42,467 research outputs found

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    BlenX-based compositional modeling of complex reaction mechanisms

    Full text link
    Molecular interactions are wired in a fascinating way resulting in complex behavior of biological systems. Theoretical modeling provides a useful framework for understanding the dynamics and the function of such networks. The complexity of the biological networks calls for conceptual tools that manage the combinatorial explosion of the set of possible interactions. A suitable conceptual tool to attack complexity is compositionality, already successfully used in the process algebra field to model computer systems. We rely on the BlenX programming language, originated by the beta-binders process calculus, to specify and simulate high-level descriptions of biological circuits. The Gillespie's stochastic framework of BlenX requires the decomposition of phenomenological functions into basic elementary reactions. Systematic unpacking of complex reaction mechanisms into BlenX templates is shown in this study. The estimation/derivation of missing parameters and the challenges emerging from compositional model building in stochastic process algebras are discussed. A biological example on circadian clock is presented as a case study of BlenX compositionality

    Novel Bayesian Networks for Genomic Prediction of Developmental Traits in Biomass Sorghum.

    Get PDF
    The ability to connect genetic information between traits over time allow Bayesian networks to offer a powerful probabilistic framework to construct genomic prediction models. In this study, we phenotyped a diversity panel of 869 biomass sorghum (Sorghum bicolor (L.) Moench) lines, which had been genotyped with 100,435 SNP markers, for plant height (PH) with biweekly measurements from 30 to 120 days after planting (DAP) and for end-of-season dry biomass yield (DBY) in four environments. We evaluated five genomic prediction models: Bayesian network (BN), Pleiotropic Bayesian network (PBN), Dynamic Bayesian network (DBN), multi-trait GBLUP (MTr-GBLUP), and multi-time GBLUP (MTi-GBLUP) models. In fivefold cross-validation, prediction accuracies ranged from 0.46 (PBN) to 0.49 (MTr-GBLUP) for DBY and from 0.47 (DBN, DAP120) to 0.75 (MTi-GBLUP, DAP60) for PH. Forward-chaining cross-validation further improved prediction accuracies of the DBN, MTi-GBLUP and MTr-GBLUP models for PH (training slice: 30-45 DAP) by 36.4-52.4% relative to the BN and PBN models. Coincidence indices (target: biomass, secondary: PH) and a coincidence index based on lines (PH time series) showed that the ranking of lines by PH changed minimally after 45 DAP. These results suggest a two-level indirect selection method for PH at harvest (first-level target trait) and DBY (second-level target trait) could be conducted earlier in the season based on ranking of lines by PH at 45 DAP (secondary trait). With the advance of high-throughput phenotyping technologies, our proposed two-level indirect selection framework could be valuable for enhancing genetic gain per unit of time when selecting on developmental traits

    Coupling metabolic footprinting and flux balance analysis to predict how single gene knockouts perturb microbial metabolism

    Get PDF
    Tese de mestrado. Biologia (Bioinformática e Biologia Computacional). Universidade de Lisboa, Faculdade de Ciências, 2012The model organisms Caenorhabditis elegans and E. coli form one of the simplest gut microbe host interaction models. Interventions in the microbe that increase the host longevity including inhibition of folate synthesis have been reported previously. To find novel single gene knockouts with an effect on lifespan, a screen of the Keio collection of E. coli was undertaken, and some of the genes found are directly involved in metabolism. The next step in those specific cases is to understand how these mutations perturb metabolism systematically, so that hypotheses can be generated. For that, I employed dynamic Flux Balance Analysis (dFBA), a constraint-based modeling technique capable of simulating the dynamics of metabolism in a batch culture and making predictions about changes in intracellular flux distribution. Since the specificities of the C. elegans lifespan experiments demand us to culture microbes in conditions differing from most of the published literature on E. coli physiology, novel data must be acquired to characterize and make dFBA simulations as realistic as possible. To do this exchange fluxes were measured using quantitative H NMR Time-Resolved Metabolic Footprinting. Furthermore, I also investigate the combination of TReF and dFBA as a tool in microbial metabolism studies. These approaches were tested by comparing wild type E. coli with one of the knockout strains found, ΔmetL, a knockout of the metL gene which encodes a byfunctional enzyme involved in aspartate and threonine metabolism. I found that the strain exhibits a slower growth rate than the wild type. Model simulation results revealed that reduced homoserine and methionine synthesis, as well as impaired sulfur and folate metabolism are the main effects of this knockout and the reasons for the growth deficiency. These results indicate that there are common mechanisms of the lifespan extension between ΔmetL and inhibition of folate biosynthesis and that the flux balance analysis/metabolic footprinting approach can help us understand the nature of these mechanisms.Os organismos modelo Caenorhabditis elegans e E. coli formam um dos modelos mais simples de interacções entre micróbio do tracto digestivo e hospedeiro. Intervenções no micróbio capazes de aumentar a longevidade do hospedeiro, incluindo inibição de síntese de folatos, foram reportadas previamente. Para encontrar novas delecções génicas do micróbio capazes de aumentar a longevidade do hospedeiro, a colecção Keio de deleções génicas de E. coli foi rastreada. Alguns dos genes encontrados participam em processos metabólicos, e nesses casos, o próximpo passo é perceber como as deleções perturbam o metabolismo sistémicamente, para gerar hipóteses. Para isso, utilizo dynamic Flux Balance Analysis (dFBA), uma técnica de modelação metabólica capaz de fazer previsões sobre alterações na distribuição intracelular de fluxos. As especificidades das experiências de tempo de vida em C.elegans obrigam-nos a trabalhar em condições diferentes das usadas na maioria da literatura publicada em fisiologia de E. coli, e para dar o máximo realismo às simulações de dFBA novos dados foram adquiridos, utilizando H NMR Time-Resolved Metabolic Footprinting para medir fluxos de troca de metabolitos entre microorganismo e meio de cultura. A combinação de TReF e dFBA como ferramenta de estudo do metabolism microbiano é também investigada. Estas abordagens foram testadas ao comparar E. coli wild-type com uma das estirpes encontradas no rastreio, ΔmetL, knockout do gene metL, que codifica um enzima bifunctional participante no metabolismo de aspartato e treonina, e que exibe uma taxa de crescimento reduzida comparativamente ao wild-type. Os resultados das simulações revelaram que os principais efeitos da deleção deste gene, e as razões para a menor taxa de crescimento observada, são a produção reduzida de homoserina e metionina e os efeitos que provoca no metabolismo de folatos e enxofre. Estes resultados indicam que há mecanismos comuns na extensão da longevidade causada por esta deleção e inibição de síntese de folatos, e que a combinação metabolic footprinting/flux balance analysis pode ajudar-nos a compreender a natureza desses mecanismos

    Simultaneous Optimal Uncertainty Apportionment and Robust Design Optimization of Systems Governed by Ordinary Differential Equations

    Get PDF
    The inclusion of uncertainty in design is of paramount practical importance because all real-life systems are affected by it. Designs that ignore uncertainty often lead to poor robustness, suboptimal performance, and higher build costs. Treatment of small geometric uncertainty in the context of manufacturing tolerances is a well studied topic. Traditional sequential design methodologies have recently been replaced by concurrent optimal design methodologies where optimal system parameters are simultaneously determined along with optimally allocated tolerances; this allows to reduce manufacturing costs while increasing performance. However, the state of the art approaches remain limited in that they can only treat geometric related uncertainties restricted to be small in magnitude. This work proposes a novel framework to perform robust design optimization concurrently with optimal uncertainty apportionment for dynamical systems governed by ordinary differential equations. The proposed framework considerably expands the capabilities of contemporary methods by enabling the treatment of both geometric and non-geometric uncertainties in a unified manner. Additionally, uncertainties are allowed to be large in magnitude and the governing constitutive relations may be highly nonlinear. In the proposed framework, uncertainties are modeled using Generalized Polynomial Chaos and are solved quantitatively using a least-square collocation method. The computational efficiency of this approach allows statistical moments of the uncertain system to be explicitly included in the optimization-based design process. The framework formulates design problems as constrained multi-objective optimization problems, thus enabling the characterization of a Pareto optimal trade-off curve that is off-set from the traditional deterministic optimal trade-off curve. The Pareto off-set is shown to be a result of the additional statistical moment information formulated in the objective and constraint relations that account for the system uncertainties. Therefore, the Pareto trade-off curve from the new framework characterizes the entire family of systems within the probability space; consequently, designers are able to produce robust and optimally performing systems at an optimal manufacturing cost. A kinematic tolerance analysis case-study is presented first to illustrate how the proposed methodology can be applied to treat geometric tolerances. A nonlinear vehicle suspension design problem, subject to parametric uncertainty, illustrates the capability of the new framework to produce an optimal design at an optimal manufacturing cost, accounting for the entire family of systems within the associated probability space. This case-study highlights the general nature of the new framework which is capable of optimally allocating uncertainties of multiple types and with large magnitudes in a single calculation

    Novel modeling of task versus rest brain state predictability using a dynamic time warping spectrum: comparisons and contrasts with other standard measures of brain dynamics

    Get PDF
    Dynamic time warping, or DTW, is a powerful and domain-general sequence alignment method for computing a similarity measure. Such dynamic programming-based techniques like DTW are now the backbone and driver of most bioinformatics methods and discoveries. In neuroscience it has had far less use, though this has begun to change. We wanted to explore new ways of applying DTW, not simply as a measure with which to cluster or compare similarity between features but in a conceptually different way. We have used DTW to provide a more interpretable spectral description of the data, compared to standard approaches such as the Fourier and related transforms. The DTW approach and standard discrete Fourier transform (DFT) are assessed against benchmark measures of neural dynamics. These include EEG microstates, EEG avalanches, and the sum squared error (SSE) from a multilayer perceptron (MLP) prediction of the EEG time series, and simultaneously acquired FMRI BOLD signal. We explored the relationships between these variables of interest in an EEG-FMRI dataset acquired during a standard cognitive task, which allowed us to explore how DTW differentially performs in different task settings. We found that despite strong correlations between DTW and DFT-spectra, DTW was a better predictor for almost every measure of brain dynamics. Using these DTW measures, we show that predictability is almost always higher in task than in rest states, which is consistent to other theoretical and empirical findings, providing additional evidence for the utility of the DTW approach
    • …
    corecore