3,218 research outputs found

    A Novel Latin Square Image Cipher

    Full text link
    In this paper, we introduce a symmetric-key Latin square image cipher (LSIC) for grayscale and color images. Our contributions to the image encryption community include 1) we develop new Latin square image encryption primitives including Latin Square Whitening, Latin Square S-box and Latin Square P-box ; 2) we provide a new way of integrating probabilistic encryption in image encryption by embedding random noise in the least significant image bit-plane; and 3) we construct LSIC with these Latin square image encryption primitives all on one keyed Latin square in a new loom-like substitution-permutation network. Consequently, the proposed LSIC achieve many desired properties of a secure cipher including a large key space, high key sensitivities, uniformly distributed ciphertext, excellent confusion and diffusion properties, semantically secure, and robustness against channel noise. Theoretical analysis show that the LSIC has good resistance to many attack models including brute-force attacks, ciphertext-only attacks, known-plaintext attacks and chosen-plaintext attacks. Experimental analysis under extensive simulation results using the complete USC-SIPI Miscellaneous image dataset demonstrate that LSIC outperforms or reach state of the art suggested by many peer algorithms. All these analysis and results demonstrate that the LSIC is very suitable for digital image encryption. Finally, we open source the LSIC MATLAB code under webpage https://sites.google.com/site/tuftsyuewu/source-code.Comment: 26 pages, 17 figures, and 7 table

    Agonistic behavior of captive saltwater crocodile, crocodylus porosus in Kota Tinggi, Johor

    Get PDF
    Agonistic behavior in Crocodylus porosus is well known in the wild, but the available data regarding this behavior among the captive individuals especially in a farm setting is rather limited. Studying the aggressive behavior of C. porosus in captivity is important because the data obtained may contribute for conservation and the safety for handlers and visitors. Thus, this study focuses on C. porosus in captivity to describe systematically the agonistic behaviour of C. porosus in relation to feeding time, daytime or night and density per pool. This study was carried out for 35 days in two different ponds. The data was analysed using Pearson’s chi-square analysis to see the relationship between categorical factors. The study shows that C. porosus was more aggressive during daylight, feeding time and non-feeding time in breeding enclosure (Pond C, stock density =0.0369 crocodiles/m2) as compared to non-breeding pond (Pond B, stock density =0.3317 crocodiles/m2) where it is only aggressive during the nighttime. Pond C shows the higher domination in the value of aggression in feeding and non-feeding time where it is related to its function as breeding ground. Chi-square analysis shows that there is no significant difference between ponds (p=0.47, χ2= 2.541, df= 3), thus, there is no relationship between categorical factors. The aggressive behaviour of C. porosus is important for the farm management to evaluate the risk in future for the translocation process and conservation of C. porosus generally

    Candidate One-Way Functions and One-Way Permutations Based on Quasigroup String Transformations

    Get PDF
    In this paper we propose a definition and construction of a new family of one-way candidate functions RN:QNQN{\cal R}_N:Q^N \to Q^N, where Q={0,1,...,s1}Q=\{0,1,...,s-1\} is an alphabet with ss elements. Special instances of these functions can have the additional property to be permutations (i.e. one-way permutations). These one-way functions have the property that for achieving the security level of 2n2^n computations in order to invert them, only nn bits of input are needed. The construction is based on quasigroup string transformations. Since quasigroups in general do not have algebraic properties such as associativity, commutativity, neutral elements, inverting these functions seems to require exponentially many readings from the lookup table that defines them (a Latin Square) in order to check the satisfiability for the initial conditions, thus making them natural candidates for one-way functions.Comment: Submitetd to conferenc

    A side-channel attack against an automata theory based stream cipher (Logic, Language, Algebraic system and Related Areas in Computer Science)

    Get PDF
    In this paper we consider a finite automaton based stream cipher given by P. Dömösi and G. Horváth and we show its immunity in side-channel timing attack

    An Efficient Image Encryption Using a Dynamic, Nonlinear and Secret Diffusion Scheme

    Get PDF
    تقدم هذه الورقة مخطط نشر سري جديد يسمى نظام التشفير بالمجموعة (RKP) والذي يرتكز على أساس التقليب غير الخطي، الديناميكي والعشوائي لتشفير الصور حسب الكتلة، حيث تعتبر الصور بيانات معينة بسبب حجمها ومعلوماتها، والتي هي ذات طبيعة ثنائية الأبعاد وتتميز بالتكرار العالي والارتباط القوي. أولاً، يتم حساب جدول التقليب وفقًا للمفتاح الرئيسي والمفاتيح الفرعية. ثانيًا، سيتم إجراء خلط وحدات البكسل لكل كتلة سيتم تشفيرها وفقًا لجدول التقليب. بعد ذلك، نستخدم خوارزمية تشفير AES في نظام التشفير عن طريق استبدال التقليب الخطي لمرحلة تحول الصفوف، بالتناوب غير الخطي والسري لمخطط RKP؛ هذا التغيير يجعل نظام التشفير يعتمد على المفتاح السري ويسمح لكلاهما باحترام نظرية شانون الثانية ومبدأ كيرشوف. يوضح تحليل الأمان لنظام التشفير أن مخطط الانتشار المقترح لـ RKP يعزز حصن خوارزمية التشفير، كما يمكن ملاحظته في الانتروبيا والقيم الأخرى التي تم الحصول عليها. النتائج التجريبية التي تحصلنا عليها من خلال التحليل المفصل اثبتت أن التعديل الذي تم إجراؤه عن طريق استخدام التقنية المقترحة يعزز حصن خوارزمية التشفير، كما يمكن ملاحظته في إنتروبيا والقيم الأخرى التي تم الحصول عليها.The growing use of tele This paper presents a new secret diffusion scheme called Round Key Permutation (RKP) based on the nonlinear, dynamic and pseudorandom permutation for encrypting images by block, since images are considered particular data because of their size and their information, which are two-dimensional nature and characterized by high redundancy and strong correlation. Firstly, the permutation table is calculated according to the master key and sub-keys. Secondly, scrambling pixels for each block to be encrypted will be done according the permutation table. Thereafter the AES encryption algorithm is used in the proposed cryptosystem by replacing the linear permutation of ShiftRows step with the nonlinear and secret permutation of RKP scheme; this change makes the encryption system depend on the secret key and allows both to respect the second Shannon’s theory and the Kerckhoff principle. Security analysis of cryptosystem demonstrates that the proposed diffusion scheme of RKP enhances the fortress of encryption algorithm, as can be observed in the entropy and other obtained values. communications implementing electronic transfers of personal data, require reliable techniques and secure. In fact, the use of a communication network exposes exchanges to certain risks, which require the existence of adequate security measures. The data encryption is often the only effective way to meet these requirements. This paper present a cryptosystem by block for encrypting images, as images are considered particular data because of their size and their information, which are two dimensional nature and characterized by high redundancy and strong correlation. In this cryptosystem, we used a new dynamic diffusion technique called round key permutation, which consists to permute pixels of each bloc in a manner nonlinear, dynamic and random using permutation table calculated according to the master key and sub-keys. We use thereafter the AES encryption algorithm in our cryptosystem by replacing the linear permutation of ShiftRows with round key permutation technique; this changing makes the encryption scheme depend on encryption key. Security analysis of cryptosystem demonstrate that the modification made on using the proposed technique of Round Key Permutation enhances the fortress of encryption  algorithm,  as can be observed in the entropy and other obtained values

    Analysis of Symbol Dan Brown’s Novel “The Lost Symbol”

    Get PDF
    This thesis studied about Analysis of Symbol Dan Brown’s Novel “The Lost Symbol.” The problem of this thesis are what symbols does Dan Brown use in the novel of “The Lost Symbol” and what are the meanings of the symbols. The aim of this thesis is to find out symbols used by Dan Brown in the novel “The Lost Symbol” and to describe the meaning of symbol in “The Lost Symbol” novel by Dan Brown. The researcher used descriptive qualitative method approach to found out and analyzing the meaning of symbols. Instrument that used by the writer was note taking. From this instrument, the writer was read the text of novel, and the next writer was separate the symbol and write down the meaning in paper the location of the page, the last writer was identify symbol and the meaning in the novel. In this thesis, the writer found out some symbols according to Jerry’s theory there are, Personal symbol, consist of: The Order Eight Franklin Square, Melencolia I, SBB13, Masonic Ring, The Apotheosis of Washington, and The double-headed phoenix; Cultural symbol, consist of: Statue of Freedom, Hand of the Mysteries, Masonic Pyramid, Freemason’s Cipher, Great Seal of the United States, Kryptos, Federal Triangle, Number 33 and Cross or Rose Cross; Universal symbol, the writer found one symbols: Sacred Book. All symbols used in The Lost Symbol Novel by Dan Brown is to show as Unite State of America is nation build from freemason spirit. Masonry is a system of morality,veiled in allegory and illustrated by symbols. After that the free-mason spirit we can see from rebirth ancient building like, Capitol building, White House, and Washington Monument. The result of this research was expected to be useful information to the students and lecturer, especially people whose concern with symbols. The writer hopes this thesis can contribute about literature in English and Literature Department

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas
    corecore