100 research outputs found

    Science Mission Directorate TechPort Records for 2019 STI-DAA Release

    Get PDF
    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community including the recommendations set forth in the National Research Council (NRC) decadal surveys and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions -- Heliophysics, Earth Science, Planetary Science, and Astrophysics -- develops fundamental science questions upon which to base future research and mission programs

    Aeronautical engineering: A continuing bibliography with indexes (supplement 306)

    Get PDF
    This bibliography lists 181 reports, articles, and other documents recently introduced into the NASA STI Database. Subject coverage includes the following: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Concepts and Approaches for Jupiter Icy Moon Orbiter

    Get PDF
    Science objectives for the proposed Jupiter Icy Moons Orbiter (JIMO) will be explored and assessed. The objective of the forum was to identify the most compelling approaches in seven thematic categories using a set of criteria that balanced science content, development risk, affordability, and overall program integration.sponsor, NASA Headquarters, Lunar and Planetary Instituteconvener, Dr. Colleen HartmanPARTIAL CONTENTS: Planetary protection considerations for JIMO / R.C. Koukol--Fine Resolution Topographic Mapping of the Jovian Moons: A Ka-band High Resolution Topographic Mapping Interferometric Synthetic Aperture Radar / S.N. Madsen, F.D. Carsey, and E.P. Turtle--Assessing the impact of regolith structure on the detectability of an ocean on Europa by a sounding radar / J. Eluszkiewic

    Characterising Spatial and Temporal Ionospheric Variability with a Network of Oblique Angle-of-arrival and Doppler Ionosondes

    Get PDF
    Ionospheric variability exists on a broad range of scales, and routinely impacts skywave propagation modes of high frequency radio waves, to the detriment of radar and communication systems. In order to better understand the electron density structures associated with such variability at mid-latitudes, a network of oblique angle-of-arrival (AoA) and Doppler ionosondes were installed in central and northern Australia as part of the ELOISE campaign in 2015. This thesis analyses observations from the ELOISE AoA ionosondes, with a focus on characterising the influence of medium- to large- scale gradients and signatures of travelling ionospheric disturbances (TIDs). Following an overview of the experiment, the design and calibration of the new ionosonde system is described. With multi-channel receivers connected to each element of two twin-arm arrays, a total of eleven AoA paths of between 900 and 2700 km were collected, including nine with interleaved Doppler measurements using a special channel scattering function (CSF) capability. On-board signal processing was developed to perform real-time clear channel evaluation and CSF scheduling, and generate the AoA ionograms and delay-Doppler images with fitted electron density profiles. In further offline analysis, peak detection and mode classification was carried out, to support reflection point mapping and tilt estimation. Significant testing and validation of the new ionosonde before and after the experiment revealed AoA uncertainties on the scale of 0.2–0.5° in bearing and 0.4–0.9° in elevation. Having identified a low-elevation bias, models of tropospheric refraction and antenna mutual coupling effects were considered as possible correction strategies, but ultimately an empirical approach based on aggregated ionospheric returns was implemented. Small-scale (intra-dwell) ionospheric variability also has the potential to compromise results, through unresolved multi-mode mixing, and this has been investigated using a combination of spatial and temporal variability metrics derived from the CSF data. The analysis of large quantities of F2 peak data shows persistent diurnal patterns in the oblique AoA observables that are also well-captured by a conventional data-assimilative ionospheric model, even without the benefit of AoA and Doppler inputs. Furthermore, Doppler measurements are reproduced remarkably well using just the midpoint fitted profiles. A statistical study has quantified the level of consistency between observations and model, to provide greater confidence in the results. Many of the geophysical features can be interpreted as ionospheric gradients, as evident in the tilt estimates, and horizontally moving structures such as TIDs, using a form of Doppler-based drift analysis. While signatures of TIDs vary considerably, two simple wave-like perturbation models have been evaluated to help classify quasi-periodic behaviour in the AoA observations, as well as understand the directional filtering effect imposed by the path geometry. In some cases, a set of TID parameters can be determined by eye, but in others automatic parameter inversion techniques may be more viable. Two such techniques were implemented but results using both real and synthetic data demonstrated some significant limitations. Finally, attempts to relate TID signatures across multiple paths shows promise, but there still appears to be a strong dependence on path geometry that is difficult to eliminate.Thesis (Ph.D.) -- University of Adelaide, School of Physical Sciences, 202

    Proceedings of a Workshop on Applications of Tethers in Space, Executive Summary

    Get PDF
    The objectives were to identify potential applications for tethers in space; develop a first order assessment of the feasibility and benefits of tether applications; recommend future actions necessary to enable tether applications, including required technology advancements; and stimulate industry and government planners to consider the unique properties of tethers in designs for future missions

    Research and Technology Objectives and Plans Summary (RTOPS)

    Get PDF
    This publication represents the NASA research and technology program for FY 1985. It is a compilation of the Summary portions of each of the RTOPs (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP summary is designed to facilitate communication and coordination among concerned technical personnel in government, in industry, and in universities. The first section containing citations and abstracts of the RTOPs is followed by four indexes: Subject, Technical Monitor, Responsible NASA Organization, and RTOP number

    A Survey on Small Satellite Technologies and Space Missions for Geodetic Applications

    Get PDF
    Advances in microelectronics, materials, combined with affordable and frequent launch opportunities has led to a revolution which consists of small satellite missions used for technology validation, Earth observation, space exploration. Small satellites are now being developed in large volumes for mega-constellations for Earth observation, Internet of Things (IoT) and low latency communications (internet) thus democratizing space and making new space applications a reality. Advances in small satellite platforms, miniaturization of instruments and the availability of low-cost launches for small satellites, can enable new, geodetic missions which can benefit from the use of constellations of small satellites. An overview of some of the most important small satellite based geodetic missions is presented, along with a brief overview of new mission concepts which can significantly enhance our knowledge in the geodetic field

    Commonwealth of Independent States aerospace science and technology, 1992: A bibliography with indexes

    Get PDF
    This bibliography contains 1237 annotated references to reports and journal articles of Commonwealth of Independent States (CIS) intellectual origin entered into the NASA Scientific and Technical Information System during 1992. Representative subject areas include the following: aeronautics, astronautics, chemistry and materials, engineering, geosciences, life sciences, mathematical and computer sciences, physics, social sciences, and space sciences

    The Boston University Photonics Center annual report 2009-2010

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center for the period from July 2009 through June 2010. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This report summarizes activities of the Boston University Photonics Center (BUPC) during the period July 2009 through June 2010. These activities span the Center’s complementary missions in education, research, technology development, and commercialization. In education, twenty-three BUPC graduate students received Ph.D. diplomas. BUPC faculty taught thirty-one photonics courses. Five graduate students were funded through the Photonics Fellowship Program. BUPC supported a Research Experiences for Undergraduates (REU) site in Photonics, which hosted summer interns in a ten-week program. Each REU student presented their research results to a panel of faculty and graduate students. Professors Goldberg and Swan continued their work with K-12 student outreach programs. Professor Goldberg’s Boston Urban Fellows Project started its sixth year. Professor Swan’s collaborative Four Schools for Women in Engineering program entered its third year. For more on our education programs, turn to the Education section on page 67. In research, BUPC faculty published journal papers spanning the field of photonics. Twelve patents were awarded to faculty this year for new innovations in the field. A number of awards for outstanding achievement in education and research were presented to BUPC faculty members. These honors include NSF CAREER Awards for Professors Altug, Dal Negro and Reinhard. New external grant funding for the 2009-2010 fiscal year totaled 21.1M,including21.1M, including 4.0M through a Cooperative Agreement with the U.S. Army Research Laboratory (ARL). For more information on our research activities, turn to the Research section on page 24. In technology development, the Department of Defense (DoD) continued to support the COBRA prototype systems. These photonics-technologies were pioneered by BUPC faculty and staff and have been deployed for field test and use at the United States Army Medical Research Institute for Infectious Diseases. New technology development projects for nuclear weapon detection, biodosimetry and terahertz imaging were launched and previously developed technologies for bacterial and viral sensing advanced toward commercial transition. For more information on our technology development pipeline and projects, turn to the Technology Development section on page 54. In commercialization, the business incubator continues to operate at capacity. Its tenants include more than a dozen technology companies with core business interests primarily in photonics and life sciences. It houses several companies founded by current and former BU faculty and students and provides students with an opportunity to assist, observe, and learn from start-up companies. For more information about business incubator activities, turn to the Business Incubation chapter in the Facilities and Equipment section on page 84. In early 2010, the BUPC unveiled a five-year strategic plan as part of the University’s comprehensive review of centers and institutes. The BUPC strategic plan will enhance the Center’s position as an international leader in photonics research. For more information about the strategic plan, turn to the BUPC Strategic Plan section on page 8

    George C. Marshall Space Flight Center Research and Technology Report 2014

    Get PDF
    Many of NASA's missions would not be possible if it were not for the investments made in research advancements and technology development efforts. The technologies developed at Marshall Space Flight Center contribute to NASA's strategic array of missions through technology development and accomplishments. The scientists, researchers, and technologists of Marshall Space Flight Center who are working these enabling technology efforts are facilitating NASA's ability to fulfill the ambitious goals of innovation, exploration, and discovery
    • …
    corecore