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Abstract: The development of intelligent transportation systems requires the availability of both
accurate traffic information in real time and a cost-effective solution. In this paper, we describe Street
Viewer, a system capable of analyzing the traffic behavior in different scenarios from images taken
with an off-the-shelf optical camera. Street Viewer operates in real time on embedded hardware
architectures with limited computational resources. The system features a pipelined architecture that,
on one side, allows one to exploit multi-threading intensively and, on the other side, allows one to
improve the overall accuracy and robustness of the system, since each layer is aimed at refining for
the following layers the information it receives as input. Another relevant feature of our approach
is that it is self-adaptive. During an initial setup, the application runs in learning mode to build a
model of the flow patterns in the observed area. Once the model is stable, the system switches to the
on-line mode where the flow model is used to count vehicles traveling on each lane and to produce a
traffic information summary. If changes in the flow model are detected, the system switches back
autonomously to the learning mode. The accuracy and the robustness of the system are analyzed
in the paper through experimental results obtained on several different scenarios and running the
system for long periods of time.

Keywords: road traffic monitoring; vehicle tracking; vehicle counting; motion estimation;
autonomous systems; flow network

1. Introduction

With increasing urbanization and vehicle availability, traffic systems in urban areas encounter
many challenges, such as congestion, accidents and violence [1]. Institutions have allocated many
resources to find solutions to those problems, such as building new infrastructure, optimizing traffic
lights and rescheduling vehicle itineraries. Given the costs of such solutions, research on traffic
flow monitoring systems, which aim to monitor and manage traffic streams, has also attracted
much attention. Commonly-used sensors include loop detectors, magnetometers, radar sensors
and microwave detectors.

In the meantime, more and more surveillance cameras have appeared in public areas. Compared to
other sensors, video cameras have a lower cost, are less invasive and can produce richer information
without effecting the integrity of the road [2]. However, as human operators are expensive and
unreliable, optimal use of videos can be made only by automated surveillance systems, adopting
efficient real-time computer vision algorithms [3,4].

Processing techniques of vision-based traffic flow monitoring are usually based on reliable and
robust foreground vehicle detection. Services (such as traffic monitoring [5–7], anomaly or jam
detection [8,9], traffic planning and forecasting [2]) are then based on tracking these foreground
objects. Unfortunately, images obtained by most low-cost commercial camera systems are loaded

Sensors 2016, 16, 813; doi:10.3390/s16060813 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2016, 16, 813 2 of 21

with heavy noise, such as optical distortion and vibration. This noise is often difficult to eliminate.
Moreover, the range of operational conditions (such as night, rainy, head light glare, dirt and occlusion)
require robust techniques. Furthermore, most traditional approaches fail when a car accident or a
temporary road construction modifies the original car stream.

1.1. Core Ideas

In this work, we propose a novel approach to produce a flow network and count the number of
vehicles crossing a traffic area under video surveillance. As the application has to run on embedded
systems with bounded computational resources, one of our targets is to minimize the computational
effort, maintaining precision and reliability. To do that, we organized the application as a layered
pipeline. The inner layer is the one receiving the input video stream. The outer layer is the one
generating the final vehicle count or estimate. Each computational stage processes the input to provide
more reliable pieces of information to the following phase, thus reducing the overall noise and the
amount of data manipulated during each step of the process.

The application operates in two distinct working modes. Initially, it runs in learning mode
targeting the construction of a proper flow model. In this stage, it first detects and tracks moving
objects on a static background. Then, it identifies regions where notable movements have been
detected. Finally, it divides them into lanes, i.e., areas showing a coherent traffic flow, ready to be
analyzed during the on-line operation mode. The training mode lasts until the traffic scheme is stable,
i.e., until all sources, streams (i.e., directions and orientations) and sinks of the traffic scheme have been
discovered. Once the flow model has reached convergence, the application automatically switches to
the on-line mode. During this stage, the system uses the flow model to statistically analyze the traffic
grid and to count (or estimate) the number of cars traveling in each single lane. The flow model is
also useful to reduce the computational effort, as the system is able to focus its attention only on those
sections of the image where lanes have been detected.

Furthermore, the graph-based model of the traffic patterns enables some high-level graph-based
statistical evaluation, such as the one usually computed on standard flow networks (e.g., main and
partial vehicle flows, capacity, bottlenecks, average speed, etc.).

As a final remark, notice that our two-phase system is able to switch back to the learning
mode whenever a significant variation in the traffic patterns (due, for instance, to road works) has
been detected.

1.2. Contributions

Our method shares with previous approaches several aspects and state-of-the-art methodologies.
Nevertheless, it also presents several new characterizing features. Among them, we would like to
highlight the following contributions:

• Our layered system architecture is suitable for embedded applications, with real-time requirements
and finite computational resources, such as computational power and memory or energy availability.

• The dual-mode operation (learning and on-line) makes the system auto-adaptive, i.e., the application
does not require any sort of initial setup. The system switches from the learning to the on-line
mode automatically, as soon as it has been able to build a stable traffic flow configuration.

• The system, working in multi-threaded mode, is able to automatically detect changes in the traffic
flow, such as the ones due to construction works or accidents. In those cases, the system switches
back to the learning mode without the necessity of human intervention.

• The final traffic model produced is a complete flow graph representation of reality, which enables
different kinds of statistical analyses of the underlying flow network.

• The implemented system is reliable, that is it produces results with errors smaller than a few
percentage during several long in-the-field counting experiments. Moreover, errors stay below
17% also during adverse weather conditions.
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To sum up, our traffic application is particularly suitable for low-cost, low-computational power,
real-time embedded applications in which traffic conditions change over time. The final model is much
more informative and complete than standard techniques, enabling object counting [5,7,10,11].

1.3. Paper Outline

The paper is organized as follows. Section 2 describes a few close related works. Section 3
illustrates our methodology by: (1) detecting moving objects on a steady background (Section 3.1);
(2) tracking blobs in subsequent frames (Section 3.2); (3) building a flow model (Section 3.3);
and (4) performing the final counting (Section 3.4). Finally, it concentrates on how to compute some
statistical measures on the data previously gathered (Section 3.5). Section 4 includes our experimental
evidence on a few roads, cross-roads and roundabouts, for long period of time. Finally, Section 5
concludes the paper with a few summarizing remarks and some possible hints about future works.

2. Related Works and Comparisons

Computer vision in the context of traffic surveillance addresses problems such as automatic lane
finding, vehicle or pedestrian detection, tracking, traffic flow measurements and the representation,
understanding and prediction of human behavior.

In object detection, video acquisition cameras are usually stationary. Initial approaches in this
field [2] involve spatial, temporal and spatio-temporal analysis of video sequences. The detection
principle is essentially based on the fact that the objects to be searched for are in motion.

For example, Bas et al. [10] and Chen et al. [5] count vehicles by extracting object features and
tracking those features by estimating their distance from the camera or measuring their minimal
distance between two temporal images. Fernández-Caballero et al. [12] monitor traffic behavior
on freeways and highways to get information on different traffic parameters and to automatically
detect accidents.

Buch et al. [3] suggest that the majority of the counting systems focus on highways, as cameras
required for this analysis need to be mounted on high poles and, therefore, are difficult to install.
Moreover, most of the systems possibly perform classification to gather more detailed statistics.

Tian et al. [4] discuss the main challenges of video processing techniques in traffic monitoring.
Among those, special scenarios, such as the ones with abnormal lighting conditions (cloudy and rainy
weather), nighttime vehicle detection, shadow detection and removal and vehicle occlusion in dense
traffic conditions, are particularly difficult to deal with.

More recently, practical applications, such as Autoscope and Monitorix, have been proved to
reach a higher level of real-time performance. For example, Zhou et al. [13] build and simulate a traffic
system model to understand the effects of changes in road configurations.

Poorani et al. [14] concentrate on highway monitoring based on vehicles crossing a registration
line. Attention is paid to avoid re-counting, even if the actual count can be performed together with
other analysis, such as vehicle length classification, speed control, and so on.

Yu et al. [15] count vehicles using as a main statistical parameter the difference of the gray value
between the current frame and the background. The algorithm firstly generates the background.
Then, it analyzes observation windows on road lanes. After that, it counts vehicles, based on the
variation of the parameter selected. Finally, it updates the background based on notable changes
detected in the scene. Unfortunately, the results are not conclusive, as the authors report a unique and
short counting session where the system counts 54 vehicles on a three-lane straight highway. Moreover,
the method is based on observation windows (virtual loops) manually placed on the observation lanes.

Yin et al. [16] present a reliable vision-based traffic flow detection approach. After prototyping the
dynamic background of the traffic scene and extracting the foreground contours by image subtraction,
the authors identify vehicles by comparing the binary vehicle contours’ location and the current frame.
Vehicle counting is performed by a discriminative method used to classify vehicles into different lanes.
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The experimental result shows accuracy close to 100% on four lanes of two different roads, counting
up to 200 vehicles per lane. Nevertheless, the approach cannot define the lanes adaptively.

Xia et al. [17] use the expectation-maximization algorithm to improve a Gaussian mixture
model-based background subtraction. In addition, the authors adopt a restoration method to remove
noise and fill holes to obtain a more accurate object extraction. The authors present five counting
sessions with high accuracy, i.e., precision values beyond 93% when counting up to about 300 vehicles.
The method is based on detection windows (virtual loops) whose position is quite critical. Moreover,
their application does not perform any training activity or model building, and it does not adapt itself
to changing scenarios. Counting activity is presented on single or multiple lanes, where virtual loops
are manually placed and all vehicles are moving in the same direction.

3. An Autonomous Follower System

Our autonomous follower system is organized as a pipeline, whose main input is the image
sequence acquired from the optical system, and the final output is a flow network of the traffic scenario
analyzed. Each computational layer is aimed at processing its input to provide more reliable pieces of
information to the following layer, thus making the overall system more robust and accurate. In order
to allow the real-time execution on embedded systems, we designed the system: (i) trying to find the
right balance between the complexity of the algorithm and its computational load; and (ii) leveraging
on a multi-threaded environment to parallelize as much as possible the different computational layers.

The entire system pipeline is represented in Figure 1. The object detection stage (Layer 1) aims at
segmenting the moving objects in the image stream. These objects are then tracked in the blob matching
stage (Layer 2), and their motion is summarized into a compact representation named track. The flow
model learning process (Layer 3) merges the available tracks to identify regions of the image where
notable movements take place. Such regions are then organized in lanes, i.e., areas of the image showing
coherent traffic streams, which are the building blocks of the flow model. The flow analysis process
(Layer 4) analyzes the output of the blob matching stage (Layer 2), taking into consideration the flow
model computed by Layer 3, to count the number of cars traveling in each lane. Finally, the statistical
estimates stage (Layer 5) gathers data coming from different lanes to build a flow network and to
evaluate the overall traffic flow in the area under analysis.

Figure 1. The pipeline structure of our follower system. The entire computation involves five different
stages, namely object detection (Stage 1), blob matching (Stage 2), flow model learning (Stage 3), flow
analysis (Stage 4) and statistical estimates (Stage 5).

As represented in Figure 1, the application has two different working modes: (1) The learning
mode to create a traffic flow model; and (2) the on-line mode, which uses the traffic flow model to
count the number of cars crossing the analyzed area and to produce a flow network. This operational
view of our system is represented in Figure 2. The application starts in learning mode, running Layers
1, 2 and 3, and it creates a traffic flow model. When the traffic flow model has become stable (notice
that a more precise definition of our concept of “flow model stability” will be given in Section 3.3.1),
the system automatically moves to the on-line mode. In the on-line mode, Layers 1, 2, 4 and 5 are
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involved as the main working threads, whereas Layer 3 is run as a lightweight supervisor parallel
thread. The working threads deliver the desired vehicles’ counting and produce a flow network useful
for more detailed statistics. When the supervisor worker detects any traffic flow model modification,
the application switches back to the learning mode to update the flow model itself before re-starting a
new on-line counting phase.

Figure 2. The operational view of our follower system: learning (gray box) and on-line (white box)
stages. For each stage (i.e., learning and on-line), the picture reports all computation layers (1. object
detection; 2. blob matching; 3. flow model learning; 4. flow analysis; 5. statistical estimates) involved
in the evaluation process.

Figure 3 describes this concurrency (multi-threaded or multi-worker) nature of our application.
When the system switches from the learning mode to the on-line one, it activates a supervisor thread,
which analyses possible modifications of the traffic flow model (such as the ones due to construction
works). In brief, the supervisor works as follows. First of all, it identifies the lanes to which each track
belongs (as described in Section 3.4.1). Then, if this set of lanes is not coherent with the flow model, it
stores the discrepancies into a history image, a quantized version of the image space whose intensity is
a function of recency and the duration of discrepancies. By thresholding this discrepancy map, the
application identifies persistent variations of the flow model. These variations can trigger a switch
from the on-line back to the learning mode.

The following sub-sections detail the different layers of our processing pipeline.

Figure 3. The concurrent logic of our system: moving from learning (gray box) to on-line mode
(white box) stimulates a shift from the sequential to the concurrent mode. The darkest box run in the
concurrent mode represents the lightweight supervisor thread.
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3.1. Layer 1: Object Detection

The first block of the pipeline manages the lower-level processing tasks, i.e., the identification
of the moving objects in the image stream. These objects are a super-set of those of interest for the
system, since they might include both vehicles (cars, trucks, buses) and non-vehicles (people, animals,
moving objects).

Since we are interested in detecting objects moving on a stationary background, segmentation has
been based on the background subtraction approach proposed in [18]. This state of the art method relies
on an adaptive background model whose pixels are described by a mixture of Gaussian distributions.
Both the parameters and the number of components of the mixture are computed per-pixel on a
training sequence of size N. Allowing each pixel to be associated with a different model, the algorithm
improves its capability to carefully describe the local scene characteristics, and consequently, it provides
an improvement to the overall robustness.

After the background model has been built, an image pixel is marked as foreground if it
is sufficiently different from the corresponding pixel distributions in the model. The algorithm
automatically adapts itself to slow changes in the background by updating the Gaussian mixture
models according to the background pixels detected in the previous N frames. The parameter N,
which is the same used to build the model, controls the adaptation rate of the algorithm.

After segmentation, objects are extracted by first applying morphological operators (dilation and
erosion) to the foreground mask and then identifying the connected components. An example is
reported in Figure 4 on a roundabout scenario, which will be used as the running example throughout
the entire paper.

(a) (b)

Figure 4. Object detection phase: (a) initial image; and (b) detected objects. Notice the top-right
segmented objects, corresponding to a pedestrian group, which will be filtered-out in the following layer.

3.2. Layer 2: Object Tracking

In this module, moving objects are tracked along the video sequence, and their temporal motion
patterns are summarized into tracks. Each detected object can be assigned to an available track or can
generate a new track. Conversely, tracks with unassigned objects are closed (i.e., the corresponding
tracked object has been lost).

The parameter setting and the algorithm flow vary according to the system state. In learning
mode, we must reduce as much as possible the amount of noisy or ambiguous data that are fed to
the flow model learning layer, and thus, we impose stricter matching constraints. On the contrary, in
on-line mode, we relax these constraints, since the availability of an accurate flow model helps the
following layers to better cope with segmentation problems without removing pieces of information
that are potentially relevant for the counting task.

Regardless of the system state, each track describes an object trajectory with the following data:
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• the temporal sequence of the object positions;
• the actual bounding box of the tracked object;
• its state (active or closed);
• its robustness, a parameter between zero and 100 expressing the reliability of the track.

Summarizing, our approach tries to match blobs (i.e., objects detected in the current frame by
Layer 1) with tracks (i.e., objects tracked in the previous frames) by exploiting spatial proximity and
motion congruence. More in detail, segmented objects are assigned to a track if their bounding boxes
intersect the track bounding box. As a consequence, if an object has been assigned to a single track,
(i) the centroid of the assigned object is stored into the track motion history; (ii) the track robustness is
increased by a factor δass using saturation arithmetic (δass = 5 in learning mode and δass = 10 in on-line
mode); and (iii) the track bounding box size is set to the running average of those of the last wbbox = 10
assigned objects. Unassigned tracks are marked as closed. As for unassigned objects, each of them
contributes to the creation of a novel track, whose initial robustness is equal to zero.

Then, according to the system state, we treat in different ways the cases of (i) multiple objects
assigned to the same track and (ii) groups of merging tracks, i.e., sets of tracks whose updated bounding
boxes reciprocally intersect.

In learning mode, since these cases are a possible source of ambiguities, we simply discard
multiple assignments and mark the merging tracks as closed.

In on-line mode, we preserve both pieces of information. This is done, for multiple objects,
by averaging their position and bounding box in order to obtain a unique sample to be assigned to
the track. In case merging tracks have been identified, we maintain as open only the track with the
greatest robustness, marking as closed all of the other ones. The centroid and bounding box of the
surviving track are set to the average of those of all of the merging tracks.

The output of the algorithm is the list of closed tracks in the current frame. Figure 5 shows all
detected tracks overlaid to a video image of the roundabout.

Figure 5. Objects tracked along a traffic sequence. The main dots on the curves highlight trajectory
points used by the tool to evaluate vehicle routes.

Clearly, the performances of this second layer are affected by those of the object detection module.
Besides abrupt weather changes, which require time to be incorporated into the background model
and thus produce large segmentation errors, segmentation results can include noise, non-vehicle
objects and occlusions. Since we noticed that small segmentation errors and non-vehicle objects are
characterized by a smaller area with respect to actual vehicles, we found that a simple threshold on
this parameter was sufficient to prune them. As for vehicle occlusions, which cause two objects to be
represented as a single one, we noticed that occlusions are usually resolved in short time intervals
(after which the two vehicles are again identified as separate objects). Thus, we deemed it preferable
to delegate occlusion management to the following processing layers, which can exploit for this task
pieces of information at higher levels of abstraction.
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3.3. Layer 3: Flow Model Learning

The purpose of the flow model learning layer is two-fold: first, identify the lanes, i.e., image
regions showing coherent traffic streams, and then provide a compact representation for them, which
will be exploited by the flow analysis layer to reduce counting errors. We stress the fact that while
in other approaches (such as [19,20]), the set of lanes to be monitored is defined interactively by the
operators of the traffic management center, in our work, we provide an automatic algorithm for their
identification and manipulation. The outline of the flow model learning phase is the following:

1. The image is first divided into sub-regions (cells), and then, the motion vectors that best
summarize the traffic patterns in each cell are computed exploiting the track data obtained
from the previous layer.

2. When cell data become stable, i.e., when the analysis on new tracks does not provide relevant
changes of their values, lanes are identified by clustering cells according to their flow information.

3. A compact representation of each lane is computed.

These steps are detailed in the following.

3.3.1. Motion Vector Computation

First of all, we divide the image into a uniform grid of (w, h) cells, where w and h are set according
to the frame size in order to find the proper balance between the rate of convergence of the model
and its resolution. Each cell contains a set of directions summarizing the traffic flows through the cell.
The possibility to consider different flow directions in a cell allows a proper modeling of cells located
in road junctions. Each cell direction is characterized by its orientation versor, the list of samples used
to compute it and the most recent time code of these samples. All cells are initialized with an empty
direction set.

Grid data are updated according to the list of closed tracks identified at the previous layer. In order
to reduce noise in the final flow model, we only process tracks having high robustness (for example,
above 70 for at least 50% of their existence). Then, to smooth the noise in the track data, we approximate
each track with a piece-wise linear curve whose vertices are the first, the one in the k-th position and the
last one over time of the track points. The grid cells intersected by this approximating poly-line are
then found with a modified Bresenham algorithm [21], and for each of these cells:

• We estimate the local track orientation as (i) the versor of the poly-line segment intercepting the
cell if the cell does not contain a poly-line vertex and (ii) as the average of the versors of the edges
sharing the poly-line vertices included in the cell, in all other cases.

• The set of cell directions is updated with the computed local track orientation as follows:

– If the set is empty or the cell does not contain any direction similar to the sample, the sample
is added to the set as a novel direction.

– If the cell contains a direction similar to the sample, the sample is assigned to this direction.

In the first case, the condition for the sample and a cell direction to be similar is that the angle
between them is lower than a threshold tα. We experimented with values tα ∈ [10◦, 30◦]. In the
second case, the direction versor is computed as the running average of the last k assigned samples
(such as k ∈ [10, 100]).

• After updating the cell directions, if two directions in a cell are found similar, according again to
tα, they are merged in a unique direction. Furthermore, if a cell has not been “refreshed” for a long
period (usually, several minutes), it is removed from the model, being considered as an outlier.

This process is iterated until the model becomes stable, i.e., until no relevant changes in the cell
motion vectors have been detected. More in detail, we assign to each change in the cell directions a
weight, which is higher when the change is related to the introduction of a novel direction and lower
when it simply contributes to a direction update. When the sum of these contributions over time
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become smaller than a threshold, the cell is considered stable. When the overall number of stable cells
reaches a specific percentage, the entire flow model is considered stable, and the application switches
to the on-line mode. Our experimental analysis shows that the model usually converges after from a
few hundreds to a few thousands of vehicle tracks have been detected. This usually requires from tens
to hundreds of minutes depending on weather and traffic conditions and their variations over time.
To be as fast and accurate as possible, the learning phase should be performed in standard weather
conditions and standard traffic density. Very low traffic or poor illumination or weather conditions can
affect the duration of this phase or the quality of the final model. An example of a temporary flow
model built by the system is shown in Figure 6.

Notice that the learning phase does not have to be repeated if there are no abrupt traffic changes,
if the position of the camera does not change or there are illumination or weather changes. As a final
remark, recall that a lightweight version of this process is also executed during the on-line operation
mode. In that case, the goal is to let the supervisor thread properly react to variations in the traffic
scheme, as introduced at the beginning of Section 3.

Figure 6. Learning the flow model: the directions stored in the grid cells are super-imposed on a
camera image.

3.3.2. Lanes’ Detection and Representation

Lanes are identified by clustering neighboring cells whose motion vectors share similar directions.
Clustering works as follows.

• We scan the cell grid looking for the first cell that has not been yet assigned to any lane, and
for each direction stored in this cell, we create a new cluster seed.

• Then, we apply a region growing algorithm where the condition for adding cells to the region
is again based on the similarity between the directions of neighboring cells. In this case,
a stricter threshold tβ < tα is used. Cells having more than one motion vector might belong to
different lanes.

• Finally, treating the cluster cells as pixels, we apply morphological operators, and we look for
the lane source and sink. This is done by viewing the lane as a vector field and computing an
approximation of its divergence in each cell. The cell with the maximal divergence is picked as
the source, the one with the minimal divergence as the sink.

It should be highlighted that lanes in the flow model are not necessarily coincident with physical
lanes, since the algorithm is affected by road occlusions in the images due to obstacles, like trees or
houses. In this layer, after all lanes have been identified, we try to remove small occlusions, such as the
ones affecting the down-most lanes of Figure 6. This is done defining merging rules based on both
geometric proximity and flow continuity. Applying such rules in the previous example, it is possible
to obtain a single lane labeled as Lane 6 in Figure 7. Larger occlusions will be analyzed by Layer 5.



Sensors 2016, 16, 813 10 of 21

Figure 7. Detecting and representing lanes on the roundabout running example.

3.3.3. Representing Lanes in a Compact Way

As the final step, each lane is transformed into a compact representation that will be effective at
improving the accuracy of the vehicle counting process. This compact representation is a piece-wise
linear curve L, whose vertices are identified in the following way. The first point of L is the lane source,
and its direction is taken as the initial reference direction. Then, we visit the source neighboring cells
in a breadth-first order. When we found a lane cell whose direction makes an angle greater than a
certain value (usually small) with the reference direction, we store this point in a list, and we update
the reference. When all cells have been visited, we append to the list the position of the sink. The curve
L is then parametrized by its arc length as L(s). Therefore, L(0) represents the image position of the
lane source and L(1) that of the lane sink.

Concluding, the final flow model is represented as a list of lanes, each characterized by a list of
cells and a curve L(s), which will be the target of our subsequent counting activity.

3.4. Layer 4: Flow Analysis

This layer is in charge of counting the number of cars traveling in each lane, and we recall that
it is active only during the on-line operational mode. The inputs of this module are the flow model
(i.e., the list of identified lanes) and the per-frame list of closed tracks obtained by the object tracking
module (Layer 2), and the output will be the number of vehicles traversing the lane.

We underline the fact that tracks are affected by possible segmentation and tracking errors.
For instance, since we did not consider any filtering in the tracking process (i.e., Kalman or particle
filtering) to reduce the computational burden, if the tracked object is missed in some frames or
two vehicles occlude each other in a certain temporal window, the same moving object might be
represented by different tracks or a track segment might correspond to more than one vehicle. This is
a relevant issue, since it affects the continuing accuracy, and it has been managed in our approach
as follows.

3.4.1. Introducing the Counting Trajectories

First, as the initial pre-processing step, since each track can belong to different lanes, we split the
track into sub-tracks according to the lane labels of the cells intersected by the tracks. If a cell contains
multiple lane labels, we pick the one of the lane having a direction closer to the track one.

The key factor that allows our approach to moderate the effects of segmentation and tracking
problems is that we process the vehicle motion into a 2D space, representing the distance traveled
along the lane during time, rather than in the original 3D (image position, time) reference system.

To do this, we convert the 3D sub-tracks defined in the (x, y, t) space of temporal image positions
into counting trajectories defined in a 2D space. Such counting trajectories are obtained transforming
each sub-track point Pi(xi, yi, ti) into a point P′i (ti, si) by first projecting Pi on the curve L(s) of its
reference lane and then computing the value s, with s ∈ [0, 1], at the projection point. The counting
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trajectory T(t) is then defined as the quadratic curve approximating the set of points P′(t, s), which are
called the support of T(t). Clearly, any counting trajectory is monotonically increasing. The rationale of
choosing a quadratic approximation is that we found it more suitable than a linear approximation to
deal with vehicle acceleration and image perspective effects affecting the track data.

We then define a counting trajectory as complete if it has a support starting at s = 0 and ending
at s = 1, otherwise the trajectory is defined as incomplete. We underline that, actually, since the
transformation of tracks into counting trajectories can suffer from approximation errors, we relax the
completeness constraints as, respectively, s < ε and s > 1− ε; the value of ε is automatically adapted
to the lane characteristics.

3.4.2. Processing the Counting Trajectories

In the following, for the sake of brevity, we will simply refer to the counting trajectories as
trajectories. How can these trajectories be used to improve the counting accuracy? We recall that we can
have two different problems: (i) a vehicle crossing the lane that is represented by different incomplete
trajectories; and (ii) a trajectory or a trajectory segment representing the motion of multiple vehicles.

In order to deal with the first problem, we can try to find incomplete trajectories that possibly
describe the motion of a unique object. Two incomplete trajectories T1 and T2 are merged if T1

correctly approximates the support of T2, and vice versa. We have that Ti correctly approximates Tj,
if the maximal distance between every point P′ of the support of Ti and the curve Tj is lower than a
pre-defined threshold. The approximating curve for the merged trajectory is then recomputed using as
support all of the points of the supports of T1 and T2. This process is repeated until no more incomplete
trajectories can be merged.

A second improvement of the counting accuracy consists of trying to estimate the real number of
vehicles represented by a complete or incomplete trajectory. To introduce this step, imagine the three
scenarios depicted in Figure 8a–c.

1. Scenario 1 (Figure 8a): Vehicle A enters the lane at time t0, partially hiding Vehicle B that proceeds
at a similar speed until A definitively overtakes B at time t1, and then, the two vehicles exit the
lane at different times. In terms of tracks, we have a first Track #1 that describes the motion of both
A and B until t1 and of Vehicle A only for t > t1, and a second Track #2 starting at t1 describing
the motion of Vehicle B. In terms of trajectories, Track #1 originates a complete trajectory and
Track #2 an incomplete trajectory.

2. Scenario 2 (Figure 8b): Two vehicles, A and B, enter the lane at different times, and from time
t1, they proceed side by side until the lane ends, with Vehicle A partially hiding Vehicle B in the
images. This scenario results in a first complete Trajectory #1 representing Vehicle A for t < t1

and both vehicles for t > t1 and a second incomplete Trajectory #2 ending at t1 and representing
only B.

3. Scenario 3 (Figure 8c): Vehicle A enters the lane at time t0 with a speed vA; B enters the lane at
t > t0 with a speed vB > vA. B overtakes A in the temporal interval [t1, t2], where it also hides A
in the camera images. As a result, we obtain three trajectories, #1, incomplete, in [t0, t1] describing
the motion of A, #2, complete, describing the motion of B for t < t1 and t > t2 and of A and B in
[t1, t2], #3, incomplete, t > t2, describing again the motion of A. Then, the analysis of Trajectories
#1 and #3 finds that they can be merged, reducing the final number of trajectories to two.

In all of these scenarios, it is clear that the final number of trajectories obtained is equal to the
number of vehicles traversing the lane. Equivalently, we can assume that each trajectory corresponds
to a vehicle. If this statement were true, for each trajectory T, we could store the values ti and to,
i.e., the estimated time the vehicle enters (T(ti) = 0) and exits (T(to) = 1), the lane to compute statistics
on the vehicles driving through the lane.

However, such statistics could be affected by small errors when computed at a specific time t
since: (i) a trajectory, or a trajectory segment, can indeed describe the motion of more than one vehicle;
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and (ii) if the trajectory is incomplete, its ti and to are only estimates of the real enter and exit time of
the vehicle.

To overcome this problem, we first identify possible trajectory segments, and then, we assign
to each segment a vehicle counter initialized to one. Such segments are determined by the
intersection between trajectories (clearly, since complete trajectories cannot intersect each other, we
must consider only the intersections between complete and incomplete trajectories and those between
incomplete trajectories).

In the first case, a complete trajectory Tcomp intersects an incomplete trajectory Tinc at tc. At the
intersection point, both trajectories are split into two segments, the left segment [t|t < tc] and the
right segment [t|t ≥ tc]. Only three cases are possible, namely those corresponding locally to the three
scenarios previously introduced:

• Scenario 1 (Figure 8d): All of the support of Tinc lies in the right segment (t ≥ tc); then, the counter
of the left segment of Tinc is decremented by one, and the counter of the left segment of Tcomp

is incremented by one. That is, two cars are detected and tracked as a single object until tc and
represented by a trajectory segment with Counter 2 ending at tc; after tc, the two vehicles are
tracked as separate objects, resulting in two trajectory segments having Counter 1.

• Scenario 2 (Figure 8e): All of the support of Tinc lies in the left segment (t < tc); then, the counter
of the right segment of Tinc is decremented and the counter of the right segment of Tcomp is
incremented. That is, two vehicles are counted as separate objects until tc and then as a unique
object after tc.

• Scenario 3 (Figure 8f): The support of Tinc lies in both the right and left segment of Tinc (i.e., Tinc
has been obtained merging two incomplete tracks). This situation happens when two vehicles
are partially tracked as a single object during the path trough the lane, but they enter as separate
objects and exit as separate objects. Thus, no segment counter needs to be updated.

Then, any trajectory segment having a null counter is discarded, and the whole process is repeated,
until no more intersections between trajectories can be found.

For the sake of brevity, we do not detail the cases related to the intersection between incomplete
trajectories, which easily follow from the ones we just described.

Figure 8. Counting trajectories’ processing. First row (a–c): three different scenarios involving the
intersecting trajectories of two vehicles, A and B; second row (d–f): for each of the previous scenario,
we show the complete (continuous lines) and incomplete (dashed lines) trajectories, the trajectory
support (thicker segments) and the vehicle counters for the final trajectory segments.

Concluding, after trajectories have been created and processed, we are able to tell at each moment
in time t the exact number of vehicles actually traversing a lane and the total amount of vehicles that
entered and exited the lane.
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It is clear, however, that consolidated values can be available only after all of the tracks that
possibly influence each other have been collected. Since, according to the lane, a varying number of
frames are necessary for a vehicle to cover its entire trajectory, we consider solid the statistics at time t
if they have been computed at time t + ∆t, with ∆t heuristically chosen to be fit to all scenarios.

3.5. Layer 5: Statistical Analysis

So far, we have defined the lanes as the elements where the traffic flow can be computed, and we
have provided a robust method for estimating such flow. However, each lane is still considered
individually, and a structure capable of describing the relations between lanes and providing summary
results computed over all of the observed area is missing.

The aim of the statistical analysis layer is to build such a structure by creating a flow network
capable of correlating data coming from the individual lanes. In graph theory, a flow network is a
directed graph where each edge receives a flow. As for nodes connecting edges, the amount of flow
into a node equals the amount of flow out of it, unless it is a source, which has only outgoing flow, or a
sink, which has only incoming flow.

In our case, the lanes are the edges of the flow network, and the nodes, i.e., the connections
between lanes, can be obtained from the geometric properties of the lanes. However, due to occlusions,
there can still be real lanes represented by two or more logical lanes, physically too distant to be
geometrically connected by Layer 3. As an example, consider Lanes 1 and 11 in the bottom left corner
of Figure 7. To overcome this issue, Layer 5 tries to argue logical lane proximity and to reconstruct the
missing links exploiting both the input and output flows of the logical lanes and their relative position.

A rough idea of how this process works when applied to the scenario of Figure 7 is depicted in
Figure 9, which shows the flow model obtained from Layer 3 (Figure 9a, same as Figure 6), its logical lanes
(Figure 9b, same as Figure 7) and the final flow network (Figure 9c). In Figure 9c, triangles represent
flow network sources (green triangles) and sinks (red triangles), whereas circles stand for nodes.
Lanes are represented as edges, which are numbered using the same naming scheme of lanes and
eventually annotated with the actual car flow direction. It is easy to notice that the lanes L11 and
L1 can be connected introducing node N2 since the outgoing flow of the lane L11 is quite similar
to the incoming flow of the lane L1, thus overcoming the occlusion due to the tree (see Figure 9a).
Similarly, the lanes L4, L5, L2 and L3 have a net balance close to zero, and they result in being incoming
(L4 and L5) or outgoing edges (L2 and L3) of node N4.

(a) (b) (c)

Figure 9. Building a flow-network on the (partially occluded and interrupted) lanes on the roundabout
running example. The flow model of Figure 6 is reported in (a) for convenience; the lanes structure is
reported in (b); in the flow network of (c), green triangles represent sources (Si), red ones sinks (SKi),
and circles are used to represent generic connection points (Ni). Lanes are represented as black edges.
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Another example is the one in which the traffic scheme is more complex or partially undefined due
to the fact that a portion of the overall picture remains uncovered. In this case, after the initial training
section, Layer 5 tries to connect dangling sources and sinks found inside the picture. An example of
such a behavior is illustrated in Figure 10. While the presence of node N4 is guessed following the
same reasoning previously described (as L9 and L10 are actually two segments of the same physical
lane, which is partially occluded), the presence of node N1–N3 is guessed computing the overall net
balance between source and sink flows in the same area.

(a) (b) (c)

Figure 10. Building a flow-network for the cross-road running example: Flow model (a); lanes (b);
and flow network (c).

Once the flow network has been computed, it is possible to obtain several statistics on single
regions or on the entire area observed. As an example, in Figure 11, we report the number of
vehicles crossing the roundabout scenario over an entire week. The graph shows that within the
working days (from Monday to Friday), the number of vehicles is quite high during two hour ranges,
i.e., 07:00–09:00 a.m., 11:00 a.m.–01:00 p.m., and really high during the late evening, i.e., 06:00–08:00 p.m.
On the contrary, on Saturday evening, the plots present a peak at 10:00 p.m., and on Sunday, the
number of vehicles is significantly lower.

Figure 11. Roundabout weekly statistics.

4. Experimental Results

The system described in the previous sections has been successfully implemented and deployed,
for over two years, on several locations in the area of Turin, a city in the northwest region of Italy.
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The hardware configuration used for all tests includes the following devices:

• A CuBox-i4Pro embedded system [22] running Android; the CuBox-i is a compact micro-computer
(a cube of 2′′ size) with a quad-core processor, a RAM of 2 GB, a GC2000 GPU and an external
memory (on micro-SD) of 4 GB.

• A video-camera of the AXIS P13 Network Camera Series [23], having a varying resolution ranging
from SVGA up to 5 Mpixel, including HDTV 720 and 1080 pixel video. The maximum frame rate
is equal to 30 fps. The camera also provides features like wide dynamic range and day and night
functionality, delivering good image quality in both conditions.

• A unique (centralized) quad-core workstation, for all statistical analysis performed at Layer 5,
with a CPU frequency of 3.4 GHz, and equipped with 8 GB of main memory.

In the following sub-sections, we will present a detailed analysis discussing:

• The performances of our application running on the embedded CuBox-i4Pro system compared to
the ones gathered on the quad-core workstation (Section 4.1).

• The accuracy of the system in optimal operational conditions (Section 4.2).
• How different operational conditions (such as sunny, rainy or foggy weather) affect system

accuracy (Section 4.3).
• The sensitivity of the processing pipeline to the parameters described in Section 3 (Section 4.4).
• Overall results and their accuracy, gathered on different scenarios for long periods (Section 4.5).

4.1. System Performance Evaluation

To a great extent, one of the targets of our application is to be able to manage complex scenarios,
such as the one in which the system includes a network of video-cameras analyzing a close area. In this
kind of application (as in on-line run-time applications), to minimize the amount of data sent over
the network and to reduce the workstation workload, the portable terminal device should extract
and deliver only those data that are essential to the problem at hand. For that reason, our application
has been designed to run on embedded platforms during all main (on-line) computations
(i.e., all computations performed by Layers 1, 2, 3 and 4). In this way, only “compressed” information
is transferred to the workstation. Moreover, the workstation is free to finalize the computation itself
merging data coming from several cameras. In other words, in our scenario, only Layer 5 is designed
to explicitly run on the workstation.

Anyway, for the sake of completeness, in this section, we briefly compare the performances of our
application running on the CuBox-i4Pro embedded system (with limited resources) and the quad-core
(much more powerful) workstation. Moreover, we here consider the learning phase already performed
(and the traffic flow model available), and we concentrate on the result gathered in the on-line mode.

Table 1. Workstation vs. embedded system comparison: CPU time required by the computation
performed by the different layers.

Operation Layer Workstation (ms) Embedded (ms)

Layer 1 11.45 20.44
Layer (1 + 2) 16.74 39.15

Layer (1 + 2 + 4) 19.33 46.79

Table 1 reports the running time required by the different computation layers on the two selected
platforms. We collect results by running the counting process for one hour overall, assembling
back-to-back several videos with different traffic and weather conditions. For each run, we collect the
CPU time, and we present its average value per video frame. Column Operation Layer indicates the
computation layer of which we evaluate the time. Layers are inserted incrementally on successive
rows of the table. Columns Workstation and Embedded reports average times (in milliseconds) for
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the quad-core workstation and CuBox-i4Pro, respectively. Notice that we do not present time result
for Layer 3 because during the on-line mode, it runs as a different working thread on a different
computation core, and it always requires less computation time than all of the other layers singularly
considered. At the same time, as previously clarified, we do not present results for Layer 5, which was
directly designed for the workstation.

As can be noticed from the table, each frame requires about 11 milliseconds to be processed
when we run only the first layer of the application on the more powerful workstation. In all other
cases, i.e., when the application is running more layers or it is running on the embedded system,
the computation is slower. A more accurate analysis shows that the most expensive layer is, in fact,
Layer 1, where the background subtraction algorithm has to manipulate the input video frames,
so dealing with a quite large amount of information. Layer 2 and 4 are much less expensive, as
information is already filtered and the amount of data to manipulate is reduced. The embedded
system runs at about 50% of the workstation speed, and even with all layers in place, it is theoretically
able to reach about 21 frames per second. In practice, when we take into consideration all overheads
(camera included, i.e., the frame capturing time, etc.) the frame rate deteriorates a little bit, down to
17–18 fps. Anyway, in our context, experiments show that the final system counting accuracy does not
deteriorate when at least 15 fps are manipulated by the system.

4.2. System Accuracy Evaluation

In order to demonstrate the accuracy of our system in optimal operational conditions, we present
in this section some results obtained in two test scenarios. In this context “optimal operational
conditions” means that the system has been evaluated on an “average” cloudy day (with standard
illumination) and no traffic flow alterations. The analyzed scenarios include the roundabout
(our running example) and the cross-road depicted in Figure 10.

In both cases, we ran the counting process for 1 h (54,000 frames, i.e., about 15 frames per second).
To assess its accuracy, we also manually counted the vehicles. While a stable flow model can be
obtained in less than ten minutes, we decided to force the learning mode to run for a longer period
(about 90 min) in order to obtain highly accurate models.

Tables 2 and 3 show results for the roundabout and the cross-road scenario, respectively.

Table 2. Accuracy for the roundabout scenario with optimal operational conditions. MC, manual
count; SC, system count; S, source; SK, sink.

Lane MC SC Accuracy (%) S, SK

0 239 232 97.07 S
1 173 178 96.93 SK
2 51 57 88.24 SK
3 62 68 90.32 -
4 93 85 91.40 S
5 20 17 85.00 S
6 1354 1352 99.85 S
7 239 212 88.70 -
8 1482 1479 99.77 -
9 128 112 87.23 -

10 1482 1438 97.00 SK
11 173 169 97.68 -

Total 5496 5399 98.23

Sink 1706 1673 98.06

Source 1706 1686 98.83

Sink-Source −13
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Table 3. Accuracy for the cross-road scenario with optimal operational conditions.

Lane MC SC Accuracy (%) S, SK

0 622 593 95.34 S-SK
1 704 672 95.45 S-SK
2 353 344 97.45 S-SK
3 489 495 98.77 S
4 216 235 91.20 SK
5 970 964 99.38 S-SK
6 861 842 97.79 S-SK
7 93 98 94.62 SK
8 360 356 98.89 S
9 746 784 94.91 SK

10 746 725 97.18 S
11 144 162 87.50 SK
12 228 218 95.61 S
13 273 256 93.77 SK
14 216 196 90.74 SK
15 135 127 94.07 SK

Total 7156 7067 98.76

Sink 5333 5273 98.87

Source 5333 5209 97.67

Sink-Source 64

For each lane of the flow model (“Lane” column, labels are depicted in Figures 7 and 10b), each
table reports the number of vehicles counted by a human operator (“MC”, manual count), the number
of vehicles counted by our system (“SC”, system count), the precision of our methodology (“accuracy”)
and a label (the last column) stating whether a lane ends with a source (S) or a sink (SK) of the resulting
flow network.

As for the accuracy, since labeling all individual frames was too complex in our case, we could
not rely on standard evaluation metrics based on the number of true/false positives and negatives.
Thus, given the manual count (MC) and the algorithm results (SC), we defined the accuracy for
a lane i as:

Accuracyi = 1− |MCi−SCi |
MCi

(1)

The tables also present the overall sum of manually- and automatically-counted vehicles and the
corresponding accuracy (“Total” row). We finally provide the actual number of outgoing vehicles (from
the entire grid) as the sum of counted vehicles on sinks (“∑ Sinks” row) and, similarly, the number of
(total) incoming vehicles (“∑ Sources” row).

Accuracy results for the two cases clearly show that the reliability of our system (under regular
operational condition) is very high, both in terms of accuracy per lane and of overall vehicles detected.

4.3. Dealing with Non-Optimal Operational Conditions

Varying operational conditions clearly affect the results of our system. In order to understand to
what extent such variations influence the accuracy, we compared the results obtained in the two test
scenarios described in Section 4.2 on three different weather conditions (cloudy, sunny, rainy/foggy)
and during the night (Figure 12). In all of those cases, we analyze the scenes for 1 h.

The results of Section 4.2, obtained with cloudy conditions, clearly assure better accuracy and
are, thus, used as a baseline. The flow models used for all conditions in the two scenarios were the
ones obtained in Section 4.2. For the sake of brevity, we do not report detailed results for all lanes, but
we simply compare their average accuracies. As can be seen in Table 4, the performances decrease,
reaching, in both scenarios, the minimum value at night. As the minimum precision is still related to a
considerable accuracy, we deem our system to be reliable in different operational modes.
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(a) (b)

(c) (d)

Figure 12. The roundabout running example in (a) cloudy, (b) sunny and (c) rainy/foggy conditions,
as well as (d) during a night with standard weather conditions.

Table 4. System average accuracy with non-optimal operational conditions.

Operational Conditions Roundabout (%) Cross-Road (%)

Cloudy 98.23 98.76
Sunny 90.05 91.71

Rainy/Foggy 84.91 85.04
Night 83.08 84.86

4.4. System Sensitivity to Parameters

In Section 3, we introduced several parameters to describe the main features of our algorithm.
In this section, we evaluate the sensitivity of our approach to these parameters. This is relevant
information since, if the sensitivity is high, the fine tuning required to adapt the algorithm to different
scenarios can become quite impractical. To this end, we conducted several experiments to analyze
the influence of the different parameters on the system accuracy. These experiments were organized
as follows. We (again) considered the roundabout as the main working scenario, then we fixed all
parameters, but one, which assumed increasing values in a wide range. The sensitivity of the system
to the main parameters can be described as follows:

• As illustrated in Section 3.1, background subtraction relies on N, the number of frames adopted
to create the background model. We recall that higher values of N increase the adaptation rate of
the algorithm, thus making it less responsive to abrupt changes. Results show that the higher the
value, the better the accuracy. However, we found values around 200 to be adequate in all of our
test cases.

• The threshold used to prune non-vehicle objects should be tuned for each camera. For instance,
in the roundabout scenario, we found the optimal threshold to be 50 pixels.
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• Flow model learning relies on two main parameters: the cell size and the threshold tα used to
create new cell directions. As for tα, we found similar accuracies for tα ∈ [10, 30] and optimal
ones for tα = 30; outside of this range, we experienced a sensible accuracy loss. As for the cell
size, almost identical accuracies were obtained for sizes in the range [4, 10] pixels, with a large
advantage in terms of learning time (which for Size 4 is almost twice the time required at Size 10);
larger cell sizes further improve the learning time in spite of a considerable drop of the accuracy.
Summarizing, we fixed the cell size to eight pixels.

Counting and statistical layers do not have parameters significantly impacting either the accuracy
or the execution time. To conclude, these experiments show that our system can be adapted to different
scenarios with a minimal effort in the setup phase (i.e., the setting of a single threshold for pruning
non-vehicle objects).

4.5. Overall On-The-Road Results

Concluding, to further show the overall robustness of the deployed system, we present counting
results for the four different scenarios reported in Figure 13, namely “Grosseto” (the roundabout,
Figure 13a), “Mortara” (the cross-road, Figure 13b), “Castel Fidardo” (a straight street, Figure 13c) and
“Piazza Castello” (a large square, Figure 13d). Table 5 reports the number of lanes and the counting
accuracy for these scenarios. Data have been collected during an entire day, i.e., 24 h. They show
that the average accuracies of our system are high for all cases, except Piazza Castello. This test
case is interesting, since it allows one to stress the limits of our system for the following reasons.
First, the camera is placed at a very high altitude, and it captures a twisted prospective of the square,
such that all vehicles are extremely small and distorted. Second, a large portion of the image is
occluded by buildings, which hampers the creation of an accurate flow model. Finally, the bottom-left
region of the image frames a pedestrian zone, which is a large source of noise for the segmentation
algorithm, since pedestrians have a size comparable to, but not larger than, moving vehicles.

(a) (b)

(c) (d)

Figure 13. Counting scenarios: (a) Grosseto; (b) Mortara; (c) Castel Fidardo; and (d) Piazza Castello.
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Table 5. Counting results for different scenarios.

Scenario # of Lanes Accuracy (%)

Grosseto 12 96.83
Mortara 16 96.80

Castel Fidardo 2 97.11
Piazza Castello 5 53.51

5. Conclusions

In this paper, we have presented the design and the implementation of a real-time vision-based
traffic flow monitoring system. The system is particularly suitable for low-cost, low-computational
power embedded applications. The application is auto-adaptive, i.e., it initially runs a training phase
in which it learns the traffic model without requiring any human intervention, and it is capable
of autonomously updating the model when variations of the traffic scheme have been detected.
The software is easy to set up, since adjusting its parameters to different scenarios requires minimal
effort. The overall system is based on a pipelined architecture where each computational layer (i) is
kept as simple as possible in order to reduce its computational burden and (ii) is aimed at summarizing
its input data in order to reduce noise and enable higher level processing in the following layer. Its final
output is a coherent flow network model, which allows one to both obtain punctual evaluations and to
compute a wide variety of traffic statistics. Experiments, run on real in-the-field scenarios for over
two years and in different operating conditions, show that the approach is robust, precise and reliable.
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