6,354 research outputs found

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    A Comprehensive Overview of Classical and Modern Route Planning Algorithms for Self-Driving Mobile Robots

    Get PDF
    Mobile robots are increasingly being applied in a variety of sectors, including agricultural, firefighting, and search and rescue operations. Robotics and autonomous technology research and development have played a major role in making this possible. Before a robot can reliably and effectively navigate a space without human aid, there are still several challenges to be addressed. When planning a path to its destination, the robot should be able to gather information from its surroundings and take the appropriate actions to avoid colliding with obstacles along the way. The following review analyses and compares 200 articles from two databases, Scopus and IEEE Xplore, and selects 60 articles as references from those articles. This evaluation focuses mostly on the accuracy of the different path-planning algorithms. Common collision-free path planning methodologies are examined in this paper, including classical or traditional and modern intelligence techniques, as well as both global and local approaches, in static and dynamic environments. Classical or traditional methods, such as Roadmaps (Visibility Graph and Voronoi Diagram), Potential Fields, and Cell Decomposition, and modern methodologies such as heuristic-based (Dijkstra Method, A* Algorithms, and D* Algorithms), metaheuristics algorithms (such as PSO, Bat Algorithm, ACO, and Genetic Algorithm), and neural systems such as fuzzy neural networks or fuzzy logic (FL) and Artificial Neural Networks (ANN) are described in this report. In this study, we outline the ideas, benefits, and downsides of modeling and path-searching technologies for a mobile robot

    A novel improved elephant herding optimization for path planning of a mobile robot

    Get PDF
    Swarm intelligence algorithms have been in recent years one of the most used tools for planning the trajectory of a mobile robot. Researchers are applying those algorithms to find the optimal path, which reduces the time required to perform a task by the mobile robot. In this paper, we propose a new method based on the grey wolf optimizer algorithm (GWO) and the improved elephant herding optimization algorithm (IEHO) for planning the optimal trajectory of a mobile robot. The proposed solution consists of developing an IEHO algorithm by improving the basic EHO algorithm and then hybridizing it with the GWO algorithm to take advantage of the exploration and exploitation capabilities of both algorithms. The comparison of the IEHO-GWO hybrid proposed in this work with the GWO, EHO, and cuckoo-search (CS) algorithms via simulation shows its effectiveness in finding an optimal trajectory by avoiding obstacles around the mobile robot

    Neuro-Fuzzy Combination for Reactive Mobile Robot Navigation: A Survey

    Get PDF
    Autonomous navigation of mobile robots is a fruitful research area because of the diversity of methods adopted by artificial intelligence. Recently, several works have generally surveyed the methods adopted to solve the path-planning problem of mobile robots. But in this paper, we focus on methods that combine neuro-fuzzy techniques to solve the reactive navigation problem of mobile robots in a previously unknown environment. Based on information sensed locally by an onboard system, these methods aim to design controllers capable of leading a robot to a target and avoiding obstacles encountered in a workspace. Thus, this study explores the neuro-fuzzy methods that have shown their effectiveness in reactive mobile robot navigation to analyze their architectures and discuss the algorithms and metaheuristics adopted in the learning phase

    Bio-Inspired Obstacle Avoidance: from Animals to Intelligent Agents

    Get PDF
    A considerable amount of research in the field of modern robotics deals with mobile agents and their autonomous operation in unstructured, dynamic, and unpredictable environments. Designing robust controllers that map sensory input to action in order to avoid obstacles remains a challenging task. Several biological concepts are amenable to autonomous navigation and reactive obstacle avoidance. We present an overview of most noteworthy, elaborated, and interesting biologically-inspired approaches for solving the obstacle avoidance problem. We categorize these approaches into three groups: nature inspired optimization, reinforcement learning, and biorobotics. We emphasize the advantages and highlight potential drawbacks of each approach. We also identify the benefits of using biological principles in artificial intelligence in various research areas

    An Analysis Review: Optimal Trajectory for 6-DOF-based Intelligent Controller in Biomedical Application

    Get PDF
    With technological advancements and the development of robots have begun to be utilized in numerous sectors, including industrial, agricultural, and medical. Optimizing the path planning of robot manipulators is a fundamental aspect of robot research with promising future prospects. The precise robot manipulator tracks can enhance the efficacy of a variety of robot duties, such as workshop operations, crop harvesting, and medical procedures, among others. Trajectory planning for robot manipulators is one of the fundamental robot technologies, and manipulator trajectory accuracy can be enhanced by the design of their controllers. However, the majority of controllers devised up to this point were incapable of effectively resolving the nonlinearity and uncertainty issues of high-degree freedom manipulators in order to overcome these issues and enhance the track performance of high-degree freedom manipulators. Developing practical path-planning algorithms to efficiently complete robot functions in autonomous robotics is critical. In addition, designing a collision-free path in conjunction with the physical limitations of the robot is a very challenging challenge due to the complex environment surrounding the dynamics and kinetics of robots with different degrees of freedom (DoF) and/or multiple arms. The advantages and disadvantages of current robot motion planning methods, incompleteness, scalability, safety, stability, smoothness, accuracy, optimization, and efficiency are examined in this paper
    • …
    corecore