9,871 research outputs found

    A study of the stress wave factor technique for nondestructive evaluation of composite materials

    Get PDF
    The acousto-ultrasonic method of nondestructive evaluation is an extremely sensitive means of assessing material response. Efforts continue to complete the understanding of this method. In order to achieve the full sensitivity of the technique, extreme care must be taken in its performance. This report provides an update of the efforts to advance the understanding of this method and to increase its application to the nondestructive evaluation of composite materials. Included are descriptions of a novel optical system that is capable of measuring in-plane and out-of-plane displacements, an IBM PC-based data acquisition system, an extensive data analysis software package, the azimuthal variation of acousto-ultrasonic behavior in graphite/epoxy laminates, and preliminary examination of processing variation in graphite-aluminum tubes

    The high frequency flexural ultrasonic transducer for transmitting and receiving ultrasound in air

    Get PDF
    Flexural ultrasonic transducers are robust and low cost sensors that are typically used in industry for distance ranging, proximity sensing and flow measurement. The operating frequencies of currently available commercial flexural ultrasonic transducers are usually below 50 kHz. Higher operating frequencies would be particularly beneficial for measurement accuracy and detection sensitivity. In this paper, design principles of High Frequency Flexural Ultrasonic Transducers (HiFFUTs), guided by the classical plate theory and finite element analysis, are reported. The results show that the diameter of the piezoelectric disc element attached to the flexing plate of the HiFFUT has a significant influence on the transducer's resonant frequency, and that an optimal diameter for a HiFFUT transmitter alone is different from that for a pitch-catch ultrasonic system consisting of both a HiFFUT transmitter and a receiver. By adopting an optimal piezoelectric diameter, the HiFFUT pitch-catch system can produce an ultrasonic signal amplitude greater than that of a non-optimised system by an order of magnitude. The performance of a prototype HiFFUT is characterised through electrical impedance analysis, laser Doppler vibrometry, and pressure-field microphone measurement, before the performance of two new HiFFUTs in a pitch-catch configuration is compared with that of commercial transducers. The prototype HiFFUT can operate efficiently at a frequency of 102.1 kHz as either a transmitter or a receiver, with comparable output amplitude, wider bandwidth, and higher directivity than commercially available transducers of similar construction

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    Ultrasonic Transducer And Method For Using Same

    Get PDF
    An improved ultrasonic transducer fabricated on a silicon base has a piezoelectric layer of polyvinylidene fluoride-trfluroethylene copolymer. The piezoelectric layer is sandwiched between two conductive electrodes, all of which are supported on a dielectric layer on top of the silicon base. At least one of the electrodes forms a Fresnel zone plate to focus the ultrasonic signals from the transducers. To improve the performance of the transducer, the silicon base behind the active area is removed, leaving the dielectric layer as a membrane to support the electrodes and the piezoelectric layer. The resulting void in the silicon base is filled with an acoustically matched backing, such as an epoxy, to enhance the wideband performance of the transducer. The transducer is especially suited for characterizing anatomical structures or features requiring very high resolution.Georgia Tech Research Corp.Medical College Of Georgia Research Institut

    The application of ultrasonic NDT techniques in tribology

    Get PDF
    The use of ultrasonic reflection is emerging as a technique for studying tribological contacts. Ultrasonic waves can be transmitted non-destructively through machine components and their behaviour at an interface describes the characteristics of that contact. This paper is a review of the current state of understanding of the mechanisms of ultrasonic reflection at interfaces, and how this has been used to investigate the processes of dry rough surface contact and lubricated contact. The review extends to cover how ultrasound has been used to study the tribological function of certain engineering machine elements

    Laser Ultrasound Inspection Based on Wavelet Transform and Data Clustering for Defect Estimation in Metallic Samples

    Get PDF
    Laser-generated ultrasound is a modern non-destructive testing technique. It has been investigated over recent years as an alternative to classical ultrasonic methods, mainly in industrial maintenance and quality control procedures. In this study, the detection and reconstruction of internal defects in a metallic sample is performed by means of a time-frequency analysis of ultrasonic waves generated by a laser-induced thermal mechanism. In the proposed methodology, we used wavelet transform due to its multi-resolution time frequency characteristics. In order to isolate and estimate the corresponding time of flight of eventual ultrasonic echoes related to internal defects, a density-based spatial clustering was applied to the resulting time frequency maps. Using the laser scan beam’s position, the ultrasonic transducer’s location and the echoes’ arrival times were determined, the estimation of the defect’s position was carried out afterwards. Finally, clustering algorithms were applied to the resulting geometric solutions from the set of the laser scan points which was proposed to obtain a two-dimensional projection of the defect outline over the scan plane. The study demonstrates that the proposed method of wavelet transform ultrasonic imaging can be effectively applied to detect and size internal defects without any reference information, which represents a valuable outcome for various applications in the industry. View Full-TextPeer ReviewedPostprint (published version

    Composite porosity characterization using X-ray edge illumination phase contrast and ultrasonic techniques

    Get PDF
    Owing to their combination of low weight and high strength, carbon fiber reinforced composites are widely used in the aerospace industry, including for primary aircraft structures. Porosity introduced by the manufacturing process can compromise structural performance and integrity, with a maximum porosity content of 2% considered acceptable for many aerospace applications. The main nondestructive evaluation (NDE) techniques used in industry are ultrasonic imaging and X-ray computed tomography, however both techniques have limitations. Edge Illumination X-ray Phase Contrast Imaging (EI XPCi) is a novel technique that exploits the phase effects induced by damage and porosity on the X-ray beam to create improved contrast. EI XPCi is a differential (i.e., sensitive to the first derivative of the phase), multi-modal phase method that uses a set of coded aperture masks to acquire and retrieve the absorption, refraction, and ultra-small-angle scattering signals, the latter arising from sub-pixel sample features. For carbon fiber-reinforced woven composite specimens with varying levels of porosity, porosity quantification obtained through various signals produced by EI XPCi was compared to ultrasonic immersion absorption C-scans and matrix digestion. The standard deviation of the differential phase is introduced as a novel signal for the quantification of porosity in composite plates, with good correlation to ultrasonic attenuation
    • …
    corecore