

Aalborg Universitet

The show must go on

Fundamental data plane connectivity services for dependable SDNs

Borokhovich, Michael; Rault, Clement; Schiff, Liron; Schmid, Stefan

Published in:
Computer Communications

DOI (link to publication from Publisher):
10.1016/j.comcom.2017.12.004

Creative Commons License
CC BY-NC-ND 4.0

Publication date:
2018

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Borokhovich, M., Rault, C., Schiff, L., & Schmid, S. (2018). The show must go on: Fundamental data plane
connectivity services for dependable SDNs. Computer Communications, 116, 172-183.
https://doi.org/10.1016/j.comcom.2017.12.004

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 24, 2020

https://doi.org/10.1016/j.comcom.2017.12.004
https://vbn.aau.dk/en/publications/4bf68413-b45b-440c-a0ea-2404f0fdc692
https://doi.org/10.1016/j.comcom.2017.12.004

The Show Must Go On: Fundamental Data Plane
Connectivity Services for Dependable SDNs

Michael Borokhovich1 Clement Rault2 Liron Schiff3 Stefan Schmid4

1 AT&T Labs - Research, USA 2 TU Berlin, Germany 3 Tel Aviv University, Israel 4 Aalborg University, Denmark

Abstract—Software-defined network (SDN) architectures raise
the question of how to deal with situations where the indirection
via the control plane is not fast enough or not possible. In
order to provide a high availability, connectivity, and robustness,
dependable SDNs must support basic functionality also in the
data plane. In particular, SDNs should implement functionality
for inband network traversals, e.g., to find failover paths in
the presence link failures. This paper shows that robust inband
network traversal schemes for dependable SDNs are feasible,
and presents three fundamentally different mechanisms: simple
stateless mechanisms, efficient mechanisms based on packet
tagging, and mechanisms based on dynamic state at the switches.
We show how these mechanisms can be implemented in today’s
SDNs and discuss different applications.

I. INTRODUCTION

A. Motivation

Software-Defined Network (SDN) architectures distinguish
between the data plane, consisting of the forwarding switches,
and the control plane, consisting of one or multiple software
controllers. Out-sourcing and consolidating the control over
the data plane elements to a software controller simplifies the
network management, and introduces new flexibilities as well
as optimization opportunities, for instance, in terms of traffic
engineering [1], [2].

However, indirections via the control plane can come at
a cost, both in terms of communication overhead as well as
latency. Indeed, the reaction time to data plane events in the
control plane can be orders of magnitude slower compared to a
direct reaction in the network [3]: especially for the recovery of
failures, a slow reaction is problematic. Worse, the indirection
via the control plane may not even be possible: a controller
may be temporarily or permanently unreachable, e.g., due to a
network partition, a computer crash, or even due to a malicious
attack [4].

This is problematic today, as computer networks have
become a critical infrastructure and should provide high
availability. Over the last years, researchers and practitioners
have put much effort into the design of more reliable and
available SDN control planes. In these designs, redundant (and
possibly also geographically distributed) controllers manage
the network in a coordinated fashion [5], [6], [7], [8], [9].

Despite these efforts to improve the control plane perfor-
mance, redundant controllers alone are not sufficient to ensure
the availability of SDNs. First, the additional latency incurred
by the redirection via the controller may still be too high,
even if the controller is nearby. Moreover, if implemented
inband, even with a distributed control plane, we face a

bootstrap problem [10], [11]: the communication channels
between switches and controllers must be established and
maintained via the data plane.

Accordingly, we in this paper argue that highly available and
reliable Software-Defined Networks require basic connectivity
services in the data plane. In particular, the data plane should
offer functionality for inband network traversals or fail-safe
routing: the ability to compute alternative paths after failures
(a.k.a. failover). Moreover, it should support connectivity
checks.

B. Challenges of Inband Mechanisms

We are not the first to observe the benefits of inband
mechanisms [12], [13], [14]. Indeed, many modern computer
networks already include primitives to support the implemen-
tation of local fast failover mechanisms: mechanisms to handle
the failures in the data plane directly.

For instance, in datacenters, Equal-Cost Multi-Path (ECMP)
routing is used to automatically failover to another shortest
path; in wide-area networks, networks based on Multiprotocol
Label Switching (MPLS) use Fast Reroute to deal with data
plane failures [3]. In the SDN context, conditional rules whose
forwarding behavior depends on the local state of the switch,
have been introduced in recent OpenFlow versions [12], [15].
Future OpenFlow versions are likely to include more func-
tionality or even support maintaining dynamic network state,
see for example the initiatives in the context of P4 [16] and
OpenState [17].

However, implementing network traversals or computing
failover paths is challenging, even with the possibility to define
OpenFlow local fast failover rules. Mainly for two reasons:

1) The OpenFlow failover rules must be pre-computed and
installed ahead of time, i.e., without knowledge of the
actual failures.

2) Failover rules can only depend on the local state of
the switch, i.e., the local link failures. A local rerouting
decision may not be optimal, especially in the presence
of additional failures occuring in other parts of the
network.

C. The Case for Robust Inband Traversals

A local fast failover mechanism must essentially be able
to perform a network traversal for failsafe routing: it should
find a route from source to destination, despite failures. Such
robust inband network traversals may also be a useful data
plane service, e.g., to check network connectivity.

Ideally, a network traveral provides a maximal robustness,
in the sense that any packet originating at s and destined to d
will reach its destination independently of the location and
number of link failures, as long as s and d belong to the same
physically connected component.

Little is known today about the feasibility and efficiency
of implementing robust inband network travesals in software-
defined networks, the topic addressed in this paper. In par-
ticular, robust routing algorithms known from other types
of networks such as MPLS, are sometimes impossible to
implement without additional functionality at the switch, or
inefficient (e.g., require large packet headers), and hence do
not scale to large networks.

D. Our Contributions

This paper studies the feasibility and efficiency of inband
network traversals, a fundamental building block for more
advanced data plane services of dependable SDNs, such as
robust routing and connectivity testing.

We present a comprehensive approach, exploring concep-
tually different solutions which provide different tradeoffs in
terms of overhead and performance:

1) Stateless Mechanisms: We show that it is feasible to
implement simple yet very robust data plane traversals
using today’s OpenFlow protocol. In particular, we
present a simple stateless scheme which is maximally
robust: a route from source to destination is found,
whenever this is possible. The disadvantage of this
scheme are the potentially high and unpredictable route
lengths.

2) Tagging Mechanisms: We present more efficient robust
traversals in a more advanced network model, using
packet tagging, as it is also supported in OpenFlow. Our
OpenFlow model and approach may be of independent
interest, as it introduces an interesting new graph explo-
ration problem.

3) Stateful Mechanisms: Given the benefits of maintain-
ing state in the packets, we further explore means to
introduce state in an OpenFlow network. We show that,
maybe suprisingly, using packet tagging is not the only
way state can be introduced in OpenFlow traversals. In
fact, it is possible to implement simple state machines
on the switches, using the standard OpenFlow protocol,
and we will refer to the corresponding state as inband
registers. Moreover, we present an interesting and novel
mechanism to store state in the hosts attached to the
network, in a completely transparent manner, using
MAC addresses to encode paths.

Finally, we discuss applications for a robust inband network
traversal, including robust routing and efficient connectivity
checks.

E. Organization

The remainder of this paper is organized as follows. Sec-
tion II introduces the necessary background on SDN and
OpenFlow. In Section III, we present and discuss different

robust traversal algorithms, using packet tagging, and in
Section V we show how to introduce state in switches and
hosts. In Section VI we discuss applications. After reviewing
related work in Section VII, we conclude with a discussion in
Section VIII.

II. BACKGROUND AND MODEL

A. SDN and OpenFlow

Our work is motivated by the Software-Defined Networking
paradigm, and especially OpenFlow, the predominant SDN
protocol today. This section provides the necessary back-
ground on OpenFlow (focusing on the commonly used version
1.3). OpenFlow is based on a match-action concept: OpenFlow
switches store rules (installed by the controller) consisting of
a match and an action part. For example, an action can define
a port to which the matched packet should be forwarded or
change a header field (e.g., add or change a tag).

A new flow entry can either be installed proactively or
reactively. In the reactive case, when a packet of a flow arrives
at a switch and there is no matching rule, the table miss
entry will be used. By default, upon a table miss, a packet
is forwarded to the controller. Given such a packet-in event,
the controller will create a new rule and push the new flow
entry to this switch. The switch will then apply this rule to
the packet. In the proactive case, flow entries are pushed to
the switches ahead of time.

Each OpenFlow switch stores one or multiple flow tables,
each of which contains a set of rules (a.k.a. flow entries).
Flow tables form a pipeline, and flow entries are ordered
according to priorities: A packet arriving at a switch is first
checked by the rule of the highest priority in table 0: the
fields of the data packet are compared with the match fields
of that rule, and if they fit, some instructions (the actions)
are executed; subsequently, lower priority rules are checked.
Depending on the outcome of the table 0 processing, the
packet may be sent to additional flow tables in the pipeline.
Concretely, instructions can be used to define additional tables
to be visited (goto instruction), to modify the set of to-be-
applied actions (either by appending, deleting, or modifying
actions), or immediately apply some actions to the packet. A
meta-data field can be used to exchange information between
tables. Part of the header can be inserted or removed from a
packet via pushing and popping of labels and tags, e.g., of
MPLS and Virtual Local Area Network (VLAN) fields.

In general, a packet can be matched against any of its header
fields, and fields can be wildcarded and sometimes bitmasked
(e.g., the meta-data field is maskable). If no rule matches, the
packet is dropped. The use of multiple flow tables (compared
to a single one) can simplify management and also improve
performance.

Our robust traversal algorithms make use of Group Tables,
and especially the Fast Failover (FF) concept introduced in
OpenFlow 1.3. The group table consists of group entries, and
each group entry contains one or more action buckets. For the
group entries of the fast failover type, each bucket is associated
with a specific port (or group), and only the buckets associated

with a live port (or group) can be used. As we will see, we
can exploit this mechanism to control the forwarding behavior
of the switch, depending on the liveness of ports. Another
important group type for us are select groups: the select group
provides the possibility to link an action bucket to a port (or a
group), and define different selection types (e.g., round-robin
or all).

B. Model

Robust inband network traversals are a fundamental building
block and useful data plane network service for dependable
SDNs. In this paper, we explore the feasibility and efficiency
of implementing very robust inband network traversals: We say
that a traversal mechanism is maximally robust if it tolerates
an arbitrary number of link failures: a route between source
and destination is always found, whenever this is possible, i.e.,
as long as the underlying network is connected.

In order to implement robust traversals in OpenFlow, we
make a smart use of the OpenFlow local fast failover mecha-
nism. Computing such local failover tables for robust traversals
however is non-trivial, as the forwarding rules need to be
allocated before failure(s) happen, and as the rules can depend
on local liveness information only.

We will sometimes refer to the initial network (before the
failures occur) by G0, and to the remaining “sub-graph” after
the failures by G1. The problem of how to implement robust
traversals and compute failover tables for G0 without knowing
the actual failure scenario, i.e., G1, is an algorithmic one.

As we will show in this paper, it is possible to implement
maximally robust traversals in today’s OpenFlow protocol.
However, different techniques come with different tradeoffs,
in terms of route length (how long is the longest forwarding
path in G1, in terms of hops?), rule and table complexity
(how many additional tables and rules per node are required to
implement the robust traversal mechanism?) or tag complexity
(how much header space is required for tagging?).

In the following, n will denote the total number of network
switches (the same in G0 and G1), E will denote the set of
links (total number: m = |E|), and ∆ will refer to the maximal
node degree in G0. We will use subscripts, e.g., ∆i, to denote
the corresponding value for the given node vi, and assume that
node’s ports are indexed from 1 to ∆i.

III. STATELESS ROBUST INBAND NETWORK TRAVERSAL

We start by observing that a simple yet robust network
traversal can be implemented in OpenFlow, using (pseudo-)
random walks. Random walks are attractive as they do not
require to store or maintain information about the current
network configuration, neither at the switches, nor in the
packets.

The main advantage of our scheme, henceforth
called RWalk, is that it can provide an alternative path
for any link failure (as long as the remaining graph is
connected). We can implement RWalk in standard OpenFlow
using fast failover and select group type features. We set
the bucket selection method to random. Similarly to the fast

●

●

●

●

●

●●

●

0
10

20
30

40
50

60
N

um
be

r
of

 h
op

s

Fig. 1. Number of hops taken by packets using the random walk failover
scheme, after the failure took place.

failover type FF, the select group type provides the possibility
to link an action bucket to a port (or a group), and the bucket
can be selected only if this port is live. When the packet that
triggered the traversal arrives at a switch, the switch applies
Gr 1 to it from the group table (cf. Table I). In this group
entry (of the select type) the switch will randomly select a
bucket linked to a live switch port. Hence, at each switch the
traversal packet is forwarded to a random live port.

Group Table
Gr ID Gr type Action buckets
Gr 1 SELECT 〈Fwd j〉j=1..∆i

TABLE I
RANDOM WALKER: GROUP TABLE FOR SWITCH i.

Note that only one group table entry is needed to implement
the traversal mechanism. This is important as switch memory
is a critical resource. However, the route lengths are relatively
high and subject to a high variance, see the qualitative results
in Figure 1: the plot is based on a small IGEN topology
(delaunay triangulated), consisting of 20 switches and hosts
connected to them, each link having a delay of 2ms. Using
pings, 100 packets each time, we analyze the RTT between
two hosts connected at both ends of the network, before and
after the failure (one link is broken along the default path
between the hosts) occurs. Before the failure, the shortest path
is used between the hosts (and it consists of 5 hops).

This variance motivates the more deterministic failover
schemes developed in this paper.

IV. PREDICTABLE TRAVERSALS WITH TAGGING

While attractive for its simplicity and robustness, the ran-
dom network traversal scheme presented in the previous
section can result in long and unpredictable traversal paths.
Worse, different packets from the same microflow may take

different paths, potentially introducing many packet reorder-
ings, which can negatively affect the Transmission Control
Protocol’s (TCP’s) throughput. In the following, we show
that more efficient traversals can be implemented by storing
network traversal information in packet tags.

In the following, we first present a simple Depth-First
Search (DFS)-like traversal scheme called INEFF-DFS. While
it is deterministic, the disadvantage of INEFF-DFS is that it
requires much header space (linear in n, the network size).
We will later present a more header-space efficient algorithm,
EFF-DFS, requiring as little as O(D · log n) space, where D
is the diameter of the network: D is typically small.

The INEFF-DFS algorithm traverses the network in a depth-
first fashion, implicitly constructing a spanning tree. Towards
this goal, for each node vi, a certain part of the packet
header pkt.vi.par is reserved to store the parent p(vi) of vi:
the node from which the packet was received for the first time
(indicated by the incoming port in). There is also a reserved
place to store the pkt.vi.cur variable which represents the
output port of the switch being currently traversed by the
algorithm.

The INEFF-DFS algorithm is summarized in Algorithm 1 in
pseudo-code. Here, pkt.start = 0 denotes that the traversal
was not started yet. (Depending on the use case, see later,
traversals can be started explicitly upon request, or are trig-
gered for an existing packet hitting a failed link.) For example,
a switch can be programmed to match a specific “codeword” in
a packet and then initiate the traversal. Alternatively, a switch
can use regular routing rules until a failure of the outgoing
port is detected, which will trigger the traversal.

Upon reception of a traversal-triggering packet, a node starts
the algorithm by setting pkt.start to 1 and trying to send
the packet (i.e., initiate the traversal) from the next live port,
beginning with port 1. A node tries to forward the packet to
each neighbor, and only when all the neighbors (connected to
live ports) were traversed, the node returns the packet to its
parent.

The implementation of the INEFF-DFS includes three flow
tables and a group table (see Table II). Table A checks whether
the traversal has already started and if not, starts it. All groups
in the group table are of type Fast-Failover, which means that
each action bucket is coupled to a port (forwarding port in our
case), and the first bucket with a working port is applied to
the packet.

Each of the groups Gr cur.par, cur ∈ [1, . . . ,∆i], par ∈
[0, . . . ,∆i − 1], tries to find the next working port: it starts
from port cur, skips the parent port par, and forwards back
to the parent par only if all the previous ports have failed.
Notice that the case when pkt.vi.par = ∆i is handled using
the group Gr cur.0.

Once a packet was forwarded by the group Gr 1.0,
its pkt.start bit will be set to 1, thus, when it is received
by the next switch, it is passed to Table B; Table B will
apply the corresponding group according to the pkt.vi.cur
and pkt.vi.par fields. If pkt.vi.cur is 0, Table B will save
the input port to the pkt.vi.par field. When all the neighbors

Fig. 2. Flowchart for the INEFF-DFS algorithm. When a packet received by
a switch, it decides whether to apply the INEFF-DFS algorithm to it. The
algorithm may be applied, for example, under one of the three conditions
in the upper block. The start means pkt.start bit, in means the input port
through which the packet was received, the cur[i] means pkt.vi.cur and
par[i] is the pkt.vi.par field.

are traversed, the packet is returned to the parent using Table
C. The detailed OpenFlow tables for this algorithm appear in
Table II.

Notice that the traversal algorithm does not include the trig-
gering mechanism since it depends on the specific application.
For example, in the failover application, a switch can use an
additional Group Table entry that will first try the default route
for the given destination and if that port is failed, the next
bucket in this entry will send the packet to the Gr 0.0 entry
that actually starts the traversal algorithm. Another application
may request a network traversal (e.g., for some data/statistics
collection or connectivity check) by sending a packet with a
specific predefined “codeword”. Once the switch matches this
codeword it can initiate the traversal by sending the packet to
Table A (i.e., if match(codeword) then goto Table A).

A. More Efficient Traversals with Tagging

Given this basic scheme, we now present a more efficient
traversal. We propose a distributed, DFS-like traversal in
which a packet is allowed to perform DFS up to a maximum
depth maxdist. Assuming maxdist is at least the diameter
of the network (i.e., in G1, after the failures had occurred),
such a traversal is guaranteed to traverse all the nodes.

The pseudocode of our algorithm is shown in Algorithm 2.
The packet header includes the tag T consisting of maxdist
many cells, as well as the global parameters: pkt.start
and pkt.dist. Each cell of the tag T consists of three
fields: T [·].ID, the ID of a node which is currently using
this cell, T [·].par, the port connected the node’s parent in the
traversal, and T [·].cur, the port connected to the node’s succes-
sor which is currently being traversed. Note that only maxdist
cells need to be allocated in this scheme.

Flow Table A (Start)
Match Instructions

pkt.start

0 Gr 0.0
1 Table B

Flow Table C (Send-Parent)
Match Instructions

pkt.vi.par

0 Drop
1 Fwd 1
2 Fwd 2
· · · · · ·
∆i Fwd ∆i

Flow Table B
Match Instructions

in pkt.vi.cur pkt.vi.par

1 0 ∗ pkt.vi.par ← 1, Gr 1.1
2 0 ∗ pkt.vi.par ← 2, Gr 1.2
· · · · · · · · · · · ·
∆i 0 ∗ pkt.vi.par ← ∆i, Gr 1.∆i

1 1 0 Gr 2.0
2 2 0 Gr 3.0
· · · · · · · · · · · ·

∆i − 1 ∆i − 1 0 Gr ∆i.0
∆i ∆i 0 Table C
· · · · · · · · · · · ·
1 1 x Gr 2.x
2 2 x Gr 3.x
· · · · · · · · · · · ·

∆i − 1 ∆i − 1 x Gr ∆i.x
∆i ∆i x Table C
· · · · · · · · · · · ·
1 1 ∆i − 1 Gr 2.∆i − 1
2 2 ∆i − 1 Gr 3.∆i − 1
· · · · · · · · · · · ·

∆i − 2 ∆i − 2 ∆i − 1 Gr ∆i.∆i − 1
∆i ∆i ∆i − 1 Table C
1 1 ∆i Gr 2.0
2 2 ∆i Gr 3.0
· · · · · · · · · · · ·

∆i − 2 ∆i − 2 ∆i Gr ∆i − 1.0
∆i − 1 ∆i − 1 ∆i Table C
∗ ∗ ∗ Fwd in

Group Table
Group ID Type Action buckets
0.0 FF 〈pkt.start← 1,Gr 1.0〉
1.0 FF 〈pkt.vi.cur ← j, Fwd j〉j=1,2,...,∆i

2.0 FF 〈pkt.vi.cur ← j, Fwd j〉j=2,3,...,∆i

· · · · · · · · ·
∆i.0 FF 〈pkt.vi.cur ← j, Fwd j〉j=∆i

· · · · · · · · ·
1.x FF 〈pkt.vi.cur ← j, Fwd j〉j=1,2,...,x−1,x+1,...,∆i,x

2.x FF 〈pkt.vi.cur ← j, Fwd j〉j=2,3,...,x−1,x+1,...,∆i,x

· · · · · · · · ·
∆i.x FF 〈pkt.vi.cur ← j, Fwd j〉j=x

· · · · · · · · ·
1.∆i − 1 FF 〈pkt.vi.cur ← j, Fwd j〉j=1,2,...,∆i−2,∆i,∆i−1

2.∆i − 1 FF 〈pkt.vi.cur ← j, Fwd j〉j=2,3,...,∆i−2,∆i,∆i−1

· · · · · · · · ·
∆i.∆i − 1 FF 〈pkt.vi.cur ← j, Fwd j〉j=∆i−1

TABLE II
INEFF-DFS: FLOW AND GROUP TABLES OF SWITCH i.

Algorithm 1 Algorithm INEFF-DFS
Input: current node: vi, input port: in, traversal global param-

eter in packet: pkt.start, packet tag array: {pkt.vj}j∈[n]

Output: output port: out
1: if pkt.start = 0 then
2: pkt.start← 1
3: out← 1
4: else
5: if pkt.vi.cur = 0 then
6: pkt.vi.par ← in
7: else if pkt.vi.cur 6= in then
8: out← in
9: goto 20

10: out← pkt.vi.cur + 1
11: if out = ∆i + 1 then
12: out← pkt.vi.par
13: goto 20
14: while out failed or out = pkt.vi.par do
15: out← out+ 1
16: if out = ∆i + 1 then
17: out← pkt.vi.par
18: goto 20

19: pkt.vi.cur ← out
20: return out

The pkt.start field indicates whether the traversal proce-
dure has started. It is set by the node which first received the

packet triggering the traversal. This node is called the root of
the traversal. The pkt.dist field keeps track of how far from
the traversal’s root the packet is located.

When a switch vi receives a packet, it first inspects
the pkt.start field to check whether the traversal has started,
and if not, starts it: First, the switch initializes the global
parameters pkt.start and pkt.dist. Then it indicates that it
will use the first cell in the tag T , sets its port to the parent
to 0 (the root has no parent), and sets T [pkt.dist].cur and
the output port to 1 (i.e., traversing successors starting iwth
port 1).

Then we check whether the output port set by the switch is
working or whether it is connected to its parent. In both cases
the switch will try the next port (while loop on Line 25). If all
potential ports (from out to ∆i, the last port of switch vi) have
been tried, the switch has finished traversing all its successors,
and the packet is returned to the parent. Before returning the
packet to the parent, the switch removes itself from the tag T ,
by setting the T [pkt.dist].ID field to 0, and decrementing
the current path length by 1 (Lines 32,33). When a packet is
sent to the next successor, the distance from the root increases
(Line 35).

If a switch receives a packet which is already performing the
traversal (i.e., pkt.start is 1), it checks whether the packet’s
distance from the root reached its maximum or whether the
switch’s ID is already present in T somewhere before the last
cell T [pkt.dist] (see Line 9). The first part of the condition
implies that the packet had reached its maximum permitted

distance from the root, and the second part implies that the
switch is already in the current traversal path, but not at the
last position. In both cases the packet is returned back to the
port from which it has been received.

Next, a switch checks whether it received this packet for
the first time, in which case it initializes the T [pkt.dist] cell
and uses its fields to save the port which is connected to the
switch’s parent (Line 13). Then, on Lines 16-17, the switch
sets the output port to the next successor it needs to traverse,
and saves this port in the T [pkt.dist].cur field. In case the
next port is larger than ∆i, this implies that all the successors
were traversed, and the packet is sent to the parent (Lines 19-
24). Notice that when the root needs to return the packet to its
parent (which does not exist), this implies that the traversal is
finished and the packet should be dropped (Lines 21 and 31).

Implementing the EFF-DFS traversal in OpenFlow is non-
trivial. Overall, there are five flow tables and a group table. In
order to make the group table representation more compact,
we use the following notation to indicate a sequence of k
action buckets: 〈action(j)〉j=j1,j2,...,jk

. That is, in each bucket
in the sequence, j is replaced by the next number in the
sequence j1, j1, . . . , jk. The group IDs have the form cur.par
where cur is the value of T [pkt.dist].cur in the packet, i.e.,
the port which is currently traversed, and par is the value
of T [pkt.dist].par. The detailed OpenFlow tables for this
algorithm appear in Table III.

Table A checks whether the traversal procedure has already
started and if not, starts it by invoking group Gr 0.0 from the
group table. Gr 0.0 initializes the required fields in the packet
and invokes Gr 1.0 (i.e., chains it), which in turn will try to
forward the packet to the next working port, starting from
port 1. Tables B and C implement the condition on Line 9 in
Algorithm 2. Table E implements Lines 19-24, i.e., sends the
packet to its parent. Lines 29-33 are used to send the message
to the parent, using the group tables in groups ∆i + 1.par: in
this case, the port(s) preceding the parent port failed.

Each of the groups Gr cur.par, cur ∈ [1, . . . ,∆i], par ∈
[0, . . . ,∆i − 1], tries to find the next working port: it starts
from the port cur and skips the parent port par. If all the
ports have failed, the additional bucket Gr ∆i + 1.par will
forward the packet back to the parent par. Notice that in the
case the parent is 0, there are no additional buckets: the root
of the traversal does not have a parent.

B. Alternative: Iterative Depth-DFS

It is easy to extend our approach to header-space effi-
cient “breadth-first” traversals, or more specifically: Itera-
tive Depth-DFS (IDDFS) traversals. The basic idea is to
increase maxdist one-by-one. We start the DFS algorithm
with maxdist = 1: only the 1-hop neighborhood of the
traversal root will be explored. Once the packet returned back
to the root, instead of discarding it (the default behavior of
our DFS scheme), the root will increment maxdist and restart
the DFS traversal. This time the 2-hops neighborhood of the
root will be traversed. In the same manner, we continue to
increase maxdist up to the diameter of the network G1 (the

Algorithm 2 Algorithm EFF-DFS
Input: current node: vi, input port: in, traversal global param-

eters in packet: (pkt.start, pkt.dist), preallocated packet
tag array of length maxdist: T

Output: output port: out
1: if pkt.start = 0 then
2: pkt.start← 1
3: pkt.dist← 0
4: T [pkt.dist].ID ← i
5: T [pkt.dist].par ← 0
6: T [pkt.dist].cur ← 1
7: out← 1
8: else
9: if pkt.dist = maxdist or

∃k < pkt.dist for which T [k].ID = i then
10: pkt.dist← pkt.dist− 1
11: out← in
12: return out
13: if T [pkt.dist].cur = 0 then
14: T [pkt.dist].par ← in
15: T [pkt.dist].ID ← i
16: out← T [pkt.dist].cur + 1
17: T [pkt.dist].cur ← out
18: if out = ∆i + 1 then
19: out← T [dist].par
20: if out = 0 then
21: Drop packet and exit
22: T [pkt.dist].cur ← 0
23: pkt.dist← pkt.dist− 1
24: return out
25: while out failed or out = T [pkt.dist].par do
26: out← out+ 1
27: T [pkt.dist].cur ← out
28: if out = ∆i + 1 then
29: out← T [pkt.dist].par
30: if out = 0 then
31: Drop packet and exit
32: T [pkt.dist].cur ← 0
33: pkt.dist← pkt.dist− 1
34: return out

35: pkt.dist← pkt.dist+ 1
36: return out

resulting network after the failures). Eventually, the whole
network will be traversed while the nodes are discovered in
the BFS-like order.

V. SHORT ROUTES WITH STATE

We have shown that the possibility to store state in the
packet headers, using tagging, can be useful to overcome
some of the downsides of the random walk scheme. In this
section, we further explore the possibility of leveraging state
information for the traversals. In particular, we show that,
maybe suprisingly, using packet tagging is not the only way
state can be introduced in OpenFlow traversals. In fact, it is

Flow Table A (Start)
Match Instructions

pkt.start

0 Gr 0.0
1 Table B

Flow Table C
Match Instructions

T [0].ID T [1].ID · · · T [maxdist− 1].ID

i ∗ · · · ∗ pkt.dist← pkt.dist− 1, Fwd in
∗ i · · · ∗ pkt.dist← pkt.dist− 1, Fwd in
· · · · · · · · · · · · pkt.dist← pkt.dist− 1, Fwd in
∗ ∗ · · · i pkt.dist← pkt.dist− 1, Fwd in
∗ ∗ · · · ∗ Table D

Flow Table B
Match Instructions
pkt.dist

maxdist pkt.dist← pkt.dist− 1 ,Fwd in
∗ Table C

Flow Table E (Send-Parent)
Match Instructions

pkt.vi.par

0 Drop
1 T [pkt.dist].cur ← 0, pkt.dist← pkt.dist− 1, Fwd 1
2 T [pkt.dist].cur ← 0, pkt.dist← pkt.dist− 1, Fwd 2
· · · · · ·
∆i T [pkt.dist].cur ← 0, pkt.dist← pkt.dist− 1, Fwd ∆i

Flow Table D
Match Instructions

in T [pkt.dist].cur T [pkt.dist].par

1 0 ∗ T [pkt.dist].par ← 1, T [pkt.dist].ID → i, Gr 1.1
2 0 ∗ T [pkt.dist].par ← 2, T [pkt.dist].ID → i, Gr 1.2
· · · · · · · · · · · ·
∆i 0 ∗ T [pkt.dist].par ← ∆i, T [pkt.dist].ID → i, Gr 1.∆i

1 1 0 Gr 2.0
2 2 0 Gr 3.0
· · · · · · · · · · · ·

∆i − 1 ∆i − 1 0 Gr ∆i.0
∆i ∆i 0 Table E
· · · · · · · · · · · ·
1 1 x Gr 2.x
2 2 x Gr 3.x
· · · · · · · · · · · ·

∆i − 1 ∆i − 1 x Gr ∆i.x
∆i ∆i x Table E
· · · · · · · · · · · ·
1 1 ∆i Gr 2.∆i

2 2 ∆i Gr 3.∆i

· · · · · · · · · · · ·
∆i − 2 ∆i − 2 ∆i Gr ∆i − 1.∆i

∆i − 1 ∆i − 1 ∆i Table E

Group Table
Gr ID (cur.par) Type Action buckets
0.0 FF 〈pkt.start← 1, pkt.dist← 0, T [pkt.dist].ID ← i, T [pkt.dist].par ← 0,Gr 1.0〉
1.0 FF 〈T [pkt.dist].cur ← j, pkt.dist← pkt.dist + 1, Fwd j〉j=1,2,...,∆i

2.0 FF 〈T [pkt.dist].cur ← j, pkt.dist← pkt.dist + 1, Fwd j〉j=2,3,...,∆i

· · · · · · · · ·
∆i.0 FF 〈T [pkt.dist].cur ← ∆i, pkt.dist← pkt.dist + 1, Fwd ∆i〉
· · · · · · · · ·

1.x FF 〈T [pkt.dist].cur ← j, pkt.dist← pkt.dist + 1, Fwd j〉j=1,2,...,x−1,x+1,...,∆i
〈Gr ∆i + 1.x〉

2.x FF 〈T [pkt.dist].cur ← j, pkt.dist← pkt.dist + 1, Fwd j〉j=2,3,...,x−1,x+1,...,∆i
〈Gr ∆i + 1.x〉

· · · · · · · · ·
∆i.x FF 〈T [pkt.dist].cur ← ∆i, pkt.dist← pkt.dist + 1, Fwd ∆i〉 〈Gr ∆i + 1.x〉
∆i + 1.x FF 〈T [pkt.dist].cur ← 0, pkt.dist← pkt.dist− 1, Fwd x〉
· · · · · · · · ·

1.∆i FF 〈T [pkt.dist].cur ← j, pkt.dist← pkt.dist + 1, Fwd j〉j=1,2,...,∆i−1 〈Gr ∆i + 1.∆i〉
2.∆i FF 〈T [pkt.dist].cur ← j, pkt.dist← pkt.dist + 1, Fwd j〉j=2,3,...,∆i−1 〈Gr ∆i + 1.∆i〉
· · · · · · · · ·

∆i.∆i FF 〈T [pkt.dist].cur ← ∆i, pkt.dist← pkt.dist + 1, Fwd ∆i〉 〈Gr ∆i + 1.∆i〉
∆i + 1.∆i FF 〈T [pkt.dist].cur ← 0, pkt.dist← pkt.dist− 1, Fwd ∆i〉

TABLE III
EFF-DFS: FLOW AND GROUP TABLES OF SWITCH i.

possible to implement simple state machines on the switches,
using the standard OpenFlow protocol, and we will refer to the
corresponding state as inband registers. Moreover, we present
an interesting and novel mechanism to store state in the hosts
attached to the network, in a completely transparent manner,
using MAC addresses to encode paths. We will refer to this
state as host-based registers. For example, such state can be
exploited to store shortest paths, which have recently been
discovered during network traversals.

A. In-band Registers

Our OpenFlow in-band register implements multiple (small)
counters which are stored in the switch and support fetch-
and-increment operations while processing different packets.
In the following, we will use the terms register and counter
interchangeably. The in-band register can be read and updated
while packets are processed in the OpenFlow pipeline. In-band
registers can be implemented using a group table with log2 k
groups of the round-robin bucket selection policy (an optional
feature of OpenFlow 1.3), and each group contains 2 action
buckets (see Table IV). Each group represents a bit of the
counter, i.e., for a counter that counts from 0 to k − 1
we need log2 k bits (groups). Fetching a counter is done
by applying all the log k groups Gr x, and the value of
the counter will be written to the packet’s tag pkt.cnt.x
(x ∈ [1, ..., log k]).

In order to preserve the value of the counter after the fetch,
the following steps need to be implemented. After fetching
the counter, all its bits will be flipped (due to the round-robin
type of the groups), thus, we need now to flip them one more
time in order return the counter to its original value. This can
be done by applying all the groups Gr x (x ∈ [1, ..., log k])
once again.

Gr id Type Action buckets
1 RR 〈pkt.cnt.1← 0〉,〈pkt.cnt.1← 1〉
2 RR 〈pkt.cnt.2← 0〉,〈pkt.cnt.2← 1〉
· · · · · · · · ·

log k RR 〈pkt.cnt. log k ← 0〉,〈pkt.cnt. log k ← 1〉

TABLE IV
IN-BAND REGISTER: GROUP TABLE THAT IMPLEMENTS AN IN-BAND

REGISTER WHICH COUNTS FROM 0 TO k − 1.

Let us now describe how to set a new value to the in-
band register. Assume that the fetched counter’s value is
stored bitwise in the packet’s fields pkt.cnt.x and the desired
counter’s value is stored in the metadata new.x, where x ∈
[1, ..., log k]. Now we create a table that matches all possible
combinations of pkt.cnt.x and new.x (this will require k2

entries). The action will consist of applying groups Gr y
where y ∈ {i | pkt.cnt.i = new.i}. The latter is true since
the first fetch already flipped the value of the bit y and thus
we need another flip to make the counter’s bit y be equal
to new.y.

This implementation uses 2 log k bits for matching in the
flow tables (flow tables are used to preserve or set counter
values), and requires up to log k actions per entry.

Note that the register implementation (fetching and setting)
requires to access the group table twice, interleavingly with
flow tables; however common OpenFlow switches support
group table access only at the end of the flow tables pipeline.
We can overcome this limitation by making each packet to
be processed twice in the switch. This can be implemented
by physically interconnecting two of the switch ports (i.e.,
creating a physical loopback), or by asking a neighboring
switch to return the packet back if a certain bit in the packet
is set. Moreover, we expect that future OpenFlow switches
would support more flexible group table accesses and more
field actions.

B. Host-Based Registers

We next present an interesting alternative scheme to store
state in the network: host-based registers. Host-based regis-
ters leverage the hosts’ ARP caches to store per-destination
information (e.g., efficient routing paths learned during a
traversal), encoded in terms of MAC addresses. The solution
is completely transparent to the hosts (and IP layer).

The registers are written by sending the host a (gratuitous)
ARP reply message with specific (destination) host as source-
IP and the register value as source-MAC (src mac). Reading
the registers is automatically performed for every transmit-
ted packet, as the register value is set as destination-MAC
(dst mac), and can be used by the OpenFlow switches.

Next, we describe how these registers can be used to store
and follow paths. First we show how short paths can be
aggregated and packed into an ARP reply message. Later we
show how a path encoded in the dst mac field can be followed.
For simplicity, we assume paths of maximum length 12 for
16-port nodes, representable with 48 bits.

1) Aggregating paths for host-based registers: In order to
aggregate a path for host-based registers, every node along
the path appends the in-port to the current path array, thereby
allowing backward replay of the path. As described in Table V,
the appending operation is performed according to the current
hop number stored as VLAN tag: it includes copying the
src mac to a metadata field (using the OpenFlow 1.5 copy
field action), setting the 4 bits at offset hop number to the 4
bits encoding of the in-port, and copying the metadata back
to src mac.

Match Instructions
pkt.vlan in

0 1 metadata← pkt.src mac, metadata[0]← 1,
pkt.src mac← metadata, pkt.vlan← 1

1 1 metadata← pkt.src mac, metadata[1]← 1,
pkt.src mac← metadata, pkt.vlan← 2

· · · · · · · · ·
D 1 metadata← pkt.src mac, metadata[D]← 1,

pkt.src mac← metadata, pkt.vlan← D + 1
0 2 metadata← pkt.src mac, metadata[0]← 1,

pkt.src mac← metadata, pkt.vlan← 1
1 2 metadata← pkt.src mac, metadata[1]← 1,

pkt.src mac← metadata, pkt.vlan← 2
· · · · · · · · ·
D 2 metadata← pkt.src mac, metadata[D]← 1,

pkt.src mac← metadata, pkt.vlan← D + 1
· · · · · · · · ·
0 ∆i metadata← pkt.src mac, metadata[0]← 1,

pkt.src mac← metadata, pkt.vlan← 1
1 ∆i metadata← pkt.src mac, metadata[1]← 1,

pkt.src mac← metadata, pkt.vlan← 2
· · · · · · · · ·
D ∆i metadata← pkt.src mac, metadata[D]← 1,

pkt.src mac← metadata, pkt.vlan← D + 1

TABLE V
AGGREGATING PATHS FOR HOST-BASED REGISTERS. VLAN TAG

INDICATES THE HOP NUMBER AND THEREBY THE OFFSET TO APPEND THE
IN-PORT INSIDE THE SRC MAC. WRITING TO metadat[i] IS ACTUALLY

SETTING THE FOUR BITS AT OFFSET 4i, ASSUMING A 4BIT
REPRESENTATION OF IN-PORT.

2) Following paths stored in host-based registers: When a
host sends a packet to some destination host (represented by
its IP), the packet holds the path as the dst mac. In order to
follow the path, each node along the path extracts the current
port and forwards to this port. As described in Table VI, the
extraction of each hop is performed backward (reversed to the
aggregation order), and the VLAN tag is used to indicate the
current offset in the dst mac to consider as next hop port.

Match Instructions
pkt.vlan pkt.dst mac

0 ∗44 · 1 pkt.vlan← 1, forward 1
1 ∗40 · 1 · ∗4 pkt.vlan← 2, forward 1
2 ∗36 · 1 · ∗8 pkt.vlan← 3, forward 1
· · · · · · · · ·

D − 1 1 · ∗44 pkt.vlan← 0, forward 1
0 ∗44 · 2 pkt.vlan← 1, forward 2
1 ∗40 · 2 · ∗4 pkt.vlan← 2, forward 2
2 ∗36 · 2 · ∗8 pkt.vlan← 3, forward 2
· · · · · · · · ·

D − 1 2 · ∗44 pkt.vlan← 0, forward 2
· · · · · · · · ·
0 ∗44 ·∆i pkt.vlan← 1, forward ∆i

1 ∗40 ·∆i · ∗4 pkt.vlan← 2, forward ∆i

2 ∗36 ·∆i · ∗8 pkt.vlan← 3, forward ∆i

· · · · · · · · ·
D − 1 ∆i · ∗44 pkt.vlan← 0, forward ∆i

TABLE VI
FOLLOWING PATHS STORED IN HOST-BASED REGISTERS. VLAN TAG
INDICATES THE HOP NUMBER AND THEREBY THE OFFSET TO MATCH

INSIDE THE DST MAC WHICH INDICATES THE OUTPUT PORT.

VI. APPLICATIONS

Our traversal schemes come with interesting applications.
In the following, we present a robust routing application

and a connectivity testing application. We discuss different
implementation variants, based on packet tagging as well as
based on the registers introduced in the previous section.

A. Failover Routing

In legacy networks, distributed protocols such as the Layer-2
Spanning Tree Protocol (STP) are used to update the config-
uration of each network element (switch/router) in response
to network changes, for example link failures. Typically, a
link failure is noticed by an incident network element, which
then propagates the information to neighbors, etc. As such,
these protocols ensure that hosts stay connected, as long as
the physical network is connected.

In SDNs, events are dispatched to a logically centralized
controller, which seeks to maintain a global view of the
network, and pushes new forwarding rules to all switches, in
response to network changes. In addition, SDN switches can
be configured with inband failover rules which react to local
failures (without controller intervention).

In the following, we discuss how to use traversals to
implement robust routing in the presence of (possibly many
and simultaneous) failures. The inband approach is relevant
as it can also operate in cases where the control plane is
unavailable. While our failover scheme could in principle be
applied to the entire traffic, in practice, it can make sense to
reroute only the flows of some critical applications. Indeed, the
traffic engineering flexibilities of OpenFlow and the possibility
to match not only Layer-2 but also Layer-3 and Layer-4 header
fields, as well as the possibility to tag packets at ingress ports
(e.g., using an intrusion detection system), allows for a fine-
grained failover, where uncritical flows or very heavy flows
are dropped when links fail, while critical and light flows
are rerouted. For example, it can make sense to prioritize
(and reroute) only flows containing control messages, or flows
providing connectivity between the switch and any controller.
Time uncritical and/or large flows such as flows for Dropbox
synchronization, do not necessarly have to be rerouted inband.

1) Using Plain Traversals: Given our inband traversals, it
is straight-forward to implement failover routing applications:
whenever a packet encounters a failed link along its path, it
is diverted to an alternative link (according to Random Walk,
DFS and BFS), eventually reaching the destination. While a
random walk approach is simple and does not require any
resources of the packet, the DFS and BFS schemes require
some header space but also result in shorter and deterministic
route lengths.

2) Improved Version: Spanning Trees with Inband Regis-
ters: With the concept of inband registers, we can construct
a spanning tree. Within a spanning tree, simple forwarding
rules can help any packet to traverse the network without
using additional (packet) space. The main idea is to use inband
registers to save the in-port to out-port mapping according to
the one DFS traversal while performing a single DFS traversal.
Then any packet can follow this mapping and perform a DFS
traversal without storing any state in the packet.

3) Shortest Paths with Inband and Host Registers: Using
inband registers, we can also implement inband shortest path
routing. This routing can be established upon request, or
triggered by an event (such as a path failure), and once
computed, it can assist every packet. The main idea is to
use an inband register to save the parent port ID which
emerges during a network traversal, using the IDDFS traversal
algorithm. Each traversal initiated from some root node i will
store the parent port IDs in every node. These parent ports
are later used to route packets for destination i. To support
routing to every node, we will initiate a traversal from each
node, keeping unique parent IDs per destination, in every node.
Following the parent ports of a traversal, we will route a
packet along the path to the root. Since the resulting paths
were created by the IDDFS traversal algorithm, they are the
shortest paths.

We can achieve a similar result also by using per-destination
host registers. When detecting a shortest path with IDDFS
traversal, we can maintain the current path to the root in the
packet and store it in the registers of the hosts attached to the
current node (where the destination is the root), rather than in
the node’s inband registers. Later, when one of the hosts tries
to reach that root, the host register value is read and attached
to the packets; hence, the switches can route accordingly.

In Table VII we compare the performance of the above
failover schemes. We can see the tradeoff between the max-
imum number of hops and the amount of the state used.
While the Random Walk approach uses no state, the traversal
paths can be very long. We can also see the benefit of
the EFF-DFS over the INEFF-DFS in terms of a packet
header space used. The Spanning Tree and the Shortest Paths
approaches do not require any packet header space once the in-
band registered were initialized. For example, in a small Clos
datacenter [18], we may have ∆ = 48 port switches. Thus, in
our implementation of RWalk, we will have one group table
with one entry. INEFF-DFS requires three flow tables, one
with two entries, one with ∆ = 48 entries and one with one
with ∆2 entries, as well as one gorup table with ∆2 entries.
EFF-DFS requires five flow tables, two with two entries, two
with ∆ entries, and one with ∆2 entries; moreover, we need
a group table with ∆2 entries.

Technique #hops packet space per switch space

Random Walk O(n3) 0 0
INEFF-DFS O(m) O(n log ∆) 0
EFF-DFS O(m) O(D logn) 0
EFF-IDDFS O(Dm) O(D logn) 0
Spanning Tree O(n) 0 ∆2 log ∆
Shortest Paths O(D) 0 n logn

TABLE VII
COMPARISON BETWEEN THE FAILOVER ROUTING METHODS. THE

NUMBER OF NODES IS DENOTED BY n, THE NUMBER OF LINKS BY m, THE
DEGREE BY ∆ AND THE DIAMETER BY D. WE COMPARE THE MAXIMUM

NUMBER OF HOPS A PACKET WILL TRAVEL UNTIL THE DESTINATION WILL
BE REACHED; SIZE OF THE HEADER SPACE USED IN THE PACKET;

PER-SWITCH SPACE USED BY THE IN-BAND REGISTERS.

B. Connectivity Queries

A query mechanism to check the connectivity status be-
tween hosts is crucial for dependable networked systems,
e.g., for emergency or disaster handling, but for example
also in the context of distributed SDN control applications
in datacenters [19].

1) One time queries: Our traversal algorithms (Random
Walk, DFS, BFS) not only provide a guaranteed message
delivery as long as the underlying network is physically con-
nected, but they can also be used to indicate disconnectivity.
A one time connectivity query can be implemented in the
following way: A traversal is used to search the destination,
up to a certain hop limit. If the destination is reached, another
traversal is used to inform the source. If the hop limit is
reached before reaching the destination, a second traversal
is issued to inform the source. Depending on the traversal
technique, it may be possible to keep the path information
during the first traversal, such that the response can be sent
backward, without the need for a second traversal.

By using per-destination host registers, we can make the
reply to a query follow the detected path (in case it is
short enough), or at least to assist its traversal, without any
modification to the queried host.

2) Connectivity Service: Traversals can be also used to
implement connectivity service for hosts [19], in the following
way. Each host, upon request or by configuration, actively
initiates new traversals, multicasting its liveness status. All
interested subscribers can be informed, in a publish/subscribe
manner, using rules on their attached OpenFlow switch.
Traversals are numbered using increasing IDs, to avoid multi-
ple visits of the same traversal (e.g, in case of network loops
or the random walk based traversal).

Similar to failover routing, inband registers can vastly
improve the performance of the queries. For example, in
the connectivity service, each switch, before it forwards the
current traversal to the subscribers, can verify whether the
current traversal uses a larger ID than the previous one. By
performing the connectivity test from all switches, switches
keep track of the last traversal IDs of each other, speeding
up one time queries further: it is then sufficient to check the
attached switch for a change in the relevant traversal IDs.

Note that allowing ICMP ping packets to be sent using
traversals, we turn them into (one time) physical network
queries. Compared to a distributed application based on ICMP
probing, requiring n2 packets, our service uses a linear number
of packets only.

VII. RELATED WORK

While the benefits of more centralized network architectures
enabled by protocols like OpenFlow [20] and segment rout-
ing [21] have attracting much interest from both researchers
and operators, the question of which functionality can and
should remain in the data plane is subject to ongoing discus-
sions.

There exist several empirical studies showing that link
failures, even simultaneous ones, do occur in different net-

works [22], [23], including wide-area [24] and datacenter
networks [25]. For example, it has been reported that in a wide
area network, a link fails every 30 minutes on average [26].

Commercial networks today usually rely on routing schemes
such as OSPF, IS-IS, and MPLS reroute traffic, which however
do not come with formal guarantees under multiple failures.
Accordingly, backbone networks are usually largely over-
provisioned.

Moreover, it is well-known that reactions to even a single
link failure can be slow in traditional networks based on a
distributed control plane: in the order of tens of milliseconds
or even seconds, depending on the network; much higher than
packet forwarding intervals (in the order of µsec in Gbps
networks) [27].

More systematically, existing robust routing mechanisms
can be classified according to whether a single link/node
failure [28], [29], [30] or multiple ones can be tolerated [31].
Alternatively, they can be classified into static and dynamic
ones. Dynamic tables and using link reversals [32], [3], [33]
can yield very robust networks, but require dynamic tables.
Finally, one can also classify existing mechanisms as basic
routing schemes [34], [35], schemes exploiting packet-header
rewriting [36], [37], and (randomized) routing with packet-
duplication [38]. While packet-header rewriting can improve
resiliency, it can be problematic in practice, especially under
multiple failures, as header space (and rule space) is limited.

The works closest to ours are by Feigenbaum et al. [27],
Chiesa et al. [39], [38], Stephens et al. [37], [40], and
Borokhovich et al. [41]. Feigenbaum et al. [27] introduces
the notion of perfect resilience, resilience to arbitrary fail-
ures. Chiesa et al. [39] focus on “scalable” static failover
schemes that rely only on the destination address, the packets
incoming link, and the set of nonfailed links incident to the
router. The authors find that per-incoming link destination-
based forwarding tables are a necessity as destination-based
routing alone is unable to achieve robustness against even
a single link failure, and, moreover, entails computationally
hard challenges. In [38], Chiesa et al. study failover routing
in different models with and without packet marking but
also with duplication, and present several new algorithms, in
contrast to our paper, also considering the stretch but also
deriving impossiblity results.

Stephens et al. [37], [40] present a new forwarding table
compression algorithm called Plinko [37], [40], which however
cannot provide robustness guarantees in all possible failure
scenarios. Chiesa et al. [42] recently proposed a systematic
algorithmic study of the resiliency of immediate failover in a
variety of models.

More generally, from an algorithmic perspective, our work
is related to the field of graph exploration, see, e.g. [43],
[44], [45], [46] for an overview. In particular, the deterministic
analogue of our stateless random walk is known as the rotor
router (sometimes also called Propp machine or Eulerian
walkers), and has been studied in various contexts before [47],
[48].
Bibliographic Note. First ideas leading to this paper have been

presented at the SIGCOMM HotSDN 2014 [49] workshop
as well as at the HotNets 2014 workshop [50]. In [49],
we presented two graph traversals: one based on Depth-First
Search (DFS) and another one based on Breadth-First Search
(BFS) resp. IDDFS. These algorithms provide guaranteed con-
nectivity, however they require a non-trivial amount of header
space for tagging (linear in n). In the current full version
of the paper, we present more efficient failover schemes and
a more comprehensive study of traversal mechanisms, also
showing that stateful mechanisms are possible, and discussing
different applications. In [50], we observed the possibility
to implement more stateful network functions using existing
OpenFlow versions; the latter has also been observed indepen-
dently by Bianchi et al. [17].

VIII. CONCLUSION

According to a recent Communications of the ACM ar-
ticle [2], the possibility to render failover more predictable
was one of the key reasons for Google to move to an SDN
solution. An attractive solution to implement a fast failover
relies on inband mechanisms: a local fast failover can serve
as a first line of defense, before the controller subsequently can
rigorously optimize the route allocation. However, not much is
known today about how to exploit such inband mechanisms,
nor what are their limitations.

This paper showed the feasibility of very robust inband
network traversals in OpenFlow networks. Such traversals can
form the basis for critical services of dependable networks,
such as robust routing or connectivity testing. We have demon-
strated traversals in three basic models: a simple stateless
model (using a random walk scheme), a model with packet
tagging (using spanning tree search) and a model with state at
switches or in hosts (e.g., storing recently discovered shortest
paths).

Our approach is optimized toward a worst-case: our network
traversals ensure packet delivery even under a large number of
link failures, as long as the source and the destination are still
physically connected. In practice, such a rigorous approach
may only be worthwhile for a subset of very critical flows
(e.g., control flows between switches and controllers): non-
critical flows can simply be dropped.

We hope that our paper can inform the community of what
degree of robustness can be achieved in today’s OpenFlow
protocol and what tradeoffs exist, and also nourish the ongoing
discussion of what can and should be implemented in the data
plane.

Together with this paper, we will make available the source
code of a canonical robust traversal algorithm presented in this
paper.
Acknowledgments. The authors would like to thank Leszek
Antoni Gasieniec for several discussions. Liron Schiff is
supported by the European Research Council (ERC) Starting
Grant no. 259085 and by the Israel Science Foundation Grant
no. 1386/11. Stefan Schmid is supported by the Danish Villum
Foundation project ReNet.

REFERENCES

[1] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn,” Queue,
vol. 11, no. 12, Dec. 2013.

[2] “A purpose-built global network: Google’s move to sdn,” Commun.
ACM, vol. 59, no. 3, Feb. 2016.

[3] J. Liu, A. Panda, A. Singla, B. Godfrey, M. Schapira, and S. Shenker,
“Ensuring connectivity via data plane mechanisms,” in Proc. 10th
USENIX NSDI, 2013, pp. 113–126.

[4] N. Solomon, Y. Francis, and L. Eitan, “Floodlight openflow ddos,” in
Slideshare.net, 2013.

[5] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella,
“Towards an Elastic Distributed SDN Controller,” in HotSDN, 2013.

[6] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix:
A distributed control platform for large-scale production networks,”
in Proc. 9th USENIX Conference on Operating Systems Design and
Implementation (OSDI), 2010.

[7] S. H. Yeganeh and Y. Ganjali, “Beehive: Towards a Simple Abstraction
for Scalable Software-Defined Networking,” in HotNets, 2014.

[8] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid, “A Distributed and
Robust SDN Control Plane for Transactional Network Updates,” in Proc.
IEEE INFOCOM, 2015.

[9] N. Katta, H. Zhang, M. Freedman, and J. Rexford, “Ravana: Controller
fault-tolerance in software-defined networking,” in Proc. ACM SOSR,
2015.

[10] A. Akella and A. Krishnamurthy, “A Highly Available Software Defined
Fabric,” in HotNets, 2014.

[11] L. Schiff, S. Schmid, and M. Canini, “Medieval: Towards a self-
stabilizing, plug & play, in-band sdn control network,” in Proc. ACM
Sigcomm Symposium on SDN Research (SOSR), 2015.

[12] anonymous, “Robust routing in openflow,” in http://tinyurl.com/z5lzdga,
2014.

[13] A. R. Curtis et al., “Devoflow: Scaling flow management for high-
performance networks,” in Proc. SIGCOMM, 2011, pp. 254–265.

[14] S. Zhang, S. Malik, S. Narain, and L. Vanbever, “In-band update for
network routing policy migration,” in Proc. International Conference
on Network Protocols (ICNP), 2014, pp. 356–361.

[15] O. Tilmans and S. Vissicchio, “Igp-as-a-backup for robust sdn networks,”
in Proc. 10th International Conference on Network and Service Man-
agement (CNSM), 2014.

[16] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014.

[17] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “Openstate:
Programming platform-independent stateful openflow applications inside
the switch,” SIGCOMM Comput. Commun. Rev. (CCR), vol. 44, no. 2,
pp. 44–51, 2014.

[18] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Computer Communica-
tion Review, vol. 38, no. 4, pp. 63–74, 2008.

[19] J. B. Leners, T. Gupta, M. K. Aguilera, and M. Walfish, “Taming
uncertainty in distributed systems with help from the network,” in Proc.
10th EuroSys, 2015.

[20] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, 2008.

[21] C. Filsfils et al., “Segment routing architecture,” in Internet draft, 2014.
[22] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, and

C. Diot, “Characterization of failures in an ip backbone,” in Proc. IEEE
INFOCOM, vol. 4, 2004, pp. 2307–2317.

[23] D. Turner, K. Levchenko, A. C. Snoeren, and S. Savage, “California
fault lines: understanding the causes and impact of network failures,”
ACM SIGCOMM Computer Communication Review, vol. 41, no. 4, pp.
315–326, 2011.

[24] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving High Utilization with Software-Driven
WAN,” in SIGCOMM, 2013.

[25] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures
in data centers: measurement, analysis, and implications,” in ACM
SIGCOMM Computer Communication Review, vol. 41, no. 4, 2011, pp.
350–361.

[26] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter, “Traffic
engineering with forward fault correction,” in Proc. ACM SIGCOMM
Computer Communication Review, vol. 44, no. 4, 2014, pp. 527–538.

[27] J. F. et al., “Ba: On the resilience of routing tables,” in Proc. ACM
Symposium on Principles of Distributed Computing (PODC), 2012, pp.
237–238.

[28] G. Enyedi, G. Rétvári, and T. Cinkler, “A novel loop-free ip fast
reroute algorithm,” in Dependable and Adaptable Networks and Ser-
vices. Springer, 2007, pp. 111–119.

[29] S. Nelakuditi, S. Lee, Y. Yu, Z.-L. Zhang, and C.-N. Chuah, “Fast local
rerouting for handling transient link failures,” IEEE/ACM Transactions
on Networking (ToN), vol. 15, no. 2, pp. 359–372, 2007.

[30] J. Wang and S. Nelakuditi, “Ip fast reroute with failure inferencing,”
in Proc. SIGCOMM Workshop on Internet Network Management, 2007,
pp. 268–273.

[31] T. Elhourani, A. Gopalan, and S. Ramasubramanian, “Ip fast rerouting
for multi-link failures,” in Proc. IEEE INFOCOM. IEEE, 2014, pp.
2148–2156.

[32] E. Gafni and D. Bertsekas, “Distributed algorithms for generating loop-
free routes in networks with frequently changing topology,” Communi-
cations, IEEE Transactions on, vol. 29, no. 1, pp. 11–18, Jan 1981.

[33] J. Liu, B. Yan, S. Shenker, and M. Schapira, “Data-driven network
connectivity,” in Proc. HotNets, 2011, pp. 8:1–8:6.

[34] A. Atlas et al., “U-turn alternates for ip/ldp fast-reroute.”
[35] B. Yang, J. Liu, S. Shenker, J. Li, and K. Zheng, “Keep forwarding:

Towards k-link failure resilient routing,” in Proc. IEEE INFOCOM,
2014, pp. 1617–1625.

[36] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson, S. Shenker,
and I. Stoica, “Achieving convergence-free routing using failure-carrying
packets,” in Proc. ACM SIGCOMM, 2007, pp. 241–252.

[37] B. Stephens, A. L. Cox, and S. Rixner, “Plinko: Building provably
resilient forwarding tables,” in Proc. 12th ACM HotNets, 2013.

[38] M. Chiesa, A. V. Gurtov, A. Madry, S. Mitrovic, I. Nikolaevskiy,
M. Schapira, and S. Shenker, “On the resiliency of randomized routing
against multiple edge failures,” in Proc. 43rd International Colloquium
on Automata, Languages, and Programming (ICALP), 2016, pp. 134:1–
134:15.

[39] M. Chiesa, A. Gurtov, A. Madry, S. Mitrovic, I. Nikolaevskiy, A. Panda,
M. Schapira, and S. Shenker, “Exploring the limits of static resilient
routing,” in Proc. IEEE INFOCOM, 2016.

[40] B. Stephens, A. L. Cox, and S. Rixner, “Scalable multi-failure fast
failover via forwarding table compression,” SOSR. ACM, 2016.

[41] M. Borokhovich and S. Schmid, “How (not) to shoot in your foot
with sdn local fast failover: A load-connectivity tradeoff,” in Proc.
17th International Conference on Principles of Distributed Systems
(OPODIS), 2013.

[42] M. Chiesa, I. Nikolaevskiy, S. Mitrovic, A. Panda, A. Gurtov, A. Madry,
M. Schapira, and S. Shenker, “The quest for resilient (static) forwarding
tables,” in Proc. IEEE INFOCOM, 2016.

[43] G. Barnes and W. L. Ruzzo, “Deterministic algorithms for undirected
s-t connectivity using polynomial time and sublinear space.” in Proc.
23rd Annual ACM Symposium on Theory of Computing (STOC), 1991,
pp. 43–53.

[44] O. Reingold, “Undirected connectivity in log-space,” J. ACM, vol. 55,
no. 4, pp. 17:1–17:24, 2008.

[45] M. Patrascu and M. Thorup, “Planning for fast connectivity updates,”
in Proc. 48th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 2007, pp. 263–271.

[46] S. Istrail, “Polynomial universal traversing sequences for cycles are
constructible,” in Proc. 20th Annual ACM Symposium on Theory of
Computing (STOC), 1988, pp. 491–503.

[47] E. Bampas, L. Gasieniec, N. Hanusse, D. Ilcinkas, R. Klasing, and
A. Kosowski, “Euler tour lock-in problem in the rotor-router model:
I choose pointers and you choose port numbers,” in Proc. 23rd Interna-
tional Conference on Distributed Computing (DISC), 2009, pp. 423–435.

[48] V. Priezzhev, D. Dhar, A. Dhar, and S. Krishnamurthy, “Eulerian walkers
as a model of self-organised criticality,” in Phys. Rev. Lett. 77, 1996.

[49] M. Borokhovich, L. Schiff, and S. Schmid, “Provable data plane connec-
tivity with local fast failover: Introducing openflow graph algorithms,”
in Proc. ACM SIGCOMM HotSDN, 2014.

[50] L. Schiff, M. Borokhovich, and S. Schmid, “Reclaiming the brain:
Useful openflow functions in the data plane,” in Proc. ACM Workshop
on Hot Topics in Networks (HotNets), 2014.

