1,843 research outputs found

    Detection of Runway and Obstacles using Electro-optical and Infrared Sensors before Landing

    Get PDF
    For safe aircraft operations, detection of runway incursions especially during landing and takeoff is essential. And it is important that such detection technique is capable of detecting the distant objects so that pilot has enough response time to take corrective action. This paper presents techniques to detect runway and runway incursions using electro-optical color camera and medium wave infrared sensor on-board the aircraft during approach for landing. The detection process consists of horizon detection to reduce runway search space in sensor image and then detect runway and obstacles. The information is then presented to the pilot to improve pilot situational awareness. The performance of the proposed techniques are evaluated in flight simulators with simulated images of electro-optical and infrared sensors on-board the aircraft during approach for landing at a distance of 3 nautical miles from runway threshold during day/night and in low visibility CAT II foggy conditions. Effectiveness of the techniques with statistics of runway detection, miss detection and false alarm for different case studies have been provided and discussed.Defence Science Journal, Vol. 64, No. 1, January 2014, DOI:10.14429/dsj.64.276

    Exploiting Low-confidence Pseudo-labels for Source-free Object Detection

    Full text link
    Source-free object detection (SFOD) aims to adapt a source-trained detector to an unlabeled target domain without access to the labeled source data. Current SFOD methods utilize a threshold-based pseudo-label approach in the adaptation phase, which is typically limited to high-confidence pseudo-labels and results in a loss of information. To address this issue, we propose a new approach to take full advantage of pseudo-labels by introducing high and low confidence thresholds. Specifically, the pseudo-labels with confidence scores above the high threshold are used conventionally, while those between the low and high thresholds are exploited using the Low-confidence Pseudo-labels Utilization (LPU) module. The LPU module consists of Proposal Soft Training (PST) and Local Spatial Contrastive Learning (LSCL). PST generates soft labels of proposals for soft training, which can mitigate the label mismatch problem. LSCL exploits the local spatial relationship of proposals to improve the model's ability to differentiate between spatially adjacent proposals, thereby optimizing representational features further. Combining the two components overcomes the challenges faced by traditional methods in utilizing low-confidence pseudo-labels. Extensive experiments on five cross-domain object detection benchmarks demonstrate that our proposed method outperforms the previous SFOD methods, achieving state-of-the-art performance

    WeatherNet: Recognising weather and visual conditions from street-level images using deep residual learning

    Get PDF
    Extracting information related to weather and visual conditions at a given time and space is indispensable for scene awareness, which strongly impacts our behaviours, from simply walking in a city to riding a bike, driving a car, or autonomous drive-assistance. Despite the significance of this subject, it is still not been fully addressed by the machine intelligence relying on deep learning and computer vision to detect the multi-labels of weather and visual conditions with a unified method that can be easily used for practice. What has been achieved to-date is rather sectorial models that address limited number of labels that do not cover the wide spectrum of weather and visual conditions. Nonetheless, weather and visual conditions are often addressed individually. In this paper, we introduce a novel framework to automatically extract this information from street-level images relying on deep learning and computer vision using a unified method without any pre-defined constraints in the processed images. A pipeline of four deep Convolutional Neural Network (CNN) models, so-called the WeatherNet, is trained, relying on residual learning using ResNet50 architecture, to extract various weather and visual conditions such as Dawn/dusk, day and night for time detection, and glare for lighting conditions, and clear, rainy, snowy, and foggy for weather conditions. The WeatherNet shows strong performance in extracting this information from user-defined images or video streams that can be used not limited to: autonomous vehicles and drive-assistance systems, tracking behaviours, safety-related research, or even for better understanding cities through images for policy-makers.Comment: 11 pages, 8 figure

    Street Viewer: An Autonomous Vision Based Traffic Tracking System

    Get PDF
    The development of intelligent transportation systems requires the availability of both accurate traffic information in real time and a cost-effective solution. In this paper, we describe Street Viewer, a system capable of analyzing the traffic behavior in different scenarios from images taken with an off-the-shelf optical camera. Street Viewer operates in real time on embedded hardware architectures with limited computational resources. The system features a pipelined architecture that, on one side, allows one to exploit multi-threading intensively and, on the other side, allows one to improve the overall accuracy and robustness of the system, since each layer is aimed at refining for the following layers the information it receives as input. Another relevant feature of our approach is that it is self-adaptive. During an initial setup, the application runs in learning mode to build a model of the flow patterns in the observed area. Once the model is stable, the system switches to the on-line mode where the flow model is used to count vehicles traveling on each lane and to produce a traffic information summary. If changes in the flow model are detected, the system switches back autonomously to the learning mode. The accuracy and the robustness of the system are analyzed in the paper through experimental results obtained on several different scenarios and running the system for long periods of time

    MIC: Masked Image Consistency for Context-Enhanced Domain Adaptation

    Get PDF
    In unsupervised domain adaptation (UDA), a model trained on source data (e.g.synthetic) is adapted to target data (e.g. real-world) without access to targetannotation. Most previous UDA methods struggle with classes that have a similarvisual appearance on the target domain as no ground truth is available to learnthe slight appearance differences. To address this problem, we propose a MaskedImage Consistency (MIC) module to enhance UDA by learning spatial contextrelations of the target domain as additional clues for robust visualrecognition. MIC enforces the consistency between predictions of masked targetimages, where random patches are withheld, and pseudo-labels that are generatedbased on the complete image by an exponential moving average teacher. Tominimize the consistency loss, the network has to learn to infer thepredictions of the masked regions from their context. Due to its simple anduniversal concept, MIC can be integrated into various UDA methods acrossdifferent visual recognition tasks such as image classification, semanticsegmentation, and object detection. MIC significantly improves thestate-of-the-art performance across the different recognition tasks forsynthetic-to-real, day-to-nighttime, and clear-to-adverse-weather UDA. Forinstance, MIC achieves an unprecedented UDA performance of 75.9 mIoU and 92.8%on GTA-to-Cityscapes and VisDA-2017, respectively, which corresponds to animprovement of +2.1 and +3.0 percent points over the previous state of the art.The implementation is available at https://github.com/lhoyer/MIC.<br

    MIC: Masked Image Consistency for Context-Enhanced Domain Adaptation

    Full text link
    In unsupervised domain adaptation (UDA), a model trained on source data (e.g. synthetic) is adapted to target data (e.g. real-world) without access to target annotation. Most previous UDA methods struggle with classes that have a similar visual appearance on the target domain as no ground truth is available to learn the slight appearance differences. To address this problem, we propose a Masked Image Consistency (MIC) module to enhance UDA by learning spatial context relations of the target domain as additional clues for robust visual recognition. MIC enforces the consistency between predictions of masked target images, where random patches are withheld, and pseudo-labels that are generated based on the complete image by an exponential moving average teacher. To minimize the consistency loss, the network has to learn to infer the predictions of the masked regions from their context. Due to its simple and universal concept, MIC can be integrated into various UDA methods across different visual recognition tasks such as image classification, semantic segmentation, and object detection. MIC significantly improves the state-of-the-art performance across the different recognition tasks for synthetic-to-real, day-to-nighttime, and clear-to-adverse-weather UDA. For instance, MIC achieves an unprecedented UDA performance of 75.9 mIoU and 92.8% on GTA-to-Cityscapes and VisDA-2017, respectively, which corresponds to an improvement of +2.1 and +3.0 percent points over the previous state of the art. The implementation is available at https://github.com/lhoyer/MIC.Comment: CVPR 202

    Traffic Cameras to detect inland waterway barge traffic: An Application of machine learning

    Full text link
    Inland waterways are critical for freight movement, but limited means exist for monitoring their performance and usage by freight-carrying vessels, e.g., barges. While methods to track vessels, e.g., tug and tow boats, are publicly available through Automatic Identification Systems (AIS), ways to track freight tonnages and commodity flows carried on barges along these critical marine highways are non-existent, especially in real-time settings. This paper develops a method to detect barge traffic on inland waterways using existing traffic cameras with opportune viewing angles. Deep learning models, specifically, You Only Look Once (YOLO), Single Shot MultiBox Detector (SSD), and EfficientDet are employed. The model detects the presence of vessels and/or barges from video and performs a classification (no vessel or barge, vessel without barge, vessel with barge, and barge). A dataset of 331 annotated images was collected from five existing traffic cameras along the Mississippi and Ohio Rivers for model development. YOLOv8 achieves an F1-score of 96%, outperforming YOLOv5, SSD, and EfficientDet models with 86%, 79%, and 77% respectively. Sensitivity analysis was carried out regarding weather conditions (fog and rain) and location (Mississippi and Ohio rivers). A background subtraction technique was used to normalize video images across the various locations for the location sensitivity analysis. This model can be used to detect the presence of barges along river segments, which can be used for anonymous bulk commodity tracking and monitoring. Such data is valuable for long-range transportation planning efforts carried out by public transportation agencies, in addition to operational and maintenance planning conducted by federal agencies such as the US Army Corp of Engineers

    Spectral Unsupervised Domain Adaptation for Visual Recognition

    Full text link
    Unsupervised domain adaptation (UDA) aims to learn a well-performed model in an unlabeled target domain by leveraging labeled data from one or multiple related source domains. It remains a great challenge due to 1) the lack of annotations in the target domain and 2) the rich discrepancy between the distributions of source and target data. We propose Spectral UDA (SUDA), an efficient yet effective UDA technique that works in the spectral space and is generic across different visual recognition tasks in detection, classification and segmentation. SUDA addresses UDA challenges from two perspectives. First, it mitigates inter-domain discrepancies by a spectrum transformer (ST) that maps source and target images into spectral space and learns to enhance domain-invariant spectra while suppressing domain-variant spectra simultaneously. To this end, we design novel adversarial multi-head spectrum attention that leverages contextual information to identify domain-variant and domain-invariant spectra effectively. Second, it mitigates the lack of annotations in target domain by introducing multi-view spectral learning which aims to learn comprehensive yet confident target representations by maximizing the mutual information among multiple ST augmentations capturing different spectral views of each target sample. Extensive experiments over different visual tasks (e.g., detection, classification and segmentation) show that SUDA achieves superior accuracy and it is also complementary with state-of-the-art UDA methods with consistent performance boosts but little extra computation
    • …
    corecore