these methods estimates the maximum overlap between ensemble posi-

tion and trap position before significant recapture losses ensue. From this, we will

calculate the acceleration and rotation rate necessary to replicate such a displace-

ment from the trap center. We need a method to precisely control the position of the

ensemble at the onset of recapture. One way to achieve this is to delay the recapture

time so that the ensemble travels past the trap center. By scanning this delay time,

we begin recapturing the MOT at different points along its trajectory, and thus at

different locations relative to the trap center. One potential pitfall is that the en-

semble has a significant velocity for this experiment due to the launch. However, the
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launch velocity of 2.5 m/s is still well within the capture velocity vc ≈ 4.7 m/s and

thus shouldn’t significantly affect recapture probability. We measure the recapture

efficiency similar to that of Fig. 5.2, where we measure the buildup of atom number

over multiple shots of the experiment.

By scanning the recapture delays from −2 ms to 2 ms, we scan the ensemble

position by 1 cm over the trapping region, as shown in Fig. 6.8. We note that by

activating the trap early, the ensemble velocity carries it into the trap, and we observe

our peak recapture efficiency of 82%. This is a consequence of the methodology

we used to conduct the experiment. A true displacement of the ensemble in an

orthogonal direction would be symmetric about zero delay, in a manner similar to

a late activation (shown in the right half of the figure). Here, we see the high

recapture efficiency is maintained until approximately 5 mm from the trap center.

This is just shy of the beam waist for the cooling beams, as indicated by dashed

lines on the plot. From this 5 mm number and our 10 ms time-of-flight, we may

roughly estimate the maximal acceleration we may endure before recapture losses

become significant. From calculating the kinematics, we find an acceleration of 10 g

and rotation rate of 20 rad/s would be necessary to replicate this level of excursion.

This demonstrates that ensemble exchange under our parameters provides a highly

robust source of atoms. Currently the MOT capture volume is of the same order as

the MOT beam waist. Ideally, we would have the MOT beams much larger than this

capture volume to ensure sufficient saturation. Thus, it is possible this limit may be

extended further by using larger MOT beams.

6.4 Open-Loop Interferometer Limitations

Thus far, we have demonstrated ensemble exchange to provide a high flux of atoms

which is very robust against dynamic conditions. We have also demonstrated op-

eration under large but static inertial conditions. We now consider the impact of



Chapter 6. Dual-Axis Sensor Dynamics 90

- 1 0 - 5 0 5 1 00 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

 

 

Re
ca

ptu
re 

Eff
icie

nc
y

D i s t a n c e  f r o m  T r a p  C e n t e r  ( m m )

 E n s e m b l e  A
 E n s e m b l e  B

E n s e m b l e
T r a j e c t o r y

Figure 6.8: Recapture efficiency for various recapture delay times. With knowledge
of the ensemble velocity, we map the delay times to a position. We find the recapture
efficiency drops to 50% approximately 5 mm from the trap center. Figure reprinted
from [59].

dynamic stimuli on the interferometer performance.

6.4.1 Dynamic Range

As a standalone, the sensor’s dynamic range would be extremely limited. Indeed,

the sensor would be limited to one fringe, with an amplitude of ±(π/2)/(keffT
2) =

±0.5 mg and ±(π/2)/(2keffvT
2) = ±1.0 mrad/s. This may be partially extended by

using the interferometer output to feedback to the phase of the next shot. This would

limit the change in acceleration (known as “jerk”) and the angular acceleration to

one fringe every shot of the interferometer. In practice, we found that even under

a slow input acceleration at approximately 1 Hz, this technique only increased the

dynamic range by a factor of 2 or 3.
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Similar to atomic clocks, we may consider a system where the atomic sensor

serves as a stable reference for a high bandwidth, locked sensor. In an open-loop

configuration, the auxiliary sensors would identify the fringe the interferometer was

operating, and the interferometer would provide an error with respect to that value.

However, in this scenario the interferometer would operate at any location along the

fringe. As shown previously in Eq. 5.2, the average sensitivity drops by approximately

40%. Furthermore, this may result in some ambiguity if the interferometer readout

is near the top or bottom of a fringe.

6.5 Closed-Loop Interferometer

We present a closed loop system with feedback and feedforward mechanisms. In this

design, the auxiliary sensors track the acceleration and rotation in real time during

the ensemble ballistic trajectory. From this information, using their current bias and

scale factor values, they feedforward the predicted mid-fringe phase to the interfer-

ometer. This keeps the interferometer locked near the center of the fringe, even for

inertial conditions exceeding one fringe and rates greater than the time-of-flight. The

interferometer measures the true phase, and then feedsback this information to the

cosensors to adjust the bias and scale factors. While there has been work in this

domain for vibration stabilization [91], a system designed for a dynamic signal has

not been demonstrated.

There are a number of technical challenges to this approach. First of all, the

cosensors must be sampled at a rate faster than the time of flight of the ensemble

to ensure an accurate trajectory propagation. This corresponds to a rate of approx-

imately 1 kHz. Secondly, the last sample must be as close as possible to the final

pulse, and the resulting calculation and DDS update must occur with minimal de-

lay. It is this limitation which will determine the final dynamic range of the system.

Finally, the phase shifts for the two interferometers will be different and need to be
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independently controlled. This requires updating the Raman laser system to support

two independent lasers. Furthermore, the Raman control system must be upgraded

to support real-time trajectory integration using data from the inertial cosensors.

6.5.1 Upgraded Raman Control System

We present an analysis of a variety of possible approaches for implementing the

trajectory propagation and interferometer feedforward, starting with the least tech-

nically challenging but lowest performance. Numerical studies demonstrated that

to achieve the desired trajectory propagation accuracy, we require a fourth order

Runge-Kutta integration on the cosensor outputs.

One approach is to simply perform the trajectory propagation in software and

writing the DDS update using our current control system interface. The advantage of

this is that most of the hardware control was already in place, and translation of the

propagation algorithm from pseudocode to CPU code is the most straightforward.

However, the delay for the final cosensor update would be limited by software. We

estimated that 1 ms would be sufficient for our purposes. However, latency in the

communication interface between the cosensors and the PC, and the PC and the

FPGA would render this approach infeasible.

Another possibility is a microcontroller based approach which would form a sep-

arate Raman control subsystem independent of the PC. This would limit the com-

munication delays to purely hardware-based timings. Investigating the decompiled

code, and the cycle counts of typical implementations of the AVR instruction set,

we find that even in the best case scenario the algorithm would not meet our timing

constraints. The limited clock speed of typical microcontrollers of approximately

10 MHz to 100 MHz results in a slow calculation of the Runge-Kutta integration.

As a result of these limitations, we decided in favor of an FPGA-based approach.
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Figure 6.9: Picture of upgraded sensor head with rigid Raman delivery system and
cosensor testbench. The Raman light is delivered by three launchers with indepen-
dent orientation and position control. The Raman beam is oriented parallel to grav-
ity to reduce systematic phase shifts caused by variations in Raman beam direction,
which change the propagation of gravity on the measurement axis. Below the Raman
retro mirror are the cosensors, which are occluded by a temperature-controlled oven.

A field-programmable gate array (FPGA) is a reconfigurable integrated circuit, which

may be programmed “in the field”. This has the advantage of speed comparable to

application-specific integrated circuits (ASICs), while being readily programmable

to facilitate development. FPGAs are seeing increased use in atomic physics, as

experimental demands of timing and flexibility become more stringent [92, 93, 94].

The FPGA approach is guaranteed to hit the necessary timing constraints. However,

there lies difficulty in translation of the propagation algorithm, which is inherently

software based, to a hardware based approach. The propagation algorithm was

written primarily by Draper Laboratories.
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To maintain compatibility with the software control system, the FPGA has a

toggle switch. In open-loop mode, the system uses frequencies and phases set by the

software. In closed-loop mode, the FPGA overrides these values for the final pulse

using values calculated from the propagator. This provides a straightforward method

for maintaining the same laser scanning software we used before, while enabling

closed-loop operation. Details of the code are shown in Appendix D. In the end,

the algorithm easily met timing constraints, with an update delay of 50 µs. This

corresponds to a fundamental jerk limit of 10 g/s, which is more than sufficient for

our purposes.

Meanwhile, the Raman laser system was upgraded to support two independent

lasers, along with a new optomechanical frame for enhanced mechanical stability.

Previously, a single Raman laser was used for all three beams. Furthermore, the

Raman module used a single, fixed orientation for all three beams. Optimizing the

alignment for all pulses proved to be a difficult and time-consuming task. Theoret-

ically, each beam can be oriented individually in favor of maximal Rabi frequency.

This is because the Raman wavevector is not defined in terms of the orientation of

each beam, but rather by the common retro-reflecting mirror. Furthermore, phase

coherence is still maintained since the relevant phase is the phase of the two colors

with respect to each other, not the phase of each beam. Thus, as described pre-

viously we expanded the system to include a second Raman laser, including a new

EOM and TA.

A picture of the upgraded sensor module is shown in Fig. 6.9. The purpose of

this design is to provide a rigid test bench rather than a demonstration of the po-

tential size of the device. The retro-reflecting mirror was replaced with a new rigid

base, orienting the Raman wavevector to be parallel with gravity. This suppresses

systematic phase errors arising from orientation of the Raman wavevector with re-

spect to gravity, by making such errors second-order sensitive. Furthermore, this

base contained hardpoints for mounting auxiliary cosensors aligned with the Ra-
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Figure 6.10: Open loop operation of the interferometer. The magnitude of accelera-
tion exceeds several fringes. The resulting interferometer readout is noisy, operating
at random points along the fringe.

man wavevector. The Raman laser mount was replaced with a platform bolted to

the retro-reflecting mirror base, and containing three independent Raman launchers.

Each of these launchers had independent position and orientation control, enabling

us to optimize the interrogation time (by separating the beams) and Rabi frequency

(orientation). We found that in practice, we were able to increase the interrogation

time to T = 4.5 ms.

6.5.2 Closed Loop Demonstration

We perform a demonstration of the closed-loop interferometer. The cosensor bias and

scale factor were tuned manually using the output of the interferometer. In a full

system, the interferometer would feed back to the cosensor bias and scale factor using

a Kalman filter [95]. Furthermore, for this demonstration we use the accelerometer

and tilt cosensors, without the rotation sensor.
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Figure 6.11: Demonstration of closed loop operation of the interferometer. The
applied acceleration exceeds the fringe limits by a factor of 40. However, the in-
terferometer fringe is constrained to well within zero phase shift. There is a slight
residual phase at higher accelerations, but it is sufficiently slow to be tracked. The
closed-loop data displays slightly better performance from what was actually ob-
served, due to post-processing of the cosensor bias and scale-factor.

To carry out the demonstration, we apply an acceleration of approximately

±20 mg and monitor the interferometer response in both closed and open loop op-

eration. Results are shown in Fig. 6.11. The dashed lines in the plot correspond to

the interferometer fringe limits. The applied acceleration exceeds these limits by a

factor of 40. In the case of the open loop interferometer, the data occupies a random

point within the interferometer fringe. This represents an overall reduction in the

interferometer sensitivity, as well as possible ambiguity in the phase readout. How-

ever, the data for the closed loop interferometer is clearly constrained to nearly zero

phase, and trackable up to ±20 mg . Expanding the dynamic range beyond this level

remains the subject of investigation. Systematic errors which may contribute to this

include the absence of gyroscopic data, cosensor bias and scale factor, sensor non-
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linearity, and axis misalignment. Nevertheless, we have successfully demonstrated

closed loop operation and enhancement of the interferometer dynamic range by a

factor of 40.
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Chapter 7

Atom Interferometry in Warm

Vapor

Much of the complexity of atom interferometers derives from the necessary lasers

and optics for generating an ensemble of cold atoms. Indeed, our ensemble exchange

atom interferometer required 19 beams, 12 of which were utilized for creating the

MOTs. Eliminating the need for such a system would present a significant advance

towards a compact, field-worthy device.

Success with compact systems based around warm atomic vapor cells has already

been demonstrated with atomic clocks [96] and magnetometers [97, 98]. The bulk of

the sensitivity derives from the sheer number of atoms available. For example, the

density of atoms approaches 1012/cm3, limited by radiation trapping [99]. Perhaps

the greatest advantage is in the relative simplicity of the laser system. In the case

of our experiment, only three lasers would be required: a pump, an interrogation

beam, and a probe.

However, there are a number of significant challenges for adapting atom interfer-

ometry for use in warm vapor cells. The most pressing of these is that in clocks and
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magnetometers, the interrogation time is maintained through the use buffer gasses

and spin-relaxation coatings. However, both of these would destroy the inertial pu-

rity of the state. Thus, the interrogation must take place within a limited timeframe,

severely limiting the sensitivity. In fact, for a 1 cm cell the atoms are ballistic for

a mere 10 µs before colliding with the cell wall. Again, we may operate at a higher

data-rate to recover some of the lost sensitivity.

7.1 Experiment

The experimental apparatus consists of a vacuum cell, pump beam, Raman interro-

gation beam, and probe beams Fig. 7.1. The presence of two probe beams will be

visited later. The vacuum cell is a 2 cm × 4 cm × 10 cm rectangular cell. The full

vacuum system consists of the cell, a 5 l/s ion pump, and a pure rubidium sample.

We increase the vapor density of rubidium by heating the cell to 39 ◦C, correspond-

ing to a vapor density of 4× 1010 atoms/cm3. The cell is heated by a warm air flow

which maintains an even temperature distribution, avoiding thermal gradients across

the cell which distort optical wavefronts.

The experiment proceeds as follows. Between shots of the experiment, an opti-

cal pumping beam detuned 80 MHz blue of the |F = 2〉 → |F ′ = 2〉 D1 transition

pumps the atoms into |F = 1〉. Typically, atoms which make contact with the cell

walls may undergo depumping into |F = 2〉, contributing a noisy background signal.

We thus make use an anti-relaxation coating which maintains maintains the atomic

spin polarization for several wall bounces. While there are many investigations of

various anti-relaxation coatings, none of them consider the constraint of low vapor

pressure, which is necessary to maintain the inertial purity of the detected atoms.

We use octyldecyltrichlorosilane as our coating, which has demonstrated negligible

outgassing due to its relatively high reactivity. We find there is sufficient circulation

of atoms between the various velocity classes due to the wall bounces to polarize
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Figure 7.1: Apparatus for the warm vapor cell atom interferometer. It consists of the
vacuum cell, a pump beam, two probe beams, and a Raman beam. A combination
of polarization and imaging techniques separates the Raman beam from the probe
beams for detection. A 10◦ tilt of the cell minimizes reflections which produce a
Doppler-free signal. Figure reprinted from [61].

the entire thermal velocity distribution. We thus achieve a spin polarization of 90%

in |F = 1〉 with a spin relaxation time of 23 ms, which is representative of several

thousand wall bounces without depumping.
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Figure 7.2: Timing diagram for the warm vapor cell atom interferometer experiment.
A reference probe pulse marks the start of the experiment. The pumping beam is
shut off, and the interferometer takes place with a T = 15 µs interrogation. A
probe pulse detects the number of atoms in |F = 2〉 by absorption, and the pump is
activated until the next shot. Figure reprinted from [61].
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A background shot of the probe laser beam marks the start of the experiment.

The pumping beam is switched off, and the Raman interrogation takes place with a

π/2−π−π/2 pulse sequence, with some interrogation time T on the order of 10 µs.

The Raman laser is seeded by a fiber laser at 1560 nm and modulated near the hy-

perfine transition. The light is then amplified to 30 W and doubled to 780 nm in

a periodically-poled lithium niobate crystal. The carrier light is locked 1.2 GHz red

of the D2 |F = 2〉 → |F ′ = 2, 3〉 crossover transition via a beatnote offset lock. This

results in a peak power of approximately 3 W which is collimated to a 5.6 mm 1/e2

radius. This corresponds to a two-photon Rabi frequency of Ωeff = 2π × 1.61 MHz.

The beam is delivered to the cell polarized linearly, and retro-reflected with a mir-

ror and quarter-waveplate. The lin ⊥ lin polarization configuration suppresses the

Doppler-free transition. Although the Raman beam contains both laser frequencies

co-propagating, the selected velocity class is detuned sufficiently far from zero to sep-

arate the resonance conditions, in a manner similar to that of the ensemble-exchange

sensor.

A final probe pulse performs single-state absorption detection of the atomic en-

semble. The probe is tuned 10 MHz blue of the D2 |F = 2〉 → |F ′ = 3〉 transition.

The beam is collimated to a 2.8 mm 1/e2 radius, corresponding to an intensity of

0.18 mW/cm2. This corresponds to a saturation parameter s0 = 0.1, thus favoring a

linear response of probe absorption. The output light is collimated into a fiber and

directed towards a detector. After the detection event, the pump beam is activated

and the cycle repeats.

The Raman and probe detunings are tuned to address the same velocity class

of atoms. In a sense, this performs the role of ensemble preparation as a small

velocity slice is selected from the entire thermal velocity distribution. In fact, one may

consider a multitude of simultaneous interferometers operating on different velocity

classes. This would in principle be limited by the Rabi width of the transition, with

2keffvB/Ωeff ≈ 22 interferometers possible in our experiment. As a demonstration
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Figure 7.3: Conceptual diagram of velocity selection and dual interferometers in
warm vapor. The mesh represents the Maxwell-Boltzmann velocity distribution of
the atoms. The probes select two velocity slices from this distribution (shown in blue)
which constitutes the atoms participating in the interferometer. The interferometer
operates on each velocity slice with opposite keff vectors, enabling common-mode
noise rejection. Figure reprinted from [61].

of this concept, we employ two interferometers at velocity classes located ±7.8 m/s

apart, corresponding to the probe detuning explained earlier. We achieve this by

counter-propagating the probe laser and adding in a second detector. Since both

colors of light are present in the Raman beam for both directions, the transition

is able to address velocity classes with either sign. Furthermore, these transitions

feature equal and opposite sensitivity to acceleration, due to the opposing Raman

wavevectors. This provides common-mode rejection of many detection induced noise

sources, doubling the acceleration sensitivity.

The experiment requires the Raman and probe beams to travel nearly co-propagating

so that they address the same velocity class. However, since these lasers are nearly

the same frequency (780 nm), we use polarization and imaging techniques to combine

and separate the beams, preventing the Raman laser from saturating the detector.
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7.1.1 Control System

The control system consists of a Labview interface to National Instruments DAQmx

hardware and an FPGA-based Raman control subsystem. The software provides the

capability of rapid laser scans at rates on the order of 100 kHz. Frequency and phase

information is stored on FPGA registers, and incremented using a counter generated

from the DAQmx output. Given the limitations of NI hardware, operation at this

data rate required the use of continuous waveform output and continuous analog

input. Clever use of dummy clocks was necessary to maintain synchronization of the

analog input signal to the output waveform.

7.2 Performance

A frequency scan of the Raman hyperfine detuning is shown in Fig. 7.4. We observe

two resonances corresponding to the velocity slices selected by the probe at ±7.8 m/s.

This also confirms that the resonances are sufficiently far apart to avoid the Doppler-

free transition. The residual Doppler-free transition at δ = 0 is minimal. We see

approximately 4× 107 atoms undergo the transition.

The interferometer is then constructed using a π/2−π−π/2 sequence of Doppler-

sensitive Raman pulses, with an interrogation time of T = 15 µs. We find this to be

an optimal tradeoff of interferometer sensitivity and phase resolution. We generate a

plot of the interferometer fringe by scanning the rf phase of the third Raman pulse, as

shown in Fig. 7.5. This fringe is the average of 200 phase scans. The fringe contrast

of approximately 5 × 106 atoms represents a significant reduction from that of the

Doppler-sensitive transition, and will be discussed in the next section.

We operate the two interferometers simultaneously, and find significant rejection

of common-mode noise of 12 dB. The resulting phase noise is 35 mrad/shot at a
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Figure 7.4: A scan of the hyperfine detuning in the warm vapor atom interfer-
ometer. The resonances correspond to the velocity slices selected by the probe at
vz = ±7.8 m/s. The widths of the Doppler-sensitive resonances are approximately
2π× 15 MHz. A small Doppler-free resonance is present. Figure reprinted from [61].

data rate of 10 kHz. This corresponds to an acceleration sensitivity of 10.4 mg/
√

Hz.

The measured phase noise is a result of a fit over the entire fringe, resulting in an

overestimation of the phase noise by a factor of π/2 compared with the optimal

mid-fringe readout. We thus infer an acceleration sensitivity of 7.4 mg/
√

Hz.

To verify the Doppler-sensitivity of the interferometer, we conduct a measurement

of the coherence length of the atomic wavepackets. By scanning the delay time of the

final pulse T2 = T1 +δT , the average coherence length is revealed by the decay of the

contrast envelope. This verifies that the atomic wavepackets do indeed separate by a

distance exceeding the coherence length. This measurement is shown in the inset of

Fig. 7.5. We measure a coherence length of 0.81(3) nm, corresponding to a velocity

width of 0.37(2) m/s and a temperature of 1.44(6) mK. This is in agreement with the

size of the velocity slice selected by the Raman beam, as we find the probe addresses
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Figure 7.5: Demonstration of the warm vapor atom interferometer. The fringe is
the average of 200 shots with T = 15 µs at a data-rate of 10 kHz. A π phase shift
on this fringe corresponds to an acceleration of 88 mg . Inset: Contrast as a function
of timing asymmetry T2 = T1 + δT . This reveals the size of the wavepacket overlap,
corresponding to a velocity width of 0.37(2) m/s. This also serves to verify the
Doppler-sensitivity of the interferometer. Figure reprinted from [61].

a velocity class which is approximately an order of magnitude larger, resulting in

limited Raman pulse efficiency.

7.2.1 Atom Number Calculation

We now consider the fundamental sensitivity of the accelerometer under current and

optimal conditions. We thus wish to calculate the number of atoms participating in

the interferometer, as well as the number of atoms contributing to the noise.

In steady-state, the number of atoms addressed by the probe beam is constant.

It is given by the product of the atomic density n, the probe beam volume πr2
pl

where rp is the radius of the probe and l is the length of the cell, and the fraction
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of the selected velocity class. The denominator of this fraction is given by the total

number of atoms at that velocity group within the thermal velocity distribution. For

vz � vB, we assume a nearly zero velocity class so the total number of atoms is
√

2πvB. The number of atoms which actually contribute to the signal is the sum of

atoms which reach |F = 2〉 via the interferometer, and the atoms which fail to pump

into |F = 1〉 as a consequence of the limited optical pumping efficiency. This first

term is given by the product of the interferometer fringe contrast ξ and the Raman

velocity width, ΩR/keff . The second term is given by the product of the optical

pumping inefficiency (1 − E) and probe velocity width δv. Thus, the total number

of detected atoms is

Ntot ≈
(
ξΩR

keff

+ (1− E)δv

)
nπr2

pl√
2πvB

(7.1)

To calculate the number of atoms participating in the interrogation, we first

model the number of atoms that leave some detection volume after a time t, due to

their thermal velocity. We first calculate this in one dimension assuming an initially

uniform distribution of atoms within some length 2a. Averaging over all initial and

final atom positions, the number of atoms remaining within the length 2a is then

given by,

N(t) =
1

2avB
√

2π

∫ a

−a

∫ a

−a
exp

(−(x− x0)2

2v2
Bt

2

)
dxdx0, (7.2)

where vB =
√
kBT /m is the Maxwell-Boltzmann atomic velocity. Defining τ = a/vB

as the characteristic time it takes to traverse the cell, this integral evaluates to

N(t) =

√
2

π

t

τ

(
e−

1
2

(τ/t)2 − 1
)

+ erf

(
1√
2

τ

t

)
. (7.3)

In the case of a multidimensional rectangular cell, the number of atoms is simply the

product of Eq. 7.3 over each dimension. We find that in the case of a cylindrical cell,

we may approximate this equation by matching the cross-sectional areas (a =
√
πr/2)

which has a maximal error of 2.2% from the numerical integration over the cylinder.
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However, in the direction of the probe and Raman beams there is significant

velocity selection. While in the transverse directions this equation holds, we find

the wall collisions in the longitudinal direction to be negligible. Therefore, the time-

dependence exists solely in the transverse directions. After we include the number

of atoms within the volume of the Raman beam and velocity width of the Raman

transition, we have

Nint ≈
[√

2

π

t

τ

(
e−

1
2

(τ/t)2 − 1
)

+ erf

(
1√
2

τ

t

)]2
ξΩRnlπr

2
p√

2πkeffvB
. (7.4)

Substituting our current experimental parameters, we find an ideal phase noise

of 4.9 mrad/shot corresponding to an acceleration sensitivity of 1.4 mg/
√

Hz. This

estimate is approximately an order of magnitude lower than what we observe. We

suspect this is a consequence of pulse area noise due to fluctuations in Raman beam

intensity. In the case of an atom interferometer in resonance for all three pulses the

phase is second order sensitive to this. However, many of the atoms participating

in the interrogation are driven off-resonance. Furthermore, over T = 15 µs this is

significant movement of atoms in and out of the detection and Raman beam volume.

In particular, the final π/2 pulse transfers a significant fraction of non-participating

atoms into the detection state, |F = 2〉. We measure a pulse area noise of 0.3%,

which agrees approximately with the observed fringe offset noise of 1 × 104 atoms.

While the dual interferometers should cancel this effect, we suspect there is some

miss-match between the two Rabi frequencies.

Our experimental parameters are optimized under our limited optical pumping

efficiency. If we were to assume perfect optical pumping, the number of background

atoms contributing to our detection signal decreases significantly. In fact, while main-

taining the total amount of Raman power we reoptimize our experimental parameters

assuming perfect optical pumping. This expands the size of our detection cross sec-

tion to approximately 1 cm2 and increased the interrogation time to T = 20 µs.
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From this, we predict an ideal acceleration sensitivity of 55 µg/
√

Hz.
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Chapter 8

Conclusion & Outlook

We have demonstrated high data-rate atom interferometry with prospects towards a

compact, field-worthy inertial sensor. As a prototype experiment, we demonstrated

an atom interferometer accelerometer operating at data rates up to 300 Hz. This

demonstrated the feasibility of a compact sensor robust against dynamic inertial

conditions. Furthermore, this illuminated the necessity of ensemble recapture, and

motivated development of a dual-axis sensor.

We designed and constructed a compact dual-axis atom interferometer inertial

sensor capable of simultaneous acceleration and rotation rate measurements. The

device relies on a technique we refer to as “ensemble exchange” to achieve a high

flux source of ultracold atoms with 7 × 106 atoms/shot at a data-rate of 60 Hz,

with high duty cycle and minimal loading time. We characterize the robustness of

this source to dynamic inertial conditions, and estimate the technique may endure

10 g of acceleration and 20 rad/s of rotation rate before atom number losses become

significant.

From this source of ultracold atom flux, we construct the atom interferometer

using stimulated Raman transitions. We demonstrate an acceleration sensitivity of

0.9 µg/
√

Hz and rotation rate sensitivity of 1.1 µrad/s/
√

Hz, making this a com-
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pelling prospect for inertial navigation application. We then conducted an analysis

of noise sources in the experiment, and predict a sensor achieving approximately

100 ng/
√

Hz and 100 nrad/s/
√

Hz with the same tolerance to inertial conditions

to be feasible in a compact, engineered package. From here, we expanded the dy-

namic range of the device by a factor of 40 through the use of inertial cosensors, and

predict this factor may be enhanced to cover dynamic input up to the limits of the

ensemble flux. Finally, we have demonstrated a novel concept of atom interferometry

in warm vapor, which presents a compelling prospect for simplifying the stringent

requirements of engineering cold atom laser systems.

Atom interferometer technology is continually evolving with new methods to push

the sensitivity to its absolute limits. While our approach was to engineer the sim-

plest manifestation of light pulse atom interferometer techniques, a wide variety of

enhancements may be possible in a robust, compact package. One possibility is

the use of large momentum transfer which recoils several photons for each pulse in

the interferometer [24, 100]. This increases the area enclosed by the interferometer,

increasing the sensitivity in proportion to the number of photon recoils. Another

possibility involves performing the Raman interrogation from inside an optical cav-

ity to provide power enhancement, spatial filtering, and a precise beam geometry

[55]. These frontiers are limited by the shot noise limit, fundamentally restricting

the sensitivity of the phase readout to δφ = 1/
√
N . However, through the use of

entangled states it is possible to achieve a phase noise limited by δφ = 1/N , known

as the Heisenberg limit [101, 102, 103]. The field of quantum enhanced metrology

is rich with investigations of squeezed atomic ensembles [104, 105], which present a

compelling prospect for enhancing the sensitivity of atom interferometers [106, 105].

Atom interferometers have clearly demonstrated their potential as an emerging

technology. This is evidenced by the rapid growth of companies such as AOsense and

ColdQuanta which are actively developing cold atomic sensors. While there are still

many challenges involving the transition from a laboratory physics experiment to an
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engineered device, the prospect for cold atom sensor technology to make significant

advances in applied metrology remains strong.
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Appendix A

Rubidium 87 Atomic Structure

We present a brief overview of relevant physical and optical parameters for 87Rb and

the D1 and D2 optical transitions. These numbers are all derived from reference

[107].
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Physical Constants
Speed of Light c 2.99792458× 108 m/s
Planck’s Constant h̄ 1.054571596(82)× 10−34 J · s
Bohr Magneton µB 9.27400899(37)× 10−24 J/T
Boltzmann’s Constant kB 1.3806503(24)× 10−23 J/K

87Rb Physical Properties
Atomic Mass m 1.44316060(11)× 10−25 kg
Melting Point TM 39.31 ◦C

D2 Optical Properties
Frequency ω0 2π · 384.2304844685(62) THz
Wavelength λ 780.241209686(13) nm
Natural linewidth Γ 2π · 6.065(9) MHz
Recoil velocity vr 5.8845 mm/s
Doppler Temperature TD 146 µK
Saturation Intensity (cycling) Isat 1.669(2) mW/cm2

D1 Optical Properties
Frequency ω0 2π · 377.1074635(4) THz
Wavelength λ 794.9788509(8) nm
Saturation Intensity (π-polarized) Isat 4.484(5) mW/cm2

Table A.1: 87Rb D line physical and optical properties.
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Figure A.1: 87Rb D1 & D2 spectroscopy reference.
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Figure 1: Vapor pressure of 87Rb from the model of Eqs. (1). The vertical line indicates the melting point.
Figure A.2: Rubidium vapor pressure as a function of temperature.
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Appendix B

MOT Calculation Overview

We present an overview of the code used to calculate the MOT atomic trajectories

and recapture efficiency. While there is much literature on the subject of simulating

MOTs [108, 109], we are concerned in particular with the problem of recapture. As

such, we opted to develop our own simulation.

We use a Monte-Carlo technique [110] by simulating each photon scatter. As-

suming some scattering rate γ, the number of photon scatters in some interval T

obeys Poisson statistics, with distribution parameter λ = γ/T . The most direct way

to simulate this is to step a small time δt. The probability of scattering a photon

is simply γ(δt), for δt � 1/γ. However, this is quite inefficient as for an accurate

simulation, typically δt must be at most an order of magnitude less than 1/γ. A

much more efficient solution is to step the dynamics until the next photon scat-

ter, ∆t drawn from a probability distribution. It turns out, this distribution is the

exponential probability distribution,

∆t = γe−γt, t >= 0. (B.1)

Now suppose we have multiple competing rates γk for k = [1, n]. One potential

solution is to roll n random ∆tks and simply choose the smallest one. However,
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this requires rolling n random numbers, which can become quite inefficient. A more

efficient solution is to utilize the properties of the exponential distribution. Namely,

the exponential distribution is memoryless. That is, the conditional probability for

the event to occur is independent of the time of the actual event. This enables [111]

the following technique.

First, roll a random ∆t from the exponential distribution with γ =
∑

k γk. This

correctly gives the time of the next photon scatter. However, for our simulation it

is necessary to know which of the ks generated the scatter to calculate the direction

of the photon recoil. Thankfully, as a consequence of the Poisson distribution being

memoryless, the scattering beam is simply given by the discrete probability distri-

bution pi = ri/ (
∑

k rk). Thus, by calculating the sum of the rks and rolling two

random numbers, it is possible to perform this calculation for any n.

We thus present our simulation algorithm in pseudocode. Our simulation system

consists of an array of atoms to form the ensemble, an array of laser beams, and an

array of magnetic-field coils. The simulation proceeds as follows.

For each step

For each atom

For each coil

Calculate magnetic field and append to total B.

For each laser

Calculate scattering rate r[i] using magnetic field B.

Draw a random scattering-time dt via sum r[i]’s.

Draw a random j via r[i]’s.

Step the atomic trajectory by dt.

Recoil atomic velocity by hbar*k[j]/m.

Increment time by dt.

Note that this algorithm may be sped up by using the same probability dis-
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Figure B.1: Sample results from magneto-optical trap simulation. Left: Trajectories
of atoms as they fall into the trap. The coordinate axes are in units of meters. Right:
RMS velocity of atoms as a function of time. The x-axis is in units of 10/Γ , and
the y-axis in units of Γ/k.

tribution for multiple photon scatters n. This is valid as long as the constraint

nh̄k/m � Γ/k is maintained. This states that the Doppler shift doesn’t change

significantly after n photon scatters. The ratio of these quantities is approximately

1000, so 100 scatters should maintain this constraint. Furthermore, the distance the

atom travels must be small relative to the size of the magnetic field gradient. At the

capture velocity, 100 photon scatters is well within this limit.

Another possible speedup is threading the simulation over the ensemble. For

this simulation, threading is trivial as the atoms act independently over each other.

A more advanced simulation would take the atomic interaction into account, and

threading is likely to provide a smaller speedup.

With this simulation, we were able to model trapping of the cold atomic ensemble,

and measure a Doppler-limited temperature (see Fig. B.1). Using the simulation to

drop and recapture the ensemble is the subject of future work.
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Appendix C

Control System Overview

The control system for the experiment is written in C#, and based heavily on the

National Instruments DAQmx library and hardware system. It was designed in

three layers, according to the Model-view-controller (MCV) software architectural

pattern. First, a general purpose library which abstracts away many of the details

concerning the specifics hardware operation. For example, control of an AD9852 DDS

is abstracted away into a “Frequency Generator” interface. This enables the user to

replace the DDS by providing a new class to match the interface without replacing

higher-level code. The second layer defines the experiment itself using components

derived from the first layer. For example, parameters such as “Raman detuning” are

routed to a particular parameter in a particular piece of hardware. This layer also

handles tasks such as experimental sweeps, data processing, and data storage. The

third layer consists of the user interface at which point most of the hardware details

are abstracted away.

These components are described in Fig. C.1. This figure showcases the important

classes in the control system, as well as a sample of relevant methods. The “User

Interface”, “Controller”, and “Experiment” classes provide an implementation of the

MCV model described above. Each of these classes exists in an independent thread,
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IHardware
•Initialize()
•Start()
•Stop()
•Finalize()
•Set(string	param,	double	val)
•Set(string	param,	double[]	vals)

IFrequencyGenerator
•SetFrequency(string	channel,	double	frequency)
•SetPhase(string	channel,	double	phase)
•SetAmplitude(string	channel,	double	amplitude)

IDigitalGenerator
•SetPulse(string	channel,	uint	index,	double	width)
•SetDelay(string	channel,	uint	index,	double	delay)

IAnalogGenerator
•SetVoltage(string	channel,	double	voltage)
•SetVoltages(string	channel,	double[]	voltages)

FPGA
•string:	port

NI_6289
•string:	port

Experiment
•Initialize()
•Start()
•Stop()
•Finalize()
•Set(string	param,	double	val)

Processor
•CalculatePopulations(Data)
•CalculateProbabilities(Data)

Logger
•Append(Data)
•WriteData(string	dataFile)
•WriteState(string	paramFile)
•WriteLog(string	logFile)

UserInterface
•UpdateStatus()
•UpdatePlots()

Timing	Data
•	double[]	GetData(string	channel)

XLS	Timing	Parser
•Parse(string	file)

XML	Timing	Parser
•Parse(string	file)

•Event:	Data	newData

Controller

•Scan(string	param,	double[]	vals)
•Set(string	param,	double	val)

•Initialize(string[]	params,	double[]	vals)

KEY
"Uses"	or	"contains	instance	of"

"implements"

Figure C.1: Class diagram for the software control system.

with data queue’s used to transfer data between them. This ensures any bottlenecks

do not affect the performance of the experiment.

Every piece of hardware used in the experiment has an associated class. This

class inherits from interfaces describing the functionality of the device, for example

“IFreqGen” for a frequency generator. This enables a single piece of hardware to

adhere to multiple templates. For example, our FPGA functions as both a frequency

generator (which in the FPGA code is routed to the DDS) or a pulse generator

(in this case, the Raman pulses). The Experiment class then types these as their

relevant interfaces, and the FPGA class is only used on object instantiation. This

enables simple replacement of hardware: as the new piece of hardware (assuming

the class inherits the correct interfaces) only needs to be replaced in one line of

code. Furthermore, this abstracts away details concerning specific hardware in the

experiment class, i.e. the class is only aware of a “Raman Frequency Generator”.

The timing data for the experiment is provided in the “TimingData” class. This
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Figure C.2: Experiment timing specification interface for the control software.

contains information on digital and analog outputs, as well as triggering and clock

information. The data for this class is specified as either an Excel file, or XML. The

Excel interface encodes tabular data, while the XML interface uses a list of “control

points” to specify changes in the waveform. Either of these is encoded into an output

waveform, which is directed to the Experiment class.

While the hardware detail is encoded in the Experiment class, the Controller

functions as a bridge between the user interface and experiment. The controller reg-

ulates all the non-hardware components of the experiment, such as data processing,

data logging, etc.

Logging the data has proven to be a bottleneck in the past. The delay in writing

to the hard disk may be as large as 10 ms as the hard drive may need to seek. In

an experiment with a cycle-time as low as 3 ms, this is highly problematic. The

most direct solution is to simply maintain the data in memory until the end of the
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Figure C.3: Scanning and data-processing interface for the control software.

experiment, and log the data to disk. However, in the event of a software crash all

the acquired data will be lost. Fortunately, once the seek time has elapsed, the data

is written quickly to disk. Thus, the solution we employ is to maintain a queue.

Adding data to the queue is very quick, and no longer bottlenecks the experiment.

This enables the logger to stream the data to disk at it’s own pace. Typically, we

find the number of data points in the queue rarely exceeds 2 at a data-rate of 60 Hz.
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Appendix D

FPGA Code Overview

In this section, we present an overview of the code used to control the Raman laser

system and inertial feed-forward. This subsystem is responsible for controlling Ra-

man pulse duration, frequency, and phase. The inputs consist of timing and frequency

data from the PC, and four cosensors corresponding to acceleration, rotation, and

two tilt sensors. The outputs are two Raman RF frequencies, AOM pulses, and

an AOM selector for the middle pulse. For closed loop operation, the code must be

able to perform Runge-Kutta integration on two ensemble trajectories using cosensor

data sampled at 1 kHz, and rapidly program the result into the DDS. We attempted

a microcontroller-based solution, but the execution time of the code did not meet

timing constraints. We wrote an FPGA program as a combination of raw VHDL

(Sandia), and VHDL compiled from Matlab HDL coder and Simulink (Draper). I

present a brief overview of this code.

The Sandia team was responsible for the top level code, as well as the PC inter-

face and pulse generation. The Draper team handled interfacing with the ADC and

FPGA hardware, and porting the algorithm to VHDL. The PC interface was based

on a serial communication program developed by Walter Gordy, and upgraded to

support writes to the PC (rather than solely reads). Data was sent in 8 byte data
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Pulse Generator
AOM Pulses

DDS Write Trig

DDS Update Trig

Experiment Trig

Timing Data

Analog In Control
Sensor DataSPI

DDS Control
SPIDDS Data

Write Trigger

Update Trigger

Serial Control

DDS Data

RS232

Timing Data

Propagator

DDS Data

Experiment Trig

Inertial Data

RS232

Inertial Data

Sensor Data

RS232

NI-DAQmx
Experiment Trig

Close Loop

PCI
PCI

M
U
X

From AD7689 

To AD9959

Figure D.1: FPGA system diagram.

bursts containing a 1 byte header which represented the address to write the data.

Registers represented various Raman beam parameters, such as frequency and phase.

Additionally, some registers contained timing parameters for the pulses. These regis-

ters were routed to the DDS and pulse generation modules, which were synchronized

to the experiment via a trigger from the NI DAQ system.

The order of events is as follows. Prior to the first pulse, frequencies and phases

given by parameters “Frequency/Phase-A/B-1” were programmed to the DDS. These

represent the resonance conditions of each ensemble A and B for the first pulse.

These frequencies and phases are maintained while the system outputs the first and

second Raman pulse triggers. A secondary trigger for just the second pulse switches

light from one of the Raman lasers to the middle beam, which is shared for the two

ensembles.

During the ensemble trajectory, the analog input samples the cosensors at a rate of

1 kHz and the Runge-Kutta integration algorithm developed by Draper propagates

the atomic trajectory. At each propagation step, the algorithm extrapolates the

predicted third pulse phase and frequency which will lock the interferometer on
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resonance and with zero phase. 50 µs before the final pulse, the software produces

the last propagation update. In open loop operation, this update is ignored and

parameters “Frequency/Phase-A/B-2” are programmed to the DDS. This enables

diagnostic functions such as phase scanning of the final pulse. In closed loop mode,

these parameters are overridden with the propagator result. After the final pulse,

the result of the algorithm is sent to the computer via the serial interface, while

the computer prepares the parameters for the next scan (if necessary). The inertial

information is thus logged in both open and closed loop operation.
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