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Abstract

In unsupervised domain adaptation (UDA), a model
trained on source data (e.g. synthetic) is adapted to tar-
get data (e.g. real-world) without access to target anno-
tation. Most previous UDA methods struggle with classes
that have a similar visual appearance on the target domain
as no ground truth is available to learn the slight appear-
ance differences. To address this problem, we propose a
Masked Image Consistency (MIC) module to enhance UDA
by learning spatial context relations of the target domain
as additional clues for robust visual recognition. MIC en-
forces the consistency between predictions of masked target
images, where random patches are withheld, and pseudo-
labels that are generated based on the complete image by
an exponential moving average teacher. To minimize the
consistency loss, the network has to learn to infer the pre-
dictions of the masked regions from their context. Due to
its simple and universal concept, MIC can be integrated
into various UDA methods across different visual recogni-
tion tasks such as image classification, semantic segmenta-
tion, and object detection. MIC significantly improves the
state-of-the-art performance across the different recogni-
tion tasks for synthetic-to-real, day-to-nighttime, and clear-
to-adverse-weather UDA. For instance, MIC achieves an
unprecedented UDA performance of 75.9 mIoU and 92.8%
on GTA→Cityscapes and VisDA-2017, respectively, which
corresponds to an improvement of +2.1 and +3.0 percent
points over the previous state of the art. The implementation
is available at https://github.com/lhoyer/MIC.

1. Introduction
In order to train state-of-the-art neural networks for vi-

sual recognition tasks, large-scale annotated datasets are
necessary. However, the collection and annotation pro-
cess can be very time-consuming and tedious. For in-
stance, the annotation of a single image for semantic seg-
mentation can take more than one hour [12, 79]. There-
fore, it would be beneficial to resort to existing or simu-
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Figure 1. (a) Previous UDA methods such as HRDA [35] strug-
gle with similarly looking classes on the unlabeled target domain.
Here, the interior of the sidewalk is wrongly segmented as road,
probably, due to the ambiguous local appearance. (b) The pro-
posed Masked Image Consistency (MIC) enhances the learning of
context relations to consider additional context clues such as the
curb in the foreground. With MIC, the adapted network is able
to correctly segment the sidewalk. (c) MIC can be plugged into
most existing UDA methods. It enforces the consistency of the
predictions of a masked target image with the pseudo-label of the
original image. So, the network is trained to better utilize context
clues on the target domain. Further details are shown in Fig. 3.

lated datasets, which are easier to annotate. However, a
network trained on such a source dataset usually performs
worse when applied to the actual target dataset as neural
networks are sensitive to domain gaps. To mitigate this is-
sue, unsupervised domain adaptation (UDA) methods adapt
the network to the target domain using unlabeled target im-
ages, for instance, with adversarial training [24, 31, 69, 86]
or self-training [34, 35, 85, 92, 114].

UDA methods have remarkably progressed in the last
few years. However, there is still a noticeable performance
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gap compared to supervised training. A common problem is
the confusion of classes with a similar visual appearance on
the target domain such as road/sidewalk or pedestrian/rider
as there is no ground truth supervision available to learn the
slight appearance differences. For example, the interior of
the sidewalk in Fig. 1 is segmented as road, probably, due
to a similar local appearance. To address this problem, we
propose to enhance UDA with spatial context relations as
additional clues for robust visual recognition. For instance,
the curb in the foreground of Fig. 1 a) could be a crucial
context clue to correctly recognize the sidewalk despite the
ambiguous texture. Although the used network architec-
tures already have the capability to model context relations,
previous UDA methods are still not able to reach the full
potential of using context dependencies on the target do-
main as the used unsupervised target losses are not powerful
enough to enable effective learning of such information.

Therefore, we design a method to explicitly encourage
the network to learn comprehensive context relations of the
target domain during domain adaptation. In particular, we
propose a novel Masked Image Consistency (MIC) plug-
in for UDA (see Fig. 1 c), which can be applied to various
visual recognition tasks. Considering semantic segmenta-
tion for illustration, MIC masks out a random selection of
target image patches and trains the network to predict the
semantic segmentation result of the entire image including
the masked-out parts. In that way, the network has to utilize
the context to infer the semantics of the masked regions. As
there are no ground truth labels for the target domain, we
resort to pseudo-labels, generated by an EMA teacher that
uses the original, unmasked target images as input. There-
fore, the teacher can utilize both context and local clues to
generate robust pseudo-labels. Over the course of the train-
ing different parts of objects are masked out so that the net-
work learns to utilize different context clues, which further
increases the robustness. After UDA with MIC, the network
is able to better exploit context clues and succeeds in cor-
rectly segmenting difficult areas that rely on context clues
such as the sidewalk in Fig. 1 b).

To the best of our knowledge, MIC is the first UDA ap-
proach to exploit masked images to facilitate learning con-
text relations on the target domain. Due to its universal-
ity and simplicity, MIC can be straightforwardly integrated
into various UDA methods across different visual recog-
nition tasks, making it highly valuable in practice. MIC
achieves significant and consistent performance improve-
ments for different UDA methods (including adversarial
training, entropy-minimization, and self-training) on mul-
tiple visual recognition tasks (image classification, seman-
tic segmentation, and object detection) with different do-
main gaps (synthetic-to-real, clear-to-adverse-weather, and
day-to-night) and different network architectures (CNNs
and Transformer). It sets a new state-of-the-art perfor-
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Figure 2. MIC significantly improves state-of-the-art UDA meth-
ods across different UDA benchmarks and recognition tasks such
as image classification (Cls.), semantic segmentation (Segm.), and
object detection (Det.). Detailed results can be found in Sec. 4.

mance on all tested benchmarks with significant improve-
ments over previous methods as shown in Fig. 2. For
instance, MIC respectively improves the state-of-the-art
performance by +2.1, +4.3, and +3.0 percent points on
GTA→Cityscapes(CS), CS→DarkZurich, and VisDA-2017
and achieves an unprecedented UDA performance of 75.9
mIoU, 60.2 mIoU, and 92.8%, respectively.

2. Related Work
2.1. Unsupervised Domain Adaptation (UDA)

In UDA, a model trained on a labeled source domain is
adapted to an unlabeled target domain. Due to the ubiq-
uity of domain gaps, UDA methods were designed for all
major computer vision problems including image classifica-
tion [20, 21, 57–59, 66, 68, 74, 82, 108], semantic segmenta-
tion [1,25,31,32,34,35,85,86,89,92,106], and object detec-
tion [4, 7, 8, 15, 50, 53, 73, 94, 100, 113]. The majority of the
approaches rely on discrepancy minimization, adversarial
training, or self-training. The first group minimizes the dis-
crepancy between domains using a statistical distance func-
tion such as maximum mean discrepancy [28,57,60], corre-
lation alignment [81, 82], or entropy minimization [27, 59,
89]. In adversarial training, a learned domain discriminator
provides supervision in a GAN framework [26] to encour-
age domain-invariant inputs [25, 31], features [21, 32, 58,
65, 86] or outputs [62, 74, 86, 89]. In self-training, pseudo-
labels [46] are generated for the target domain based on pre-
dictions obtained using confidence thresholds [63,108,114]
or pseudo-label prototypes [66, 106, 107]. To increase
the robustness of the self-training, consistency regulariza-
tion [75, 80, 84] is often applied to ensure consistency over
different data augmentations [1, 10, 20, 64, 68], different
crops [35, 44], multiple models [105, 110, 111], or domain-
mixup [23, 34–36, 56, 85, 112]. Further adaptation strate-
gies utilize pretext tasks [6,36,90,92], follow an adaptation
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curriculum [9, 13, 14, 109], exploit the increased domain-
robustness of Transformers [34, 35, 83, 102], align the do-
mains with contrastive learning [38, 97], use graph match-
ing [4, 49, 50], or adapt multi-resolution inputs [35].

To facilitate learning domain-robust context dependen-
cies, several UDA methods propose network components
that can capture context information such as spatial at-
tention pyramids [47], cross-domain attention [103], or
context-aware feature fusion [34]. While these network
modules provide the ability to capture context, the unsuper-
vised loss on the target domain does not provide sufficient
supervision to learn all relevant target context relations.
To improve the learning of context relations, CrDA [39]
aligns local context relations with adversarial training and
HRDA [35] uses multi-crop consistency training. However,
these mechanisms are not able to capture all relevant con-
text clues as can be seen for HRDA in Fig. 1 a). Due to the
random patch masking, MIC is able to learn a larger set of
different context clues for robust recognition.

2.2. Masked Image Modeling

Predicting withheld tokens of a masked input sequence
was shown to be a powerful self-supervised pretraining task
in natural language processing [3, 16]. Recently, this con-
cept was successfully transferred to self-supervised pre-
training in computer vision, where it is known as masked
image modeling. Given a partly masked image, the net-
work is trained to reconstruct properties of the masked ar-
eas such as VAE features [2, 17, 51], HOG features [93], or
color information [29, 99]. To sample the mask, block-wise
masking [2], random patch masking [29,99], and attention-
guided masking [43, 54] have been explored.

Similarly, our method also uses masked images. How-
ever, we pursue a different purpose than previous works.
Instead of aiming to learn self-supervised representations,
MIC utilizes masked images in a novel way to learn context
relations for domain adaptation. Due to this conceptual dif-
ference, we do not have to rely on pretext restoration targets
such as VAE features but can perform the reconstruction
in the actual prediction space of the relevant computer vi-
sion task such as semantic segmentation. To the best of our
knowledge, MIC is the first method to exploit masked im-
ages to enhance context learning for UDA. Particularly, we
show that naive masked image modeling on ImageNet does
not improve the target domain performance (see Sec. 4.3).

3. Methods
3.1. Unsupervised Domain Adaptation (UDA)

A neural network fθ can be trained on the source do-
main using images XS = {xSk }

NS

k=1 and their labels YS =

{ySk }
NS

k=1 with a supervised source loss LS . The specific
source loss depends on the computer vision task. For image

classification and semantic segmentation, the (pixel-wise)
cross-entropy is typically used

LS ,cls/seg
k = H(fθ(xSk ), ySk ) , (1)

H(ŷ, y) = −
H∑
i=1

W∑
j=1

C∑
c=1

yijc log ŷijc , (2)

where H=W=1 in case of classification. For object de-
tection, a box regression and a box classification loss are
commonly utilized [70].

However, a model trained on the source domain usu-
ally experiences a performance drop when applied to an-
other domain. Therefore, unsupervised domain adaptation
(UDA) methods use unlabeled images from the target do-
main X T = {xTk }

NT

k=1 to adapt the network. For that pur-
pose, an additional unsupervised loss for the target domain
LT is added to the optimization problem

min
θ

1

NS

NS∑
k=1

LSk +
1

NT

NT∑
k=1

λTLTk . (3)

The target loss LT is defined according to the UDA strat-
egy such as adversarial training [8,21,69,86,87,91] or self-
training [34, 63, 85, 106, 107, 114].

3.2. Masked Image Consistency (MIC)

To recognize an object (or stuff region), a model can
utilize clues from different parts of the image. This can
be local information, which originates from the same im-
age patch as the corresponding cell in the feature map, or
context information, which comes from surrounding image
patches that can belong to different parts of the object or
its environment [37]. Many network architectures [18, 30]
have the capability to integrate both local and context in-
formation in their features. While the learning of context
clues can be guided by ground truth in supervised learning,
there is no ground truth supervision available for the target
domain in UDA. Current unsupervised losses are not pow-
erful enough to enable effective learning of context clues
as empirically observed such as in Fig. 1 a). Therefore, we
propose to specifically encourage the learning of context re-
lations on the target domain to provide additional clues for
robust recognition of classes with similar local appearances.

In order to facilitate the learning of context relations on
the target domain, we introduce a Masked Image Consis-
tency (MIC) module, which can be easily plugged into vari-
ous existing UDA methods. The domain adaptation process
with MIC is illustrated in Fig. 3 and explained below.

MIC withholds local information by randomly masking
out patches of the target image. For that purpose, a patch
maskM is randomly sampled from a uniform distribution

Mmb+1:(m+1)b,
nb+1:(n+1)b

= [v > r] with v ∼ U(0, 1) , (4)
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Figure 3. UDA with the proposed Masked Image Consistency (MIC). In UDA, a network is typically trained with a supervised loss on the
source domain (blue) and an unsupervised adaptation loss on the target domain (green). MIC enforces the consistency between predictions
of masked target images (purple) and pseudo-labels that are generated based on the complete image by an exponential moving average
(EMA) teacher. To minimize the MIC loss, the network has to learn to infer the predictions of the masked regions from their context.

where [·] denotes the Iverson bracket, b the patch size, r the
mask ratio, and m ∈ [0 .. W/b− 1], n ∈ [0 .. W/b− 1] the
patch indices. The masked target image xM (see Fig. 3) is
obtained by element-wise multiplication of mask and image

xM =M� xT . (5)

The masked target prediction ŷM can only use the limited
information of the unmasked image regions

ŷM = fθ(x
M ) , (6)

making the prediction more difficult. This is also reflected
in Fig. 3, where the prediction misses a part of the sidewalk.
In order to train the network to use the remaining context
clues to still reconstruct the correct label without access to
the entire image, the MIC loss LM is introduced

LM = qTH(ŷM , pT ) , (7)

where pT denotes a pseudo-label and qT its quality weight.
MIC uses pseudo-labels as there is no ground truth available
for the target domain. The pseudo-label is the prediction of
a teacher network gφ of the complete target image xT . For
image classification and semantic segmentation,

p
T ,cls/seg
ij = [c = argmax

c′
gφ(x

T )ijc′ ] . (8)

For object detection pseudo-labels, box proposals from
gφ(x

T ) are filtered with a confidence threshold δ and non-
maximum suppression [70].

The teacher network gφ is implemented as an EMA
teacher [84]. Its weights are the exponential moving av-
erage of the weights of the (student) network fθ

φt+1 ← αφt + (1− α)θt , (9)

where t denotes a training step. The EMA teacher realizes
a temporal ensemble for stable pseudo-labels, which is a
common strategy in semi-supervised learning [19,33,80,84]
and UDA [1,34,35,85]. As the teacher is updated based on
the student fθ, it will gradually obtain the enhanced context
learning capability from fθ. In contrast to the student fθ,
the teacher gφ has privileged access to the original image
xT (see Eq. 8), so that it can use both the context informa-
tion and the intact local appearance information to generate
pseudo labels of higher quality.

As the pseudo-labels are potentially wrong (especially at
the beginning of the training), the loss is weighted by the
quality estimate qT . For image classification, we use the
maximum softmax probability as certainty estimate [108]

qT ,cls = max
c′

gφ(x
T )c′ . (10)

For semantic segmentation, we follow [34, 35, 85] and uti-
lize the ratio of pixels exceeding a threshold τ of the maxi-
mum softmax probability

qT ,seg =

∑H
i=1

∑W
j=1[maxc′ gφ(x

T )(ijc′) > τ ]

H ·W
. (11)

And for object detection, we apply the quality estimate from
Eq. 10 to each bounding box in the classification branches.

The MIC consistency training can be easily integrated
into the UDA optimization problem

min
θ

1

NS

NS∑
k=1

LSk +
1

NT

NT∑
k=1

(λTLTk + λMLMk ) . (12)
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4. Experiments

4.1. Implementation Details

Semantic Segmentation: We study synthetic-to-real, clear-
to-adverse-weather, and day-to-nighttime adaptation of
street scenes. As synthetic datasets, we use GTA [71] con-
taining 24,966 images and Synthia [72] with 9,400 images.
As real-world datasets, we use Cityscapes (CS) [12] con-
sisting of 2,975 training and 500 validation images for clear
weather, DarkZurich [78] with 2,416 training and 151 test
images for nighttime, and ACDC [79] containing 1,600
training, 406 validation, and 2,000 test images for adverse
weather (fog, night, rain, and snow). The training resolu-
tion follows the used UDA methods (e.g. half resolution for
DAFormer [34] or full resolution for HRDA [35]).

We evaluate MIC based on a DAFormer network [34]
with a MiT-B5 encoder [98], and a DeepLabV2 [5] with a
ResNet-101 [30] backbone. All backbones are initialized
with ImageNet pretraining. In the default UDA setting, we
follow the HRDA [35] multi-resolution self-training strat-
egy and training parameters, i.e. AdamW [61] with a learn-
ing rate of 6×10−5 for the encoder and 6×10−4 for the
decoder, 40k training iterations, a batch size of 2, linear
learning rate warmup, a loss weight λTst=1, an EMA factor
α=0.999, DACS [85] data augmentation, Rare Class Sam-
pling [34], and ImageNet Feature Distance [34]. The ap-
plicable subset of parameters is also used when evaluating
MIC with DAFormer [34] and DACS [85]. For adversar-
ial training and entropy minimization, SGD with a learning
rate of 0.0025 and λTadv=λ

T
ent=0.001 is used.

Image Classification: We evaluate MIC on the VisDA-
2017 dataset [67], which consists of 280,000 synthetic and
real images of 12 classes, as well as the Office-Home
dataset [88], which contains 15,500 images from 65 classes
for the domains art (Ar), clipart (Cl), product (Pr) and real-
world (Rw). We conduct the experiments with ResNet-
101 [30] and ViT-B/16 [18]. For UDA training, we follow
SDAT [69], which utilizes CDAN [58] with MCC [42] and
a smoothness enhancing loss [69]. We use the same training
parameters, i.e. SGD with a learning rate of 0.002, a batch
size of 32, and a smoothness parameter of 0.02.
Object Detection: For object detection UDA, we evaluate
MIC on Cityscapes (CS) [12] to Foggy CS [77]. The ex-
periments are performed based on Faster R-CNN [70] with
ResNet-50 backbone [30] and FPN [55]. For UDA training,
we adopt SADA [8], which utilizes adversarial training on
image and instance level. The same parameters as in [8]
are used, i.e. 0.0025 initial learning rate, 60k training itera-
tions, λTadv=0.1, and a batch size of 2. Following previous
works [8, 73], we report the results in mean Average Preci-
sion (mAP) with a 0.5 IoU threshold.
MIC Parameters: By default, MIC uses a patch size
b=64, a mask ratio r=0.7, a loss weight λM=1, an EMA

Table 1. Performance (mIoU in %) of MIC for different UDA
methods on GTA→CS.

Network UDA Method w/o MIC w/ MIC Diff.

DeepLabV2 [5] Adversarial [86] 44.2 48.2 +4.0
DeepLabV2 [5] Entropy Min. [89] 44.3 49.0 +4.7
DeepLabV2 [5] DACS [85] 53.9 56.0 +2.1
DeepLabV2 [5] DAFormer [34] 56.0 59.4 +3.4
DeepLabV2 [5] HRDA [35] 63.0 64.2 +1.2
DAFormer [34] DAFormer [34] 68.3 70.6 +2.3
DAFormer [34] HRDA [35] 73.8 75.9 +2.1

weight α=0.999 following [34, 35], and color augmenta-
tion (brightness, contrast, saturation, hue, and blur) follow-
ing the parameters of [34, 35, 85]. We set the pseudo-label
box threshold δ=0.8 following [15,53] and the quality con-
fidence threshold τ=0.968 following [34,35,85]. If a UDA
method trains with half resolution [8, 34, 85, 86, 89], the
patch size is divided by 2. For image classification and
object detection, we use α=0.9. For object detection, we
reduce the mask ratio r=0.5 as the objects of interest are
more sparse and a high r increases the risk that they are
completely masked out. For target domains with nighttime
images (DarkZurich and ACDC), we forgo color augmen-
tation as it can corrupt the content of dark nighttime images
due to the locally already low brightness and contrast. The
experiments are conducted on an RTX 2080 Ti or a Titan
RTX GPU depending on the required GPU memory.

4.2. MIC for Semantic Segmentation

First, we combine MIC with different UDA methods
and network architectures for semantic segmentation on
GTA→CS. Tab. 1 shows that MIC achieves consistent and
significant improvements across various UDA methods with
different network architectures, ranging from +1.2 up to
+4.7 mIoU. Specifically, MIC does not only benefit pow-
erful Transformers such as DAFormer [34] but also CNNs
such as DeepLabV2 [5]. Across UDA methods, the perfor-
mance improvement decreases with a higher UDA perfor-
mance as expected due to performance saturation.

Second, we evaluate the performance of MIC com-
bined with the high-performing state-of-the-art method
HRDA [35] for further domain adaptation scenarios:
synthetic-to-real (GTA→CS and Synthia→CS), day-to-
nighttime (CS→DarkZurich), and clear-to-adverse-weather
(CS→ACDC). Tab. 2 shows clear performance improve-
ments on each benchmark. Specifically, MIC improves the
state-of-the-art performance by +2.1 mIoU on GTA→CS,
by +1.5 mIoU on Synthia→CS, by +4.3 mIoU on CS→
DarkZurich, and by +2.4 mIoU on CS→ACDC. Consid-
ering the class-wise IoU in Tab. 2, MIC achieves consistent
improvements for most classes when compared to the previ-
ous state-of-the-art method HRDA. Classes that most profit
from MIC are sidewalk, fence, pole, traffic sign, terrain,
and rider. These classes have a comparably low UDA per-

5



Table 2. Semantic segmentation performance (IoU in %) on four different UDA benchmarks.

Method Road S.walk Build. Wall Fence Pole Tr.Light Sign Veget. Terrain Sky Person Rider Car Truck Bus Train M.bike Bike mIoU

Synthetic-to-Real: GTA→Cityscapes (Val.)
ADVENT [89] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5
DACS [85] 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1
ProDA [106] 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5
DAFormer [34] 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3
HRDA [35] 96.4 74.4 91.0 61.6 51.5 57.1 63.9 69.3 91.3 48.4 94.2 79.0 52.9 93.9 84.1 85.7 75.9 63.9 67.5 73.8
MIC (HRDA) 97.4 80.1 91.7 61.2 56.9 59.7 66.0 71.3 91.7 51.4 94.3 79.8 56.1 94.6 85.4 90.3 80.4 64.5 68.5 75.9

Synthetic-to-Real: Synthia→Cityscapes (Val.)
ADVENT [89] 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 – 84.1 57.9 23.8 73.3 – 36.4 – 14.2 33.0 41.2
DACS [85] 80.6 25.1 81.9 21.5 2.9 37.2 22.7 24.0 83.7 – 90.8 67.6 38.3 82.9 – 38.9 – 28.5 47.6 48.3
ProDA [106] 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 – 84.4 74.2 24.3 88.2 – 51.1 – 40.5 45.6 55.5
DAFormer [34] 84.5 40.7 88.4 41.5 6.5 50.0 55.0 54.6 86.0 – 89.8 73.2 48.2 87.2 – 53.2 – 53.9 61.7 60.9
HRDA [35] 85.2 47.7 88.8 49.5 4.8 57.2 65.7 60.9 85.3 – 92.9 79.4 52.8 89.0 – 64.7 – 63.9 64.9 65.8
MIC (HRDA) 86.6 50.5 89.3 47.9 7.8 59.4 66.7 63.4 87.1 – 94.6 81.0 58.9 90.1 – 61.9 – 67.1 64.3 67.3

Day-to-Nighttime: Cityscapes→DarkZurich (Test)
ADVENT [89] 85.8 37.9 55.5 27.7 14.5 23.1 14.0 21.1 32.1 8.7 2.0 39.9 16.6 64.0 13.8 0.0 58.8 28.5 20.7 29.7
MGCDA† [78] 80.3 49.3 66.2 7.8 11.0 41.4 38.9 39.0 64.1 18.0 55.8 52.1 53.5 74.7 66.0 0.0 37.5 29.1 22.7 42.5
DANNet† [95] 90.0 54.0 74.8 41.0 21.1 25.0 26.8 30.2 72.0 26.2 84.0 47.0 33.9 68.2 19.0 0.3 66.4 38.3 23.6 44.3
DAFormer [34] 93.5 65.5 73.3 39.4 19.2 53.3 44.1 44.0 59.5 34.5 66.6 53.4 52.7 82.1 52.7 9.5 89.3 50.5 38.5 53.8
HRDA [35] 90.4 56.3 72.0 39.5 19.5 57.8 52.7 43.1 59.3 29.1 70.5 60.0 58.6 84.0 75.5 11.2 90.5 51.6 40.9 55.9
MIC (HRDA) 94.8 75.0 84.0 55.1 28.4 62.0 35.5 52.6 59.2 46.8 70.0 65.2 61.7 82.1 64.2 18.5 91.3 52.6 44.0 60.2

Clear-to-Adverse-Weather: Cityscapes→ACDC (Test)
ADVENT [89] 72.9 14.3 40.5 16.6 21.2 9.3 17.4 21.2 63.8 23.8 18.3 32.6 19.5 69.5 36.2 34.5 46.2 26.9 36.1 32.7
MGCDA† [78] 73.4 28.7 69.9 19.3 26.3 36.8 53.0 53.3 75.4 32.0 84.6 51.0 26.1 77.6 43.2 45.9 53.9 32.7 41.5 48.7
DANNet† [95] 84.3 54.2 77.6 38.0 30.0 18.9 41.6 35.2 71.3 39.4 86.6 48.7 29.2 76.2 41.6 43.0 58.6 32.6 43.9 50.0
DAFormer [34] 58.4 51.3 84.0 42.7 35.1 50.7 30.0 57.0 74.8 52.8 51.3 58.3 32.6 82.7 58.3 54.9 82.4 44.1 50.7 55.4
HRDA [35] 88.3 57.9 88.1 55.2 36.7 56.3 62.9 65.3 74.2 57.7 85.9 68.8 45.7 88.5 76.4 82.4 87.7 52.7 60.4 68.0
MIC (HRDA) 90.8 67.1 89.2 54.5 40.5 57.2 62.0 68.4 76.3 61.8 87.0 71.3 49.4 89.7 75.7 86.8 89.1 56.9 63.0 70.4
† Method uses additional daytime/clear-weather geographically-aligned reference images.

Image DAFormer [34] HRDA [35] MIC (HRDA) Ground Truth

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure 4. Qualitative comparison of MIC with previous methods on GTA→CS (row 1 and 2), CS→ACDC (row 3), and CS→DarkZurich
(row 4). MIC better segments difficult classes such as sidewalk, fence, traffic sign, and bus. Further examples are shown in the supplement.

formance, meaning that they are difficult to adapt. Here,
context clues appear to play an important role for success-
ful adaptation. For some classes such as building or veg-
etation on synthetic-to-real adaptation, MIC increases the
performance by a smaller margin, probably because the

target context clues play a smaller role for them. In a
few particular cases, the performance of single classes de-
creases for MIC such as truck on CS→DarkZurich. These
are rare classes, which are underrepresented in the data,
which might cause MIC to pick up misleading context bi-
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Table 3. Image classification accuracy in % on VisDA-2017 for UDA. The last column contains the mean across classes.

Method Plane Bcycl Bus Car Horse Knife Mcyle Persn Plant Sktb Train Truck Mean

CDAN [58]

R
es

N
et

85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
MCC [42] 88.1 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8
SDAT [69] 95.8 85.5 76.9 69.0 93.5 97.4 88.5 78.2 93.1 91.6 86.3 55.3 84.3
MIC (SDAT) 96.7 88.5 84.2 74.3 96.0 96.3 90.2 81.2 94.3 95.4 88.9 56.6 86.9
TVT [104]

V
iT

92.9 85.6 77.5 60.5 93.6 98.2 89.3 76.4 93.6 92.0 91.7 55.7 83.9
CDTrans [102] 97.1 90.5 82.4 77.5 96.6 96.1 93.6 88.6 97.9 86.9 90.3 62.8 88.4
SDAT [69] 98.4 90.9 85.4 82.1 98.5 97.6 96.3 86.1 96.2 96.7 92.9 56.8 89.8
SDAT w/ MAE [29] 97.1 88.4 80.9 75.3 95.4 97.9 94.3 85.5 95.8 91.0 93.0 65.4 88.4
MIC (SDAT) 99.0 93.3 86.5 87.6 98.9 99.0 97.2 89.8 98.9 98.9 96.5 68.0 92.8

Table 4. Image classification accuracy in % on Office-Home for UDA.

Method Ar )Cl Ar )Pr Ar )Rw Cl )Ar Cl )Pr Cl )Rw Pr )Ar Pr )Cl Pr )Rw Rw )Ar Rw )Cl Rw )Pr Avg

CDTrans [102] 68.8 85.0 86.9 81.5 87.1 87.3 79.6 63.3 88.2 82.0 66.0 90.6 80.5
TVT [104]

V
iT 74.9 86.8 89.5 82.8 87.9 88.3 79.8 71.9 90.1 85.5 74.6 90.6 83.6

SDAT [69] 70.8 87.0 90.5 85.2 87.3 89.7 84.1 70.7 90.6 88.3 75.5 92.1 84.3
MIC (SDAT) 80.2 87.3 91.1 87.2 90.0 90.1 83.4 75.6 91.2 88.6 78.7 91.4 86.2

Table 5. Object detection AP in % on CS→Foggy CS.

Method Bus Bcycl Car Mcycle Persn Rider Train Truck mAP

DAFaster [7] 29.2 40.4 43.4 19.7 38.3 28.5 23.7 32.7 32.0
SW-DA [73] 31.8 44.3 48.9 21.0 43.8 28.0 28.9 35.8 35.3
SC-DA [113] 33.8 42.1 52.1 26.8 42.5 26.5 29.2 34.5 35.9
MTOR [4] 38.6 35.6 44.0 28.3 30.6 41.4 40.6 21.9 35.1
SIGMA [50] 50.4 40.6 60.3 31.7 44.0 43.9 51.5 31.6 44.2
SADA [8] 50.3 45.4 62.1 32.4 48.5 52.6 31.5 29.5 44.0
MIC (SADA) 52.4 47.5 67.0 40.6 50.9 55.3 33.7 33.9 47.6

ases. The observations from Tab. 2 are also qualitatively
reflected in the example predictions in Fig. 4. The sup-
plement provides further results of MIC(DAFormer) and
MIC(HRDADeepLabv2) and an extended qualitative analysis.

4.3. MIC for Image Classification

For image classification UDA, we combine MIC with
the state-of-the-art method SDAT [69]. On VisDA-2017
(Tab. 3), MIC significantly improves the UDA performance
by +2.5 and +3.0 percent points when used with a ResNet
and ViT network, respectively The improvement is consis-
tent over almost all classes, where difficult classes generally
benefit the most. On Office-Home (Tab. 4), MIC clearly
improves the UDA performance by +1.9. Domains that are
difficult to adapt such as Ar)Cl or Pr)Cl benefit most.

Tab. 3 further provides a baseline of SDAT with
MAE [29] pretraining, which includes masked image mod-
eling (MIM) and ImageNet supervision. Compared to regu-
lar SDAT, additional MIM reduces the performance by -1.4.
This demonstrates that naive MIM as additional pretraining
is not sufficient to capture the relevant target context de-
pendencies, probably as the learned context is specific to
ImageNet and does not transfer well to the target domain.

4.4. MIC for Object Detection

For object detection UDA, we combine MIC with the
state-of-the-art framework Scale-aware Domain Adaptive

Table 6. MIC with HRDA [35] for images from different domain.

MIC Domain mIoUGTA )CS mIoUCS )ACDC(Val)

– 73.8 65.3
Source 71.1 66.5
Target 75.9 66.9
Source+Target 74.5 68.0

Faster-RCNN (SADA) [8]. On CS→Foggy CS (Tab. 5),
MIC obtains consistent improvements over all categories
and achieves +3.6 overall mAP improvement compared to
the baseline SADA. The classes car, motorcycle, and rider
benefit the most from MIC. MIC also demonstrates a clear
advantage for most categories compared to more recent
methods such as SIGMA [50].

4.5. In-Depth Analysis of MIC

Where to apply MIC? Tab. 6 shows the performance of
MIC with HRDA using images from different domains as
masked input: (1) source, (2) target, and (3) both source
and target. We observe that: for (1) the performance
is -2.7 mIoU worse than HRDA for GTA→CS but it in-
creases by +1.2 mIoU for CS→ACDC, for (2) the perfor-
mance increases by +2.1 for GTA→CS and +1.6 mIoU for
CS→ACDC, and for (3) the mIoU increases by +0.7 for
GTA→CS and +2.7 for CS→ACDC. Both benchmarks dif-
fer in the domain gap of context relations. While the dis-
tributions of context relations can vary between synthetic
(GTA) and real data (CS), the context relations of CS and
ACDC are very similar as both datasets were recorded in
the real world and partly even in the same city. If the con-
text domain gap is large, context relations learned on source
images do not transfer well to the target domain and can
even hamper the adaptation. However, if the context gap
is small, source context relations transfer well to the target
domain and can boost the adaptation performance. There-
fore, we also apply MIC to the source domain, in addition to
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Table 7. MIC ablation study with DAFormer [34] on GTA→CS.

Masked Img. Color Aug. EMA Teacher Pseudo Lbl. Weight mIoU

1 – – – – 68.3
2 X X X X 70.6
3 – X X X 50.6
4 X – X X 70.3
5 X X – X 69.9
6 X X X – 69.0

Table 8. Parameter study of the patch size b and the mask ratio
r of MIC with DAFormer [34] on GTA→CS. The color indicates
the difference to the DAFormer performance of 68.3 mIoU.

0.3 0.5 0.7 0.9
Mask Ratio r

32
64

128
256Pa

tc
h 

Si
ze

 b 69.3 69.9 69.7 69.3
69.2 70.3 70.6 69.7
68.7 70.5 70.4 68.2
66.2 69.5 69.8 68.0

the default target domain, for clear-to-adverse-weather and
day-to-nighttime adaptation.
Component Ablation: To gain further insights, we ablate
the components of MIC and evaluate the performance with
DAFormer [34] (due to the faster training) on GTA→CS in
Tab. 7. The complete MIC achieves 70.6 mIoU (row 2),
which is +2.3 mIoU better than DAFormer (row 1). First,
the masking of the image is ablated, meaning that the con-
sistency training is done with unmasked but still augmented
target images (see “MIC Parameters” in Sec. 4.1). With-
out masking out image patches, the performance heavily de-
creases by -20.0 mIoU (cf. rows 2 and 3). On the other side,
color augmentation is not essential for MIC as its ablation
only reduces the performance by -0.3 mIoU (cf. rows 2 and
4). This demonstrates the importance of context learning
with masked images. Replacing the EMA predictions with
the regular model predictions decreases the performance of
MIC by -0.7 mIoU (cf. rows 2 and 5). Without the pseudo-
label confidence loss weight, the mIoU drops by -1.6 (cf.
rows 2 and 6) showing that it is important to reduce the
weight of uncertain samples for MIC training.
Patch Size and Mask Ratio: Tab. 8 shows the influence
of the mask patch size b and mask ratio r. Compared
to DAFormer, MIC achieves significant improvements in
a range of b between 64 and 128 and r between 0.5 and
0.7. The best performance is achieved for b=64 and r=0.7.
Only for a very large b of 256, which is a quarter of the im-
age height, MIC decreases the performance. Note that b is
internally divided by 2 as DAFormer uses half resolution.
Further MIC parameters are studied in the supplement.
MIC for Supervised Training: We compare the UDA and
the supervised performance of DAFormer with and without
MIC in Tab. 9. Also for supervised training, MIC achieves
a slight improvement of +0.3 mIoU. However, the improve-
ment for UDA is much more significant with +2.3 mIoU,

Table 9. Comparison of UDA on GTA→CS and supervised train-
ing on CS. “Rel.” indicates mIoUUDA/mIoUSuperv..

mIoUUDA mIoUSuperv. Rel.

DAFormer [34] 68.3 77.6 88.0%
MIC (DAFormer) 70.6 77.9 90.6%
Improvement +2.3 +0.3 +2.6%

Table 10. Runtime and memory consumption during training and
inference on an RTX 2080 Ti (row 1-4) or Titan RTX (row 5-6).

Training Inference
Throughput GPU Memory Throughput GPU Memory

Adversarial [86] 1.40 it/s 5.38 GB 11.2 img/s 0.5 GB
MIC (Adversarial) 0.81 it/s 5.55 GB 11.2 img/s 0.5 GB
DAFormer [34] 0.71 it/s 9.64 GB 8.6 img/s 1.0 GB
MIC (DAFormer) 0.57 it/s 9.74 GB 8.6 img/s 1.0 GB
HRDA [35] 0.36 it/s 22.46 GB 0.8 img/s 9.4 GB
MIC (HRDA) 0.29 it/s 22.55 GB 0.8 img/s 9.4 GB

showing that MIC is particularly useful for UDA. There-
fore, MIC is able to increase the relative UDA performance
(column “Rel”) by +2.6 percent points, so that UDA with
MIC achieves remarkable 90.6% of the performance of a
network trained with full supervision on the target domain.
Runtime/Memory: Tab. 10 shows the runtime and GPU
memory footprint of representative UDA methods with and
without MIC. For methods without an EMA teacher such
as adversarial training, MIC reduces training speed by 75%
due to the additional calculations for MIC and increases the
GPU memory consumption by 3% due to the EMA teacher.
The memory increase is small as the loss terms LS , LT , and
LM are backpropagated separately. For UDA methods that
already use an EMA teacher such as DAFormer or HRDA,
the teacher and its predictions can be re-used, so that the
training speed only increases by 24% and the memory foot-
print by 1%. During inference, there is no overhead as no
additional EMA teacher or forward passes are necessary.

5. Conclusions
In this paper, we presented Masked Image Consistency

(MIC), a UDA module to improve the learning of target do-
main context relations. By enforcing consistency of predic-
tions from partly masked and complete images, the network
is trained to utilize robust context clues. MIC can be utilized
for UDA across various visual recognition tasks such as im-
age classification, semantic segmentation, and object detec-
tion as well as multiple domain adaptation scenarios such
as synthetic-to-real, clear-to-adverse-weather, and day-to-
nighttime. In a comprehensive evaluation, we have shown
that MIC achieves significant performance improvements in
all of these UDA tasks. For instance, MIC respectively im-
proves the state-of-the-art performance by +2.1 and +3.0 on
GTA→CS and VisDA-2017. We hope that, due to its sim-
plicity, MIC can be used as part of future UDA methods to
narrow the gap between UDA and supervised learning.
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Cord, and Patrick Pérez. Dada: Depth-aware domain adap-
tation in semantic segmentation. In ICCV, pages 7364–
7373, 2019. 2

[91] Haoran Wang, Tong Shen, Wei Zhang, Ling-Yu Duan, and
Tao Mei. Classes matter: A fine-grained adversarial ap-
proach to cross-domain semantic segmentation. In ECCV,
pages 642–659, 2020. 3, 15

[92] Qin Wang, Dengxin Dai, Lukas Hoyer, Olga Fink, and Luc
Van Gool. Domain adaptive semantic segmentation with
self-supervised depth estimation. In ICCV, pages 8515–
8525, 2021. 1, 2, 15

[93] Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan
Yuille, and Christoph Feichtenhofer. Masked feature pre-
diction for self-supervised visual pre-training. In CVPR,
pages 14668–14678, 2022. 3

[94] Aming Wu, Rui Liu, Yahong Han, Linchao Zhu, and Yi
Yang. Vector-decomposed disentanglement for domain-
invariant object detection. In ICCV, pages 9342–9351,
2021. 2

[95] Xinyi Wu, Zhenyao Wu, Hao Guo, Lili Ju, and Song Wang.
Dannet: A one-stage domain adaptation network for unsu-
pervised nighttime semantic segmentation. In CVPR, pages
15769–15778, 2021. 6, 15

[96] Xinyi Wu, Zhenyao Wu, Lili Ju, and Song Wang. A one-
stage domain adaptation network with image alignment
for unsupervised nighttime semantic segmentation. PAMI,
2021. 14, 15

[97] Binhui Xie, Shuang Li, Mingjia Li, Chi Harold Liu, Gao
Huang, and Guoren Wang. Sepico: Semantic-guided pixel
contrast for domain adaptive semantic segmentation. arXiv
preprint arXiv:2204.08808, 2022. 3

[98] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M. Alvarez, and Ping Luo. SegFormer: Simple and Ef-
ficient Design for Semantic Segmentation with Transform-
ers. In NeurIPS, 2021. 5

[99] Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin
Bao, Zhuliang Yao, Qi Dai, and Han Hu. Simmim: A
simple framework for masked image modeling. In CVPR,
pages 9653–9663, 2022. 3

[100] Minghao Xu, Hang Wang, Bingbing Ni, Qi Tian, and Wen-
jun Zhang. Cross-domain detection via graph-induced pro-
totype alignment. In CVPR, pages 12355–12364, 2020. 2

[101] Qi Xu, Yinan Ma, Jing Wu, Chengnian Long, and Xiaolin
Huang. Cdada: A curriculum domain adaptation for night-
time semantic segmentation. In ICCVW, pages 2962–2971,
2021. 15

[102] Tongkun Xu, Weihua Chen, Pichao Wang, Fan Wang,
Hao Li, and Rong Jin. Cdtrans: Cross-domain trans-
former for unsupervised domain adaptation. arXiv preprint
arXiv:2109.06165, 2021. 3, 7

[103] Jinyu Yang, Weizhi An, Chaochao Yan, Peilin Zhao, and
Junzhou Huang. Context-aware domain adaptation in se-
mantic segmentation. In WACV, pages 514–524, 2021. 3

[104] Jinyu Yang, Jingjing Liu, Ning Xu, and Junzhou Huang.
Tvt: Transferable vision transformer for unsupervised do-
main adaptation. arXiv preprint arXiv:2108.05988, 2021.
7

[105] Kai Zhang, Yifan Sun, Rui Wang, Haichang Li, and Xiao-
hui Hu. Multiple fusion adaptation: A strong framework for
unsupervised semantic segmentation adaptation. In BMVC,
2021. 2

[106] Pan Zhang, Bo Zhang, Ting Zhang, Dong Chen, Yong
Wang, and Fang Wen. Prototypical pseudo label denoising
and target structure learning for domain adaptive semantic
segmentation. In CVPR, pages 12414–12424, 2021. 2, 3,
6, 15, 16, 17

[107] Qiming Zhang, Jing Zhang, Wei Liu, and Dacheng Tao.
Category anchor-guided unsupervised domain adaptation
for semantic segmentation. In NeurIPS, pages 435–445,
2019. 2, 3

[108] Weichen Zhang, Wanli Ouyang, Wen Li, and Dong Xu.
Collaborative and adversarial network for unsupervised do-
main adaptation. In CVPR, pages 3801–3809, 2018. 2, 4

[109] Yang Zhang, Philip David, Hassan Foroosh, and Boqing
Gong. A curriculum domain adaptation approach to the
semantic segmentation of urban scenes. PAMI, 42(8):1823–
1841, 2019. 3

[110] Zhedong Zheng and Yi Yang. Rectifying pseudo label
learning via uncertainty estimation for domain adaptive se-
mantic segmentation. IJCV, 129(4):1106–1120, 2021. 2

[111] Qianyu Zhou, Zhengyang Feng, Qiqi Gu, Guangliang
Cheng, Xuequan Lu, Jianping Shi, and Lizhuang
Ma. Uncertainty-aware consistency regularization for
cross-domain semantic segmentation. arXiv preprint
arXiv:2004.08878, 2020. 2

[112] Qianyu Zhou, Zhengyang Feng, Qiqi Gu, Jiangmiao
Pang, Guangliang Cheng, Xuequan Lu, Jianping Shi, and
Lizhuang Ma. Context-aware mixup for domain adaptive
semantic segmentation. In WACV, pages 514–524, 2021. 2

[113] Xinge Zhu, Jiangmiao Pang, Ceyuan Yang, Jianping Shi,
and Dahua Lin. Adapting object detectors via selective
cross-domain alignment. In CVPR, pages 687–696, 2019.
2, 7

[114] Yang Zou, Zhiding Yu, BVK Kumar, and Jinsong Wang.
Unsupervised domain adaptation for semantic segmenta-
tion via class-balanced self-training. In ECCV, pages 289–
305, 2018. 1, 2, 3, 15

12

https://www.hemanthdv.org/officeHomeDataset.html
https://www.hemanthdv.org/officeHomeDataset.html


Supplementary Material

A. Overview
In the supplementary material for MIC, we provide the

source code (Sec. B), study the influence of further MIC pa-
rameters (Sec. C), extend the state-of-the-art comparison for
semantic segmentation (Sec. D), and provide a comprehen-
sive qualitative comparison with previous works (Sec. E).

B. Source Code
The source code to train MIC is available at https:

//github.com/lhoyer/MIC. For further information
on the environment setup and experiment execution, please
refer to README.md.

The implementation of MIC is based on the source
code of HRDA [35] and mmsegmentation [11] for seman-
tic segmentation, SDAT [69] for image classification, and
SADA [8] for object detection.

C. Influence of Further MIC Parameters
C.1. MIC Prediction Region

To gain a better understanding of the working principles
of MIC, we additionally study how MIC behaves if only
masked or unmasked regions of the image are included in
the MIC loss (i.e. LM is only calculated for regions, where
Mij is 0 or 1). Tab. S1 shows that both MIC with a loss for
masked patches and MIC with a loss for unmasked patches
gain about +1.5 mIoU over DAFormer without MIC. When
the MIC loss is calculated for both regions (default setting),
the performance further improves by about +0.8 mIoU.

The improved performance for predicting masked
patches shows that MIC profits from predicting regions with
missing local information from the context. This task en-
hances the use of context relations for local predictions.

The improved performance for predicting unmasked
patches shows that MIC profits from predicting regions with
local information but without their complete context infor-
mation. As not all context relations are available due to the
masking, the network learns to exploit different combina-
tions of context relations. This task enhances the robust-
ness of the network towards missing context relations. Dur-
ing inference, this is particularly helpful to correctly predict
partly-occluded objects (see Sec. E).

Both capabilities are complementary and can be success-
fully combined when applying the MIC loss to all image
patches.

C.2. MIC Loss Weight λM

Further, we study the influence of the MIC loss weight
λM with DAFormer on GTA→CS. Tab. S2 shows that equal
weighting of MIC loss (λM = 1) and the other loss terms

Table S1. Study of the MIC loss applied to specific image regions
with DAFormer [34] on GTA→CS.

MIC Loss Region mIoU

– 68.3
Masked Patches 69.8
Unmasked Patches 69.7
All Patches 70.6

Table S2. Parameter study of the MIC loss weight λM with
DAFormer [34] on GTA→CS.

MIC Loss Weight λM mIoU

0.0 68.3
0.1 68.9
0.5 69.5
1.0 70.6
2.0 70.1

10.0 67.9

Table S3. Parameter study of the MIC teacher momentum α with
DAFormer [34] on GTA→CS and with SDAT [69] on VisDA-
2017.

Teacher Momentum α mIoUGTA )CS mAccVisDA

0.9 70.0 92.8
0.99 70.3 92.7

0.999 70.6 80.5
0.9999 69.3 79.5

Table S4. Ablation study of color augmentation for MIC with
DAFormer [34] on GTA→CS and CS→ACDC.

MIC Domain mIoUGTA )CS mIoUCS )ACDC(Val)

– 68.3 55.1
w/o Color Augmentation 70.3 59.8
w/ Color Augmentation 70.6 58.7

achieves the best performance. A smaller weight gradually
degrades the performance up to the point where no MIC
is used. Also, a larger loss weight results in a decreased
performance. If it is too large such as λM = 10, the perfor-
mance can drop below the baseline. In that case, the MIC
loss term dominates the total loss so that the other terms
such as the source and adaptation loss cannot work effec-
tively.

C.3. Teacher Momentum α

Tab. S3 shows the influence of the MIC teacher
network momentum α on the UDA performance for
GTA→Cityscapes (semantic segmentation) and VisDA-
2017 (image classification). For GTA→CS, it can be seen
that the default value of α = 0.999 from DAFormer [34]
achieves the best performance. A smaller α (faster teacher
update) gradually decreases the performance. Similarly, a
higher teacher α also results in a performance drop. Proba-
bly, a too large α (slow teacher update) results in outdated
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pseudo-labels, which hamper the consistency training. For
VisDA-2017, α = 0.9 achieves the best performance, show-
ing that a faster update of the teacher is useful for successful
adaptation in this case.

C.4. Data Augmentation on Different Datasets

Tab. S4 compares MIC without and with color augmen-
tation (brightness, contrast, saturation, hue, and blur fol-
lowing the parameters of [34, 35, 85]) on GTA→CS and
CS→ACDC. It can be seen that color augmentation im-
proves MIC for GTA→CS while it decreases the perfor-
mance on CS→ACDC. We assume that the color augmenta-
tion can corrupt the content of dark nighttime images due to
the locally already low brightness and contrast. If the color
augmentation corrupts the content of the unmasked patches
of the image, the masked image consistency loss can be ren-
dered meaningless. Therefore, we forgo color augmentation
for target domains with nighttime images (DarkZurich and
ACDC).

D. Extended Comparison for UDA Semantic
Segmentation

In the main paper, we have shown a selection of the most
relevant methods for domain-adaptive semantic segmenta-
tion. In the extended comparison in Tab. S5, we supple-
ment the selection of previous works. It can be observed
that also in the extended comparison, MIC(HRDA) outper-
forms all previous methods by a large margin. There are
a few cases, where another method achieves a better per-
formance for a specific class (e.g. DAP [40] for vegetation
on Synthia→Cityscapes) but their performance falls behind
MIC for other classes, resulting in a lower mIoU.

Further, we provide MIC with DAFormer on all
four benchmarks in Tab. S5. Compared to DAFormer,
MIC(DAFormer) achieves significant performance im-
provements across the different datasets. The performance
of MIC(DAFormer) can be further improved by utilizing
sliding window inference as suggested in HRDA [35] to use
the same inference input size as the training crop, which
works better for the learned positional embedding of the
Transformer encoder. MIC(DAFormer)slide improves the
performance on all four benchmarks, especially for day-
to-nighttime and clear-to-adverse-weather adaptation. Sim-
ilar to MIC(HRDA), major improvements come from the
classes sidewalk, fence, pole, traffic sign, terrain, and rider.

For a more fair comparison with ResNet-based
UDA methods, we further provide detailed results of
MIC(HRDADLv2), which uses a DeepLabV2 [5] network ar-
chitecture with a ResNet-101 [30] backbone, in Tab. S5. It
can be seen that MIC(HRDADLv2) significantly outperforms
recent ResNet-based methods such as DecoupleNet [45],
DAP [40], CPSL [48], and HRDADLv2 [35] on synthetic-
to-real adaptation as well as CCDistill [22], DANIA [96],

and HRDADLv2 [35] on day-to-nighttime/clear-to-adverse-
weather adaptation.

E. Further Example Predictions
Supplementing the example predictions in the main pa-

per, we show further representative examples of the strength
and weaknesses of MIC in comparison with strong state-of-
the-art methods.

On GTA→CS semantic segmentation, MIC(HRDA)
achieves considerable performance improvements for the
classes sidewalk, fence, bus, and rider (see Tab. S5). This
is also reflected in the example predictions in Fig. S1-S4.
For sidewalk (Fig. S1), MIC is able to segment sidewalk
more completely and even recognizes segments that previ-
ous methods failed to identify. For fence (Fig. S2), MIC re-
duces the segmentation of objects behind the fence instead
of the fence. For bus (Fig. S3), MIC better segments am-
biguous textures inside the bus and better recognizes partly-
occluded busses. For rider (Fig. S4), MIC better segments
the upper body and head of close riders and is able to rec-
ognize distant riders. However, there are also some difficult
examples, where UDA methods including MIC fail to cor-
rectly segment the image (Fig. S5). For example, MIC still
struggles to differentiate vehicles with rare appearances,
sidewalk that merges with the road, sidewalk under park-
ing cars, and pedestrians standing close to bicycles.

On CS→ACDC semantic segmentation, the same obser-
vations as for GTA→Cityscapes apply for the classes side-
walk (Fig. S6), fence (Fig. S7), and bus/train (Fig. S8).
However, there are some distinct failure cases. In particular,
UDA methods including MIC fail to segment snow-covered
sidewalk, distinguish sky/vegetation/building in dark image
ares, and struggle with motion blur of dynamic objects.

On CS→Foggy CS object detection, MIC(SADA) is able
to detect objects that previous methods failed to recog-
nize. For example, MIC better detects the classes bus and
truck (Fig. S10) as well as rider, motorcycle, and bicycle
(Fig. S11). Typical failure cases (Fig. S12) include multiple
detections for a single objects, missed detections, and the
confusion of semantically similar objects.

F. Potential Limitations
Even though UDA methods achieve evolvingly higher

performances for synthetic-to-real and clear-to-adverse
weather adaptation, the current methods are still not reliable
enough to be safely deployed in real-world autonomous
driving as can be seen in the failure cases in Fig. S5, S9, and
S12. For these cases, it is still necessary to collect annota-
tions on the target domain to achieve safe operation. We
hope that this gap to supervised learning can be gradually
narrowed in the future, but we assume that for some corner
cases a few annotations might still be necessary to reliably
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Table S5. Extended comparison of the semantic segmentation performance (IoU in %) on four different UDA benchmarks.

Method Road S.walk Build. Wall Fence Pole Tr.Light Sign Veget. Terrain Sky Person Rider Car Truck Bus Train M.bike Bike mIoU

Synthetic-to-Real: GTA→Cityscapes (Val.)
AdaptSeg [86]

R
es

N
et

-B
as

ed
86.5 25.9 79.8 22.1 20.0 23.6 33.1 21.8 81.8 25.9 75.9 57.3 26.2 76.3 29.8 32.1 7.2 29.5 32.5 41.4

ADVENT [89] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5
CBST [114] 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9
BDL [52] 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5
FADA [91] 91.0 50.6 86.0 43.4 29.8 36.8 43.4 25.0 86.8 38.3 87.4 64.0 38.0 85.2 31.6 46.1 6.5 25.4 37.1 50.1
DACS [85] 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1
SAC [1] 90.4 53.9 86.6 42.4 27.3 45.1 48.5 42.7 87.4 40.1 86.1 67.5 29.7 88.5 49.1 54.6 9.8 26.6 45.3 53.8
CorDA [92] 94.7 63.1 87.6 30.7 40.6 40.2 47.8 51.6 87.6 47.0 89.7 66.7 35.9 90.2 48.9 57.5 0.0 39.8 56.0 56.6
ProDA [106] 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5
ProCA [41] 91.9 48.4 87.3 41.5 31.8 41.9 47.9 36.7 86.5 42.3 84.7 68.4 43.1 88.1 39.6 48.8 40.6 43.6 56.9 56.3
DecoupleNet [45] 87.6 49.3 87.2 42.5 41.6 46.6 57.4 44.0 89.0 43.9 90.6 73.0 43.8 88.1 32.9 53.7 44.3 49.8 57.2 59.1
DAP [40] 94.5 63.1 89.1 29.8 47.5 50.4 56.7 58.7 89.5 50.2 87.0 73.6 38.6 91.3 50.2 52.9 0.0 50.2 63.5 59.8
CPSL [48] 92.3 59.9 84.9 45.7 29.7 52.8 61.5 59.5 87.9 41.6 85.0 73.0 35.5 90.4 48.7 73.9 26.3 53.8 53.9 60.8
HRDADLv2 [35] 96.2 73.1 89.7 43.2 39.9 47.5 60.0 60.0 89.9 47.1 90.2 75.9 49.0 91.8 61.9 59.3 10.2 47.0 65.3 63.0
MIC (HRDADLv2) 96.5 74.3 90.4 47.1 42.8 50.3 61.7 62.3 90.3 49.2 90.7 77.8 53.2 93.0 66.2 68.0 6.8 38.0 60.6 64.2
DAFormer [34]

D
A

Fo
rm

er

95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3
MIC (DAFormer) 96.7 75.0 90.0 58.2 50.4 51.1 56.7 62.1 90.2 51.3 92.9 72.4 47.1 92.8 78.9 83.4 75.6 54.2 62.6 70.6
MIC (DAFormer)slide 96.9 76.5 90.1 57.6 52.2 51.2 56.7 61.8 90.3 51.7 92.9 72.5 47.9 92.9 79.5 85.5 76.8 53.6 62.9 71.0
HRDA [35] 96.4 74.4 91.0 61.6 51.5 57.1 63.9 69.3 91.3 48.4 94.2 79.0 52.9 93.9 84.1 85.7 75.9 63.9 67.5 73.8
MIC (HRDA) 97.4 80.1 91.7 61.2 56.9 59.7 66.0 71.3 91.7 51.4 94.3 79.8 56.1 94.6 85.4 90.3 80.4 64.5 68.5 75.9

Synthetic-to-Real: Synthia→Cityscapes (Val.)
ADVENT [89]

R
es

N
et

-B
as

ed

85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 – 84.1 57.9 23.8 73.3 – 36.4 – 14.2 33.0 41.2
CBST [114] 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 – 78.3 60.6 28.3 81.6 – 23.5 – 18.8 39.8 42.6
FADA [91] 84.5 40.1 83.1 4.8 0.0 34.3 20.1 27.2 84.8 – 84.0 53.5 22.6 85.4 – 43.7 – 26.8 27.8 45.2
DACS [85] 80.6 25.1 81.9 21.5 2.9 37.2 22.7 24.0 83.7 – 90.8 67.6 38.3 82.9 – 38.9 – 28.5 47.6 48.3
SAC [1] 89.3 47.2 85.5 26.5 1.3 43.0 45.5 32.0 87.1 – 89.3 63.6 25.4 86.9 – 35.6 – 30.4 53.0 52.6
CorDA [92] 93.3 61.6 85.3 19.6 5.1 37.8 36.6 42.8 84.9 – 90.4 69.7 41.8 85.6 – 38.4 – 32.6 53.9 55.0
ProDA [106] 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 – 84.4 74.2 24.3 88.2 – 51.1 – 40.5 45.6 55.5
ProCA [41] 90.5 52.1 84.6 29.2 3.3 40.3 37.4 27.3 86.4 – 85.9 69.8 28.7 88.7 – 53.7 – 14.8 54.8 53.0
DecoupleNet [45] 77.8 48.6 75.6 32.0 1.9 44.4 52.9 38.5 87.8 – 88.1 71.1 34.3 88.7 – 58.8 – 50.2 61.4 57.0
DAP [40] 84.2 46.5 82.5 35.1 0.2 46.7 53.6 45.7 89.3 – 87.5 75.7 34.6 91.7 – 73.5 – 49.4 60.5 59.8
CPSL [48] 87.2 43.9 85.5 33.6 0.3 47.7 57.4 37.2 87.8 – 88.5 79.0 32.0 90.6 – 49.4 – 50.8 59.8 57.9
HRDADLv2 [35] 85.8 47.3 87.3 27.3 1.4 50.5 57.8 61.0 87.4 – 89.1 76.2 48.5 87.3 – 49.3 – 55.0 68.2 61.2
MIC (HRDADLv2) 84.7 45.7 88.3 29.9 2.8 53.3 61.0 59.5 86.9 – 88.8 78.2 53.3 89.4 – 58.8 – 56.0 68.3 62.8
DAFormer [34]

D
A

Fo
rm

er

84.5 40.7 88.4 41.5 6.5 50.0 55.0 54.6 86.0 – 89.8 73.2 48.2 87.2 – 53.2 – 53.9 61.7 60.9
MIC (DAFormer) 83.0 40.9 88.2 37.6 9.0 52.4 56.0 56.5 87.6 – 93.4 74.2 51.4 87.1 – 59.6 – 57.9 61.2 62.2
MIC (DAFormer)slide 82.6 40.7 88.3 40.2 9.0 52.4 55.7 56.6 87.6 – 93.4 74.1 52.5 87.2 – 62.2 – 57.4 61.1 62.6
HRDA [35] 85.2 47.7 88.8 49.5 4.8 57.2 65.7 60.9 85.3 – 92.9 79.4 52.8 89.0 – 64.7 – 63.9 64.9 65.8
MIC (HRDA) 86.6 50.5 89.3 47.9 7.8 59.4 66.7 63.4 87.1 – 94.6 81.0 58.9 90.1 – 61.9 – 67.1 64.3 67.3

Day-to-Nighttime: Cityscapes→DarkZurich (Test)
ADVENT [89]

R
es

N
et

-B
as

ed

85.8 37.9 55.5 27.7 14.5 23.1 14.0 21.1 32.1 8.7 2.0 39.9 16.6 64.0 13.8 0.0 58.8 28.5 20.7 29.7
AdaptSeg [86] 86.1 44.2 55.1 22.2 4.8 21.1 5.6 16.7 37.2 8.4 1.2 35.9 26.7 68.2 45.1 0.0 50.1 33.9 15.6 30.4
BDL [52] 85.3 41.1 61.9 32.7 17.4 20.6 11.4 21.3 29.4 8.9 1.1 37.4 22.1 63.2 28.2 0.0 47.7 39.4 15.7 30.8
GCMA† [76] 81.7 46.9 58.8 22.0 20.0 41.2 40.5 41.6 64.8 31.0 32.1 53.5 47.5 75.5 39.2 0.0 49.6 30.7 21.0 42.0
MGCDA† [78] 80.3 49.3 66.2 7.8 11.0 41.4 38.9 39.0 64.1 18.0 55.8 52.1 53.5 74.7 66.0 0.0 37.5 29.1 22.7 42.5
DANNet† [95] 90.0 54.0 74.8 41.0 21.1 25.0 26.8 30.2 72.0 26.2 84.0 47.0 33.9 68.2 19.0 0.3 66.4 38.3 23.6 44.3
CDAda† [101] 90.5 60.6 67.9 37.0 19.3 42.9 36.4 35.3 66.9 24.4 79.8 45.4 42.9 70.8 51.7 0.0 29.7 27.7 26.2 45.0
CCDistill† [22] 89.6 58.1 70.6 36.6 22.5 33.0 27.0 30.5 68.3 33.0 80.9 42.3 40.1 69.4 58.1 0.1 72.6 47.7 21.3 47.5
HRDADLv2 [35] 88.7 65.5 68.3 41.9 18.1 50.6 6.0 39.6 33.3 34.4 0.3 57.6 51.7 75.0 70.9 8.5 63.6 41.0 38.8 44.9
MIC (HRDADLv2) 82.8 69.6 75.5 44.0 21.0 51.1 43.4 48.3 39.3 37.1 0.0 59.4 53.6 73.6 74.2 9.2 78.7 40.0 37.2 49.4
DAFormer [34]

D
A

Fo
rm

er

93.5 65.5 73.3 39.4 19.2 53.3 44.1 44.0 59.5 34.5 66.6 53.4 52.7 82.1 52.7 9.5 89.3 50.5 38.5 53.8
MIC (DAFormer) 88.2 60.5 73.5 53.5 23.8 52.3 44.6 43.8 68.6 34.0 58.1 57.8 48.2 78.7 58.0 13.3 91.2 46.1 42.9 54.6
MIC (DAFormer)slide 89.9 65.0 75.9 54.9 25.5 53.3 44.6 44.0 70.0 39.2 62.0 58.4 48.7 79.8 59.6 21.0 91.3 53.4 44.7 56.9
HRDA [35] 90.4 56.3 72.0 39.5 19.5 57.8 52.7 43.1 59.3 29.1 70.5 60.0 58.6 84.0 75.5 11.2 90.5 51.6 40.9 55.9
MIC (HRDA) 94.8 75.0 84.0 55.1 28.4 62.0 35.5 52.6 59.2 46.8 70.0 65.2 61.7 82.1 64.2 18.5 91.3 52.6 44.0 60.2

Clear-to-Adverse-Weather: Cityscapes→ACDC (Test)
ADVENT [89]

R
es

N
et

-B
as

ed

72.9 14.3 40.5 16.6 21.2 9.3 17.4 21.2 63.8 23.8 18.3 32.6 19.5 69.5 36.2 34.5 46.2 26.9 36.1 32.7
AdaptSegNet [86] 69.4 34.0 52.8 13.5 18.0 4.3 14.9 9.7 64.0 23.1 38.2 38.6 20.1 59.3 35.6 30.6 53.9 19.8 33.9 33.4
BDL [52] 56.0 32.5 68.1 20.1 17.4 15.8 30.2 28.7 59.9 25.3 37.7 28.7 25.5 70.2 39.6 40.5 52.7 29.2 38.4 37.7
GCMA† [76] 79.7 48.7 71.5 21.6 29.9 42.5 56.7 57.7 75.8 39.5 87.2 57.4 29.7 80.6 44.9 46.2 62.0 37.2 46.5 53.4
MGCDA† [78] 73.4 28.7 69.9 19.3 26.3 36.8 53.0 53.3 75.4 32.0 84.6 51.0 26.1 77.6 43.2 45.9 53.9 32.7 41.5 48.7
DANNet† [95] 84.3 54.2 77.6 38.0 30.0 18.9 41.6 35.2 71.3 39.4 86.6 48.7 29.2 76.2 41.6 43.0 58.6 32.6 43.9 50.0
DANIA† [96] 88.4 60.6 81.1 37.1 32.8 28.4 43.2 42.6 77.7 50.5 90.5 51.5 31.1 76.0 37.4 44.9 64.0 31.8 46.3 53.5
HRDADLv2 [35] 84.9 63.2 83.1 33.1 32.3 46.0 42.7 55.4 69.2 52.8 83.1 63.2 37.8 78.1 48.5 58.5 62.4 42.8 57.2 57.6
MIC (HRDADLv2) 88.7 63.9 84.1 38.4 35.7 45.7 51.5 60.3 72.7 52.3 85.8 62.5 39.8 84.7 37.7 68.7 71.9 46.0 56.5 60.4
DAFormer [34]

D
A

Fo
rm

er

58.4 51.3 84.0 42.7 35.1 50.7 30.0 57.0 74.8 52.8 51.3 58.3 32.6 82.7 58.3 54.9 82.4 44.1 50.7 55.4
MIC (DAFormer) 58.5 51.6 84.9 48.1 39.8 50.8 39.7 59.9 77.1 54.9 51.9 63.9 40.7 84.1 63.1 66.2 85.5 46.3 57.1 59.2
MIC (DAFormer)slide 60.5 60.5 86.1 54.7 42.0 51.4 41.2 61.2 77.6 57.4 53.6 64.6 40.2 85.9 68.7 73.8 87.0 50.1 58.8 61.9
HRDA [35] 88.3 57.9 88.1 55.2 36.7 56.3 62.9 65.3 74.2 57.7 85.9 68.8 45.7 88.5 76.4 82.4 87.7 52.7 60.4 68.0
MIC (HRDA) 90.8 67.1 89.2 54.5 40.5 57.2 62.0 68.4 76.3 61.8 87.0 71.3 49.4 89.7 75.7 86.8 89.1 56.9 63.0 70.4
† Method uses additional daytime/clear-weather geographically-aligned reference images.
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Image ProDA [106] DAFormer [34] HRDA [35] MIC (HRDA) Ground Truth

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure S1. Example predictions showing a better segmentation of sidewalk by MIC on GTA→Cityscapes.

Image ProDA [106] DAFormer [34] HRDA [35] MIC (HRDA) Ground Truth

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure S2. Example predictions showing a better segmentation of fence by MIC on GTA→Cityscapes.

guide the adaptation.
As MIC is specifically exploiting context relations for

domain adaptation, it is based on two assumptions. First,
MIC assumes that context information is a relevant fac-
tor for recognition. For classes, where context is less im-
portant, such as building or vegetation for synthetic-to-real
adaptation, MIC has a limited potential for improvement.
And second, MIC assumes that the relevant context rela-
tions are captured by the training data. If objects appear out-
of-context during inference, MIC might be more suscepti-
ble to these corner cases. In the experimental analysis it is
shown that these assumptions mostly hold on a wide range
of practically-relevant UDA benchmarks and MIC outper-
forms previous methods by a significant margin.
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Image ProDA [106] DAFormer [34] HRDA [35] MIC (HRDA) Ground Truth

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure S3. Example predictions showing a better segmentation of bus by MIC on GTA→Cityscapes.

Image ProDA [106] DAFormer [34] HRDA [35] MIC (HRDA) Ground Truth

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure S4. Example predictions showing a better segmentation of rider by MIC on GTA→Cityscapes.

Image ProDA [106] DAFormer [34] HRDA [35] MIC (HRDA) Ground Truth

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure S5. Failure cases of MIC on GTA→Cityscapes.
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Image DAFormer [34] HRDA [35] MIC (HRDA) Ground Truth

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure S6. Example predictions showing a better segmentation of sidewalk by MIC on Cityscapes→ACDC.

Image DAFormer [34] HRDA [35] MIC (HRDA) Ground Truth

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure S7. Example predictions showing a better segmentation of fence by MIC on Cityscapes→ACDC.

Image DAFormer [34] HRDA [35] MIC (HRDA) Ground Truth

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure S8. Example predictions showing a better segmentation of bus and train by MIC on Cityscapes→ACDC.
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Image DAFormer [34] HRDA [35] MIC (HRDA) Ground Truth

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure S9. Failure cases of MIC on Cityscapes→ACDC.

SIGMA [50] SADA [8] MIC (SADA) Ground Truth

person rider car truck bus train m.bike bike

Figure S10. Example predictions showing a better detection of bus and truck by MIC on Cityscapes→Foggy Cityscapes.

SIGMA [50] SADA [8] MIC (SADA) Ground Truth

person rider car truck bus train m.bike bike

Figure S11. Example predictions showing a better detection of rider, motorcycle, and bicycle by MIC on Cityscapes→Foggy Cityscapes.
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SIGMA [50] SADA [8] MIC (SADA) Ground Truth

person rider car truck bus train m.bike bike

Figure S12. Failure cases of MIC on Cityscapes→Foggy Cityscapes.
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