1,224 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Deep Learning -Powered Computational Intelligence for Cyber-Attacks Detection and Mitigation in 5G-Enabled Electric Vehicle Charging Station

    Get PDF
    An electric vehicle charging station (EVCS) infrastructure is the backbone of transportation electrification. However, the EVCS has various cyber-attack vulnerabilities in software, hardware, supply chain, and incumbent legacy technologies such as network, communication, and control. Therefore, proactively monitoring, detecting, and defending against these attacks is very important. The state-of-the-art approaches are not agile and intelligent enough to detect, mitigate, and defend against various cyber-physical attacks in the EVCS system. To overcome these limitations, this dissertation primarily designs, develops, implements, and tests the data-driven deep learning-powered computational intelligence to detect and mitigate cyber-physical attacks at the network and physical layers of 5G-enabled EVCS infrastructure. Also, the 5G slicing application to ensure the security and service level agreement (SLA) in the EVCS ecosystem has been studied. Various cyber-attacks such as distributed denial of services (DDoS), False data injection (FDI), advanced persistent threats (APT), and ransomware attacks on the network in a standalone 5G-enabled EVCS environment have been considered. Mathematical models for the mentioned cyber-attacks have been developed. The impact of cyber-attacks on the EVCS operation has been analyzed. Various deep learning-powered intrusion detection systems have been proposed to detect attacks using local electrical and network fingerprints. Furthermore, a novel detection framework has been designed and developed to deal with ransomware threats in high-speed, high-dimensional, multimodal data and assets from eccentric stakeholders of the connected automated vehicle (CAV) ecosystem. To mitigate the adverse effects of cyber-attacks on EVCS controllers, novel data-driven digital clones based on Twin Delayed Deep Deterministic Policy Gradient (TD3) Deep Reinforcement Learning (DRL) has been developed. Also, various Bruteforce, Controller clones-based methods have been devised and tested to aid the defense and mitigation of the impact of the attacks of the EVCS operation. The performance of the proposed mitigation method has been compared with that of a benchmark Deep Deterministic Policy Gradient (DDPG)-based digital clones approach. Simulation results obtained from the Python, Matlab/Simulink, and NetSim software demonstrate that the cyber-attacks are disruptive and detrimental to the operation of EVCS. The proposed detection and mitigation methods are effective and perform better than the conventional and benchmark techniques for the 5G-enabled EVCS

    Intégration de la blockchain à l'Internet des objets

    Get PDF
    L'Internet des objets (IdO) est en train de transformer l'industrie traditionnelle en une industrie intelligente où les décisions sont prises en fonction des données. L'IdO interconnecte de nombreux objets (ou dispositifs) qui effectuent des tâches complexes (e.g., la collecte de données, l'optimisation des services, la transmission de données). Toutefois, les caractéristiques intrinsèques de l'IdO entraînent plusieurs problèmes, tels que la décentralisation, une faible interopérabilité, des problèmes de confidentialité et des failles de sécurité. Avec l'évolution attendue de l'IdO dans les années à venir, il est nécessaire d'assurer la confiance dans cette énorme source d'informations entrantes. La blockchain est apparue comme une technologie clé pour relever les défis de l'IdO. En raison de ses caractéristiques saillantes telles que la décentralisation, l'immuabilité, la sécurité et l'auditabilité, la blockchain a été proposée pour établir la confiance dans plusieurs applications, y compris l'IdO. L'intégration de la blockchain a l'IdO ouvre la porte à de nouvelles possibilités qui améliorent intrinsèquement la fiabilité, la réputation, et la transparence pour toutes les parties concernées, tout en permettant la sécurité. Cependant, les blockchains classiques sont coûteuses en calcul, ont une évolutivité limitée, et nécessitent une bande passante élevée, ce qui les rend inadaptées aux environnements IdO à ressources limitées. L'objectif principal de cette thèse est d'utiliser la blockchain comme un outil clé pour améliorer l'IdO. Pour atteindre notre objectif, nous relevons les défis de la fiabilité des données et de la sécurité de l'IdO en utilisant la blockchain ainsi que de nouvelles technologies émergentes, notamment l'intelligence artificielle (IA). Dans la première partie de cette thèse, nous concevons une blockchain qui garantit la fiabilité des données, adaptée à l'IdO. Tout d'abord, nous proposons une architecture blockchain légère qui réalise la décentralisation en formant un réseau superposé où les dispositifs à ressources élevées gèrent conjointement la blockchain. Ensuite, nous présentons un algorithme de consensus léger qui réduit la puissance de calcul, la capacité de stockage, et la latence de la blockchain. Dans la deuxième partie de cette thèse, nous concevons un cadre sécurisé pour l'IdO tirant parti de la blockchain. Le nombre croissant d'attaques sur les réseaux IdO, et leurs graves effets, rendent nécessaire la création d'un IdO avec une sécurité plus sophistiquée. Par conséquent, nous tirons parti des modèles IA pour fournir une intelligence intégrée dans les dispositifs et les réseaux IdO afin de prédire et d'identifier les menaces et les vulnérabilités de sécurité. Nous proposons un système de détection d'intrusion par IA qui peut détecter les comportements malveillants et contribuer à renforcer la sécurité de l'IdO basé sur la blockchain. Ensuite, nous concevons un mécanisme de confiance distribué basé sur des contrats intelligents de blockchain pour inciter les dispositifs IdO à se comporter de manière fiable. Les systèmes IdO existants basés sur la blockchain souffrent d'une bande passante de communication et d’une évolutivité limitée. Par conséquent, dans la troisième partie de cette thèse, nous proposons un apprentissage machine évolutif basé sur la blockchain pour l'IdO. Tout d'abord, nous proposons un cadre IA multi-tâches qui exploite la blockchain pour permettre l'apprentissage parallèle de modèles. Ensuite, nous concevons une technique de partitionnement de la blockchain pour améliorer l'évolutivité de la blockchain. Enfin, nous proposons un algorithme d'ordonnancement des dispositifs pour optimiser l'utilisation des ressources, en particulier la bande passante de communication.Abstract : The Internet of Things (IoT) is reshaping the incumbent industry into a smart industry featured with data-driven decision making. The IoT interconnects many objects (or devices) that perform complex tasks (e.g., data collection, service optimization, data transmission). However, intrinsic features of IoT result in several challenges, such as decentralization, poor interoperability, privacy issues, and security vulnerabilities. With the expected evolution of IoT in the coming years, there is a need to ensure trust in this huge source of incoming information. Blockchain has emerged as a key technology to address the challenges of IoT. Due to its salient features such as decentralization, immutability, security, and auditability, blockchain has been proposed to establish trust in several applications, including IoT. The integration of IoT and blockchain opens the door for new possibilities that inherently improve trustworthiness, reputation, and transparency for all involved parties, while enabling security. However, conventional blockchains are computationally expensive, have limited scalability, and incur significant bandwidth, making them unsuitable for resource-constrained IoT environments. The main objective of this thesis is to leverage blockchain as a key enabler to improve the IoT. Toward our objective, we address the challenges of data reliability and IoT security using the blockchain and new emerging technologies, including machine learning (ML). In the first part of this thesis, we design a blockchain that guarantees data reliability, suitable for IoT. First, we propose a lightweight blockchain architecture that achieves decentralization by forming an overlay network where high-resource devices jointly manage the blockchain. Then, we present a lightweight consensus algorithm that reduces blockchain computational power, storage capability, and latency. In the second part of this thesis, we design a secure framework for IoT leveraging blockchain. The increasing number of attacks on IoT networks, and their serious effects, make it necessary to create an IoT with more sophisticated security. Therefore, we leverage ML models to provide embedded intelligence in the IoT devices and networks to predict and identify security threats and vulnerabilities. We propose a ML intrusion detection system that can detect malicious behaviors and help further bolster the blockchain-based IoT’s security. Then, we design a distributed trust mechanism based on blockchain smart contracts to incite IoT devices to behave reliably. Existing blockchain-based IoT systems suffer from limited communication bandwidth and scalability. Therefore, in the third part of this thesis, we propose a scalable blockchain-based ML for IoT. First, we propose a multi-task ML framework that leverages the blockchain to enable parallel model learning. Then, we design a blockchain partitioning technique to improve the blockchain scalability. Finally, we propose a device scheduling algorithm to optimize resource utilization, in particular communication bandwidth

    Deep Transfer Learning Applications in Intrusion Detection Systems: A Comprehensive Review

    Full text link
    Globally, the external Internet is increasingly being connected to the contemporary industrial control system. As a result, there is an immediate need to protect the network from several threats. The key infrastructure of industrial activity may be protected from harm by using an intrusion detection system (IDS), a preventive measure mechanism, to recognize new kinds of dangerous threats and hostile activities. The most recent artificial intelligence (AI) techniques used to create IDS in many kinds of industrial control networks are examined in this study, with a particular emphasis on IDS-based deep transfer learning (DTL). This latter can be seen as a type of information fusion that merge, and/or adapt knowledge from multiple domains to enhance the performance of the target task, particularly when the labeled data in the target domain is scarce. Publications issued after 2015 were taken into account. These selected publications were divided into three categories: DTL-only and IDS-only are involved in the introduction and background, and DTL-based IDS papers are involved in the core papers of this review. Researchers will be able to have a better grasp of the current state of DTL approaches used in IDS in many different types of networks by reading this review paper. Other useful information, such as the datasets used, the sort of DTL employed, the pre-trained network, IDS techniques, the evaluation metrics including accuracy/F-score and false alarm rate (FAR), and the improvement gained, were also covered. The algorithms, and methods used in several studies, or illustrate deeply and clearly the principle in any DTL-based IDS subcategory are presented to the reader

    Advanced Topics in Systems Safety and Security

    Get PDF
    This book presents valuable research results in the challenging field of systems (cyber)security. It is a reprint of the Information (MDPI, Basel) - Special Issue (SI) on Advanced Topics in Systems Safety and Security. The competitive review process of MDPI journals guarantees the quality of the presented concepts and results. The SI comprises high-quality papers focused on cutting-edge research topics in cybersecurity of computer networks and industrial control systems. The contributions presented in this book are mainly the extended versions of selected papers presented at the 7th and the 8th editions of the International Workshop on Systems Safety and Security—IWSSS. These two editions took place in Romania in 2019 and respectively in 2020. In addition to the selected papers from IWSSS, the special issue includes other valuable and relevant contributions. The papers included in this reprint discuss various subjects ranging from cyberattack or criminal activities detection, evaluation of the attacker skills, modeling of the cyber-attacks, and mobile application security evaluation. Given this diversity of topics and the scientific level of papers, we consider this book a valuable reference for researchers in the security and safety of systems

    Shallow and deep networks intrusion detection system : a taxonomy and survey

    Get PDF
    Intrusion detection has attracted a considerable interest from researchers and industries. The community, after many years of research, still faces the problem of building reliable and efficient IDS that are capable of handling large quantities of data, with changing patterns in real time situations. The work presented in this manuscript classifies intrusion detection systems (IDS). Moreover, a taxonomy and survey of shallow and deep networks intrusion detection systems is presented based on previous and current works. This taxonomy and survey reviews machine learning techniques and their performance in detecting anomalies. Feature selection which influences the effectiveness of machine learning (ML) IDS is discussed to explain the role of feature selection in the classification and training phase of ML IDS. Finally, a discussion of the false and true positive alarm rates is presented to help researchers model reliable and efficient machine learning based intrusion detection systems

    MalBoT-DRL: Malware botnet detection using deep reinforcement learning in IoT networks

    Get PDF
    In the dynamic landscape of cyber threats, multi-stage malware botnets have surfaced as significant threats of concern. These sophisticated threats can exploit Internet of Things (IoT) devices to undertake an array of cyberattacks, ranging from basic infections to complex operations such as phishing, cryptojacking, and distributed denial of service (DDoS) attacks. Existing machine learning solutions are often constrained by their limited generalizability across various datasets and their inability to adapt to the mutable patterns of malware attacks in real world environments, a challenge known as model drift. This limitation highlights the pressing need for adaptive Intrusion Detection Systems (IDS), capable of adjusting to evolving threat patterns and new or unseen attacks. This paper introduces MalBoT-DRL, a robust malware botnet detector using deep reinforcement learning. Designed to detect botnets throughout their entire lifecycle, MalBoT-DRL has better generalizability and offers a resilient solution to model drift. This model integrates damped incremental statistics with an attention rewards mechanism, a combination that has not been extensively explored in literature. This integration enables MalBoT-DRL to dynamically adapt to the ever-changing malware patterns within IoT environments. The performance of MalBoT-DRL has been validated via trace-driven experiments using two representative datasets, MedBIoT and N-BaIoT, resulting in exceptional average detection rates of 99.80% and 99.40% in the early and late detection phases, respectively. To the best of our knowledge, this work introduces one of the first studies to investigate the efficacy of reinforcement learning in enhancing the generalizability of IDS
    • …
    corecore