298 research outputs found

    Intelligent Luminaire based Real-time Indoor Positioning for Assisted Living

    Full text link
    This paper presents an experimental evaluation on the accuracy of indoor localisation. The research was carried out as part of a European Union project targeting the creation of ICT solutions for older adult care. Current expectation is that advances in technology will supplement the human workforce required for older adult care, improve their quality of life and decrease healthcare expenditure. The proposed approach is implemented in the form of a configurable cyber-physical system that enables indoor localization and monitoring of older adults living at home or in residential buildings. Hardware consists of custom developed luminaires with sensing, communication and processing capabilities. They replace the existing lighting infrastructure, do not look out of place and are cost effective. The luminaires record the strength of a Bluetooth signal emitted by a wearable device equipped by the monitored user. The system's software server uses trilateration to calculate the person's location based on known luminaire placement and recorded signal strengths. However, multipath fading caused by the presence of walls, furniture and other objects introduces localisation errors. Our previous experiments showed that room-level accuracy can be achieved using software-based filtering for a stationary subject. Our current objective is to assess system accuracy in the context of a moving subject, and ascertain whether room-level localization is feasible in real time

    i-Light - Intelligent Luminaire Based Platform for Home Monitoring and Assisted Living

    Get PDF
    [EN] We present i-Light, a cyber-physical platform that aims to help older adults to live safely within their own homes. The system is the result of an international research project funded by the European Union and is comprised of a custom developed wireless sensor network together with software services that provide continuous monitoring, reporting and real-time alerting capabilities. The principal innovation proposed within the project regards implementation of the hardware components in the form of intelligent luminaires with inbuilt sensing and communication capabilities. Custom luminaires provide indoor localisation and environment sensing, are cost-effective and are designed to replace the lighting infrastructure of the deployment location without prior mapping or fingerprinting. We evaluate the system within a home and show that it achieves localisation accuracy sufficient for room-level detection. We present the communication infrastructure, and detail how the software services can be configured and used for visualisation, reporting and real-time alerting.This work was funded by a grant of the Romanian National Authority for Scientific Research and Innovation, CCCDI-UEFISCDI, project number 46E/2015, i-Light-A pervasive home monitoring system based on intelligent luminaires.Marin, I.; Vasilateanu, A.; Molnar, A.; Bocicor, MI.; Cuesta Frau, D.; Molina Picó, A.; Goga, N. (2018). i-Light - Intelligent Luminaire Based Platform for Home Monitoring and Assisted Living. Electronics. 7(10):1-24. https://doi.org/10.3390/electronics7100220S124710World Report on Ageing and Health http://apps.who.int/iris/bitstream/10665/186463/1/9789240694811_eng.pdf?ua=1ECP Makes Switching to eMAR Easy http://extendedcarepro.com/products/Carevium Assisted Living Software http://www.carevium.com/carevium-assisted-living-software/Yardi EHR http://www.yardi.com/products/ehr-senior-care/Yardi eMAR http://www.yardi.com/products/emar/Botia, J. A., Villa, A., & Palma, J. (2012). Ambient Assisted Living system for in-home monitoring of healthy independent elders. Expert Systems with Applications, 39(9), 8136-8148. doi:10.1016/j.eswa.2012.01.153Lopez-Guede, J. M., Moreno-Fernandez-de-Leceta, A., Martinez-Garcia, A., & Graña, M. (2015). Lynx: Automatic Elderly Behavior Prediction in Home Telecare. BioMed Research International, 2015, 1-18. doi:10.1155/2015/201939Luca, S., Karsmakers, P., Cuppens, K., Croonenborghs, T., Van de Vel, A., Ceulemans, B., … Vanrumste, B. (2014). Detecting rare events using extreme value statistics applied to epileptic convulsions in children. Artificial Intelligence in Medicine, 60(2), 89-96. doi:10.1016/j.artmed.2013.11.007Better Health Assessments Every Day, for Better Everyday Living http://healthsense.com/Home Telehealth https://www.usa.philips.com/healthcare/solutions/enterprise-telehealth/home-telehealthThe Carelink Network http://www.medtronic.com/us-en/healthcare-professionals/products/cardiac-rhythm/managing-patients/information-systems/carelink-network.htmlHaigh, P. A., Bausi, F., Ghassemlooy, Z., Papakonstantinou, I., Le Minh, H., Fléchon, C., & Cacialli, F. (2014). Visible light communications: real time 10 Mb/s link with a low bandwidth polymer light-emitting diode. Optics Express, 22(3), 2830. doi:10.1364/oe.22.002830Indoor Positioning System http://www.gelighting.com/LightingWeb/na/solutions/control-systems/indoor-positioning-system.jspIndoor and Outdoor Lighting Solutions http://www.acuitybrands.com/solutions/featured-spacesHuang, C.-N., & Chan, C.-T. (2011). ZigBee-based indoor location system by k-nearest neighbor algorithm with weighted RSSI. Procedia Computer Science, 5, 58-65. doi:10.1016/j.procs.2011.07.010Charlon, Y., Fourty, N., & Campo, E. (2013). A Telemetry System Embedded in Clothes for Indoor Localization and Elderly Health Monitoring. Sensors, 13(9), 11728-11749. doi:10.3390/s130911728Patient/Elderly Activity Monitoring Using WiFi-Based Indoor Localization https://wiki.cc.gatech.edu/designcomp/images/3/3d/HHH_Report.pdfReal Time Location System http://zonith.com/products/rtls/Accurate Positioning https://www.pozyx.io/yooBee System Overview https://www.blooloc.com/over-yoobeeThe Top Indoor Location Engine for Smart Apps https://senion.com/Locating People, Way-Finding, and Attendance Tracking https://estimote.com/products/Indoor Navigation, Indoor Positioning, Indoor Analytics and Indoor Tracking https://www.infsoft.com/Lighting Reimagined https://www.lifx.com/Tabu. Lumen. Simply Brighter http://www.lumenbulb.net/Philips Hue http://www2.meethue.com/en-usElgato Avea https://www.elgato.com/en/aveaiLumi—The World’s Most Intelligent Light Bulbs hhttps://www.indiegogo.com/projects/ilumi-the-world-s-most-intelligent-light-bulbs--5#/Bluegiga BLE112 Bluetooth® Smart Module http://www.silabs.com/products/wireless/bluetooth/bluetooth-low-energy-modules/ble112-bluetooth-smart-moduleISO/IEEE 11073 https://www.iso.org/standard/67821.htmlDescription https://www.diodes.com/assets/Datasheets/ZXLD1366.pdfDigital Humidity Sensor SHT2x https://www.sensirion.com/en/environmental-sensors/humidity-sensors/humidity-temperature-sensor-sht2x-digital-i2c-accurate/Photo IC Type High Sensitive Light Sensor https://industrial.panasonic.com/cdbs/www-data/pdf/ADD8000/ADD8000CE2.pdfWSP2110 VOC Gas Sensor http://www.winsen-sensor.com/products/flat-surfaced-gas-sensor/wsp2110.htmlLow Power-Consumption CO2 Sensor http://www.winsen-sensor.com/d/files/PDF/Solid%20Electrolyte%20CO2%20Sensor/MG812%20CO2%20Manual%20V1.1.pdfGP2Y1010AU0F Compact Optical Dust Sensor http://www.sharp-world.com/products/device/lineup/data/pdf/datasheet/gp2y1010au_e.pdfEKMC (VZ) Series http://www3.panasonic.biz/ac/e/control/sensor/human/vz/index.jspSensors for Automotive & Industrial Applications: Grid-EYE Infrared Array Sensor https://na.industrial.panasonic.com/products/sensors/sensors-automotive-industrial-applications/grid-eye-infrared-array-sensorGeneric Attributes https://www.bluetooth.com/specifications/gattDeveloping NFC Applications. (2011). Near Field Communication, 151-239. doi:10.1002/9781119965794.ch5Matsuoka, H., Wang, J., Jing, L., Zhou, Y., Wu, Y., & Cheng, Z. (2014). Development of a control system for home appliances based on BLE technique. 2014 IEEE International Symposium on Independent Computing (ISIC). doi:10.1109/indcomp.2014.7011751Standard ECMA-404. The JSON Data Interchange Format http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdfThe EU General Data Protection Regulation http://www.eugdpr.org/Tews, E., & Beck, M. (2009). Practical attacks against WEP and WPA. Proceedings of the second ACM conference on Wireless network security - WiSec ’09. doi:10.1145/1514274.1514286Farooq, U., & Aslam, M. F. (2017). Comparative analysis of different AES implementation techniques for efficient resource usage and better performance of an FPGA. Journal of King Saud University - Computer and Information Sciences, 29(3), 295-302. doi:10.1016/j.jksuci.2016.01.004Luo, X.-L., Liao, L.-Z., & Wah Tam, H. (2007). Convergence analysis of the Levenberg–Marquardt method. Optimization Methods and Software, 22(4), 659-678. doi:10.1080/10556780601079233Wammu https://wammu.eu/gammu

    Software-Defined Lighting.

    Full text link
    For much of the past century, indoor lighting has been based on incandescent or gas-discharge technology. But, with LED lighting experiencing a 20x/decade increase in flux density, 10x/decade decrease in cost, and linear improvements in luminous efficiency, solid-state lighting is finally cost-competitive with the status quo. As a result, LED lighting is projected to reach over 70% market penetration by 2030. This dissertation claims that solid-state lighting’s real potential has been barely explored, that now is the time to explore it, and that new lighting platforms and applications can drive lighting far beyond its roots as an illumination technology. Scaling laws make solid-state lighting competitive with conventional lighting, but two key features make solid-state lighting an enabler for many new applications: the high switching speeds possible using LEDs and the color palettes realizable with Red-Green-Blue-White (RGBW) multi-chip assemblies. For this dissertation, we have explored the post-illumination potential of LED lighting in applications as diverse as visible light communications, indoor positioning, smart dust time synchronization, and embedded device configuration, with an eventual eye toward supporting all of them using a shared lighting infrastructure under a unified system architecture that provides software-control over lighting. To explore the space of software-defined lighting (SDL), we design a compact, flexible, and networked SDL platform to allow researchers to rapidly test new ideas. Using this platform, we demonstrate the viability of several applications, including multi-luminaire synchronized communication to a photodiode receiver, communication to mobile phone cameras, and indoor positioning using unmodified mobile phones. We show that all these applications and many other potential applications can be simultaneously supported by a single lighting infrastructure under software control.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111482/1/samkuo_1.pd

    Device-free indoor localisation with non-wireless sensing techniques : a thesis by publications presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Electronics and Computer Engineering, Massey University, Albany, New Zealand

    Get PDF
    Global Navigation Satellite Systems provide accurate and reliable outdoor positioning to support a large number of applications across many sectors. Unfortunately, such systems do not operate reliably inside buildings due to the signal degradation caused by the absence of a clear line of sight with the satellites. The past two decades have therefore seen intensive research into the development of Indoor Positioning System (IPS). While considerable progress has been made in the indoor localisation discipline, there is still no widely adopted solution. The proliferation of Internet of Things (IoT) devices within the modern built environment provides an opportunity to localise human subjects by utilising such ubiquitous networked devices. This thesis presents the development, implementation and evaluation of several passive indoor positioning systems using ambient Visible Light Positioning (VLP), capacitive-flooring, and thermopile sensors (low-resolution thermal cameras). These systems position the human subject in a device-free manner (i.e., the subject is not required to be instrumented). The developed systems improve upon the state-of-the-art solutions by offering superior position accuracy whilst also using more robust and generalised test setups. The developed passive VLP system is one of the first reported solutions making use of ambient light to position a moving human subject. The capacitive-floor based system improves upon the accuracy of existing flooring solutions as well as demonstrates the potential for automated fall detection. The system also requires very little calibration, i.e., variations of the environment or subject have very little impact upon it. The thermopile positioning system is also shown to be robust to changes in the environment and subjects. Improvements are made over the current literature by testing across multiple environments and subjects whilst using a robust ground truth system. Finally, advanced machine learning methods were implemented and benchmarked against a thermopile dataset which has been made available for other researchers to use

    Human-centric light sensing and estimation from RGBD images: The invisible light switch

    Get PDF
    Lighting design in indoor environments is of primary importance for at least two reasons: 1) people should perceive an adequate light; 2) an effective lighting design means consistent energy saving. We present the Invisible Light Switch (ILS) to address both aspects. ILS dynamically adjusts the room illumination level to save energy while maintaining constant the light level perception of the users. So the energy saving is invisible to them. Our proposed ILS leverages a radiosity model to estimate the light level which is perceived by a person within an indoor environment, taking into account the person position and her/his viewing frustum (head pose). ILS may therefore dim those luminaires, which are not seen by the user, resulting in an effective energy saving, especially in large open offices (where light may otherwise be ON everywhere for a single person). To quantify the system performance, we have collected a new dataset where people wear luxmeter devices while working in office rooms. The luxmeters measure the amount of light (in Lux) reaching the people gaze, which we consider a proxy to their illumination level perception. Our initial results are promising: in a room with 8 LED luminaires, the energy consumption in a day may be reduced from 18585 to 6206 watts with ILS (currently needing 1560 watts for operations). While doing so, the drop in perceived lighting decreases by just 200 lux, a value considered negligible when the original illumination level is above 1200 lux, as is normally the case in offices

    Visible light positioning for location-based services in Industry 4.0

    Full text link
    Industry 4.0 refers to the evolution in manufacturing from computerization to fully cyberphysical systems that exploit rich sensor data, adaptive real-time safety-critical control, and machine learning. An important aspect of this vision is the sensing and subsequent association of objects in the physical world with their cyber and virtual counterparts. In this paper we propose Visible Light Positioning (VLP) as an enabler for these Industry 4.0 applications. We also explore sensing techniques, including cameras (and depth sensors), and other light-based solutions for object positioning and detection along with their respective limitations. We then demonstrate an application of positioning for real time robot control in an interactive multiparty cyber-physical-virtual deployment. Lastly, based on our experience with this cyber-physical-virtual application, we propose Ray-Surface Positioning (RSP), a novel VLP technique, as a low cost positioning system for Industry 4.0.Accepted manuscrip

    Human-centric light sensing and estimation from RGBD images: the invisible light switch

    Get PDF
    Lighting design in indoor environments is of primary importance for at least two reasons: 1) people should perceive an adequate light; 2) an effective lighting design means consistent energy saving. We present the Invisible Light Switch (ILS) to address both aspects. ILS dynamically adjusts the room illumination level to save energy while maintaining constant the light level perception of the users. So the energy saving is invisible to them. Our proposed ILS leverages a radiosity model to estimate the light level which is perceived by a person within an indoor environment, taking into account the person position and her/his viewing frustum (head pose). ILS may therefore dim those luminaires, which are not seen by the user, resulting in an effective energy saving, especially in large open offices (where light may otherwise be ON everywhere for a single person). To quantify the system performance, we have collected a new dataset where people wear luxmeter devices while working in office rooms. The luxmeters measure the amount of light (in Lux) reaching the people gaze, which we consider a proxy to their illumination level perception. Our initial results are promising: in a room with 8 LED luminaires, the energy consumption in a day may be reduced from 18585 to 6206 watts with ILS (currently needing 1560 watts for operations). While doing so, the drop in perceived lighting decreases by just 200 lux, a value considered negligible when the original illumination level is above 1200 lux, as is normally the case in offices

    Smart lighting systems : state-of-the-art and potential applications in warehouse order picking

    Get PDF
    Artificial lighting is a constant companion in everyday private and working life, influencing visibility in interior spaces as well as outdoors. In recent years, new technical solutions have extended traditional lighting systems to become ‘smart’. Different types of smart lighting systems are available on the market today, and researchers have concentrated on analysing their usability and efficiency, especially for private households, office buildings and public streets. This paper presents a systematic literature review to analyse the state-of-knowledge of technologies and applications for smart lighting systems. The results of the review show that smart lighting systems have been frequently discussed in the literature, but that their potentials in industrial environments, such as production and logistics, has rarely been addressed in the literature so far. Lighting systems for industrial environments often have very different requirements depending on the working environment and operating conditions. Based on the results of the literature review, this paper contributes to closing this research gap by discussing the usage potential of smart lighting systems to improve the efficiency of warehouse order picking, which is an application that may benefit from various functions smart lighting systems provide. Several propositions are developed that emphasise research opportunities and managerial implications in this context
    • …
    corecore