639 research outputs found

    Optimizing IGP Link Costs for Improving IP-level Resilience

    Get PDF
    Recently, major vendors have introduced new router platforms to the market that support fast IP-level failure pro- tection out of the box. The implementations are based on the IP Fast ReRoute–Loop Free Alternates (LFA) standard. LFA is simple, unobtrusive, and easily deployable. This simplicity, however, comes at a severe price, in that LFA usually cannot protect all possible failure scenarios. In this paper, we give new graph theoretical tools for analyzing LFA failure case coverage and we seek ways for improvement. In particular, we investigate how to optimize IGP link costs to maximize the number of protected failure scenarios, we show that this problem is NP- complete even in a very restricted formulation, and we give exact and approximate algorithms to solve it. Our simulation studies show that a deliberate selection of IGP costs can bring many networks close to complete LFA-based protection

    IP Fast Reroute with Remote Loop-Free Alternates: the Unit Link Cost Case

    Get PDF
    Up to not so long ago, Loop-Free Alternates (LFA) was the only viable option for providing fast protection in pure IP and MPLS/LDP networks. Unfortunately, LFA cannot provide protection for all possible failure cases in general. Recently, the IETF has initiated the Remote Loop-Free Alternates (rLFA) technique, as a simple extension to LFA, to boost the fraction of failure cases covered by fast protection. Before further stan- dardization and deployment, however, it is crucial to determine to what extent rLFA can improve the level of protection in a general IP network, as well as to find optimization methods to tweak a network for 100% rLFA coverage. In this paper, we take the first steps towards this goal by solving these problems in the special, but practically relevant, case when each network link is of unit cost. We also provide preliminary numerical evaluations conducted on real IP network topologies, which suggest that rLFA significantly improves the level of protection, and most networks need only 2 − 3 new links to be added to attain 100% failure case coverage

    Segment Routing: a Comprehensive Survey of Research Activities, Standardization Efforts and Implementation Results

    Full text link
    Fixed and mobile telecom operators, enterprise network operators and cloud providers strive to face the challenging demands coming from the evolution of IP networks (e.g. huge bandwidth requirements, integration of billions of devices and millions of services in the cloud). Proposed in the early 2010s, Segment Routing (SR) architecture helps face these challenging demands, and it is currently being adopted and deployed. SR architecture is based on the concept of source routing and has interesting scalability properties, as it dramatically reduces the amount of state information to be configured in the core nodes to support complex services. SR architecture was first implemented with the MPLS dataplane and then, quite recently, with the IPv6 dataplane (SRv6). IPv6 SR architecture (SRv6) has been extended from the simple steering of packets across nodes to a general network programming approach, making it very suitable for use cases such as Service Function Chaining and Network Function Virtualization. In this paper we present a tutorial and a comprehensive survey on SR technology, analyzing standardization efforts, patents, research activities and implementation results. We start with an introduction on the motivations for Segment Routing and an overview of its evolution and standardization. Then, we provide a tutorial on Segment Routing technology, with a focus on the novel SRv6 solution. We discuss the standardization efforts and the patents providing details on the most important documents and mentioning other ongoing activities. We then thoroughly analyze research activities according to a taxonomy. We have identified 8 main categories during our analysis of the current state of play: Monitoring, Traffic Engineering, Failure Recovery, Centrally Controlled Architectures, Path Encoding, Network Programming, Performance Evaluation and Miscellaneous...Comment: SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIAL

    SWIFT: Predictive Fast Reroute

    Get PDF
    Network operators often face the problem of remote outages in transit networks leading to significant (sometimes on the order of minutes) downtimes. The issue is that BGP, the Internet routing protocol, often converges slowly upon such outages, as large bursts of messages have to be processed and propagated router by router. In this paper, we present SWIFT, a fast-reroute framework which enables routers to restore connectivity in few seconds upon remote outages. SWIFT is based on two novel techniques. First, SWIFT deals with slow outage notification by predicting the overall extent of a remote failure out of few control-plane (BGP) messages. The key insight is that significant inference speed can be gained at the price of some accuracy. Second, SWIFT introduces a new data-plane encoding scheme, which enables quick and flexible update of the affected forwarding entries. SWIFT is deployable on existing devices, without modifying BGP. We present a complete implementation of SWIFT and demonstrate that it is both fast and accurate. In our experiments with real BGP traces, SWIFT predicts the extent of a remote outage in few seconds with an accuracy of ~90% and can restore connectivity for 99% of the affected destinations

    Route recovery schemes for link and node failure and link congestion

    Get PDF
    Link/Node failure occurs frequently causing service disruption in computer networks. Hardware techniques have been developed to protect the network from Link/Node failure. These techniques work in physical layer, therefore their convergence time is very small. On the other hand, many schemes have been proposed to mitigate the failure influence on the network. These schemes work in upper layers such as the network layer. However, hardware solutions faster than other schemes, but they are expensive. Link/Node failure causes all flows which were using the failed link/node are temporarily interrupted till a new path reestablished. Three recovery algorithms have been proposed that mitigate the changes occur in the network. These changes are link/node failure and link congestion. The algorithms mainly pre-compute a backup next hop for each destination in the network. This path is feasible to accommodate re-routed traffic when a failure occurs without causing congestion or loops. Simulations have been conducted to show the performance of the proposed algorithms using ns2 network simulation tool. The results show fast recovery for all flows were using the link/node failure. Furthermore, the throughput per node also increases due to decrease interruption service time

    Smart Sensor Technologies for IoT

    Get PDF
    The recent development in wireless networks and devices has led to novel services that will utilize wireless communication on a new level. Much effort and resources have been dedicated to establishing new communication networks that will support machine-to-machine communication and the Internet of Things (IoT). In these systems, various smart and sensory devices are deployed and connected, enabling large amounts of data to be streamed. Smart services represent new trends in mobile services, i.e., a completely new spectrum of context-aware, personalized, and intelligent services and applications. A variety of existing services utilize information about the position of the user or mobile device. The position of mobile devices is often achieved using the Global Navigation Satellite System (GNSS) chips that are integrated into all modern mobile devices (smartphones). However, GNSS is not always a reliable source of position estimates due to multipath propagation and signal blockage. Moreover, integrating GNSS chips into all devices might have a negative impact on the battery life of future IoT applications. Therefore, alternative solutions to position estimation should be investigated and implemented in IoT applications. This Special Issue, “Smart Sensor Technologies for IoT” aims to report on some of the recent research efforts on this increasingly important topic. The twelve accepted papers in this issue cover various aspects of Smart Sensor Technologies for IoT

    Efficient Routing Protection Algorithm Based on Optimized Network Topology

    Get PDF
    Network failures are unavoidable and occur frequently. When the network fails, intra-domain routing protocols deploying on the Internet need to undergo a long convergence process. During this period, a large number of messages are discarded, which results in a decline in the user experience and severely affects the quality of service of Internet Service Providers (ISP). Therefore, improving the availability of intra-domain routing is a trending research question to be solved. Industry usually employs routing protection algorithms to improve intra-domain routing availability. However, existing routing protection schemes compute as many backup paths as possible to reduce message loss due to network failures, which increases the cost of the network and impedes the methods deployed in practice. To address the issues, this study proposes an efficient routing protection algorithm based on optimized network topology (ERPBONT). ERPBONT adopts the optimized network topology to calculate a backup path with the minimum path coincidence degree with the shortest path for all source purposes. Firstly, the backup path with the minimum path coincidence with the shortest path is described as an integer programming problem. Then the simulated annealing algorithm ERPBONT is used to find the optimal solution. Finally, the algorithm is tested on the simulated topology and the real topology. The experimental results show that ERPBONT effectively reduces the path coincidence between the shortest path and the backup path, and significantly improves the routing availability

    Quantitative Verification and Synthesis of Resilient Networks

    Get PDF
    • 

    corecore