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Simultaneous Optimal Uncertainty Apportionment and Robust Design Optimization  
of Systems Governed by Ordinary Differential Equations  

Abstract 

The inclusion of uncertainty in design is of paramount practical importance because all real-life systems are affected by it. Designs that ignore 

uncertainty often lead to poor robustness, suboptimal performance, and higher build costs. Treatment of small geometric uncertainty in the context of 

manufacturing tolerances is a well studied topic. Traditional sequential design methodologies have recently been replaced by concurrent optimal 

design methodologies where optimal system parameters are simultaneously determined along with optimally allocated tolerances; this allows to 

reduce manufacturing costs while increasing performance. However, the state of the art approaches remain limited in that they can only treat 

geometric related uncertainties restricted to be small in magnitude.  

This work proposes a novel framework to perform robust design optimization concurrently with optimal uncertainty apportionment for 

dynamical systems governed by ordinary differential equations. The proposed framework considerably expands the capabilities of contemporary 

methods by enabling the treatment of both geometric and non-geometric uncertainties in a unified manner. Additionally, uncertainties are allowed to 

be large in magnitude and the governing constitutive relations may be highly nonlinear.  

In the proposed framework, uncertainties are modeled using Generalized Polynomial Chaos and are solved quantitatively using a least-square 

collocation method. The computational efficiency of this approach allows statistical moments of the uncertain system to be explicitly included in the 

optimization-based design process. The framework formulates design problems as constrained multi-objective optimization problems, thus enabling 

the characterization of a Pareto optimal trade-off curve that is off-set from the traditional deterministic optimal trade-off curve. The Pareto off-set is 

shown to be a result of the additional statistical moment information formulated in the objective and constraint relations that account for the system 

uncertainties. Therefore, the Pareto trade-off curve from the new framework characterizes the entire family of systems within the probability space; 

consequently, designers are able to produce robust and optimally performing systems at an optimal manufacturing cost.    

A kinematic tolerance analysis case-study is presented first to illustrate how the proposed methodology can be applied to treat geometric 

tolerances. A nonlinear vehicle suspension design problem, subject to parametric uncertainty, illustrates the capability of the new framework to 

produce an optimal design at an optimal manufacturing cost, accounting for the entire family of systems within the associated probability space. This 

case-study highlights the general nature of the new framework which is capable of optimally allocating uncertainties of multiple types and with large 

magnitudes in a single calculation. 

 

 

Keywords: Uncertainty Apportionment, Tolerance Allocation, Robust Design Optimization, Dynamic Optimization, Nonlinear 

Programming, Multi-Objective Optimization, Multibody Dynamics, Uncertainty Quantification, Generalized Polynomial Chaos 
 

List of Variables (Nomenclature) 

Independent variables � Time � Random event 

General �, � Non-bolded variables generally indicate a scalar quantity �, � Bolded lower case variables are vectors, upper case variables are matrices ���	 Alternative vector notation ∠� Angle of the vector � � Random variable �� Bottom right index generally indicates a state (with occasional exceptions).  � Top right index generally indicates a stochastic coefficient, or mode. ��  Bottom left index generally associates � to a specific collocation point. ���  The major variable annotations  � �� Transpose � �� ,   ��� Partial derivative notations � ���, � �# Matrix inverse and pseudo inverse � �° The quantity represents rotations in degrees �, � Lower and upper bounds on � ����, �� Expected value, or mean, of � �� ���, !�" Variance of � #�$���, !� Standard Deviation of � 

Indexes & dimensions %& ∈ ℕ Number of degrees-of-freedom (DOF) %)* ∈ ℕ Number of generalized coordinates, where %)* ≥ %&, dependent on kinematic representation of rotation. %, ∈ ℕ Number of states, %, = .%)* + %&0 %1 ∈ ℕ Number of outputs, 2 ∈ ℝ45 %� ∈ ℕ Number of input wrenches, 6 ∈ ℝ47  %8 ∈ ℕ Number of uncertain parameters 91 ∈ ℕ Polynomial order %: ∈ ℕ Number of multidimensional basis terms 
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%*8 ∈ ℕ Number of collocation points %� ∈ ℕ Number of optimization variables (‘manipulated variables’) %; ∈ ℕ Number of apportionment variables (‘allocated variables’), where %; ≤ %8 %* ∈ ℕ Number of constraint equations %�= ∈ ℕ Number of independent variables %&= ∈ ℕ Number of dependent variables 

Tolerance Analysis >?@ Open-loop algebraic kinematic constraints defining A >B@ Closed-loop algebraic kinematic constraints A Algebraic relations describing kinematic assembly features (e.g., gaps, clearances, positions, etc…) 

Dynamics C ∈ ℝ4DE Independent generalized coordinates  CF , CG  Rates and accelerations of generalized coordinates H ∈ ℝ4I Generalized velocities  HF  Generalized accelerations C�J� = CK ,
 H�J� = HK Initial conditions L ∈ ℝ4M×4M Kinematic mapping matrix relating rates of generalized coordinates to generalized velocities 6 ∈ ℝ47  Input wrenches (e.g., forces and/or torques) O ∈ ℝ4M×4M  Square inertia matrix P ∈ ℝ4M  Centrifugal, gyroscopic and Coriolis terms R ∈ ℝ4M  Generalized gravitational and joint forces S Differential operator 2 ∈ ℝ45 System outputs T ∈ ℝ45 Output operator U Road irregularity amplitude V Road irregularity frequency W Road irregularity length X Longitudinal vehicle speed 

Uncertainty Quantification Ω Random event sample space Z��� Joint probability density function [ ∈ ℝ47\ Vector of uncertain independent variables ] ∈ ℝ4I\ Vector of uncertain dependent variables ^ ∈ ℝ85_` Single dimensional basis terms Ψ ∈ ℝ4b Multidimensional basis terms c4��� Hermite polynomial basis d4��� Legendre polynomial basis e��, !� Normal, or Gaussian, distribution with mean and standard deviation of ��, !� f��, g� Uniform distribution with range of ��, g� h Algebraic operator i Differential operator j,�    j ∈ ℝ4Ek Kth collocation point  (confusing notation with mean, consider changing…) Λ�� ,   Λ� ∈ ℝ4Ek Kth intermediate variable of the ith uncertain dependent variable, m�, representing expanded quantity U ∈ ℝ4b×4Ek Collocation matrix 

Dynamic Optimization minq  Optimization objective through manipulation of q q List of manipulated variables J Scalar objective function s�  Scalarization weights for the individual objective function terms t ∈ ℝ4E Inequality constraints (typically bounding constraints) �� Standard deviation scaling parameters ς Soft constraint penalty weight 

1 INTRODUCTION 
The design for manufacturability community has long studied the adverse effects of uncertainty in kinematically assembled mechanical systems; 

these studies are generally referred to as tolerance analysis and tolerance allocation. Tolerance analysis approaches the problem from the perspective 
of analyzing uncertainty accumulation in assembled systems. Conversely, tolerance allocation determines the best distribution and maximized 
magnitudes of uncertainties such that the final assembled system satisfies specified assembly constraints. Initially, these studies only treated rigid 
kinematic relations of the dimensional uncertainties [1-4], but have been extended to include flexible [5] and dynamical systems [6-8].  

Early works by Chase and co-workers investigated various techniques for the allocation of geometric tolerances subject to cost-tolerance tradeoff 
curves. Their approaches included both nonlinear programming (NLP) and analytic Lagrange multiplier solutions for two-dimension (2D) and three-
dimension (3D) problems where a number of cost-tolerance models were analyzed and compared [1, 2]. Extensions of their initial work included the 
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costs of different manufacturing processes for a given feature; thus, an optimal cost-to-build included the optimal set of processes to complete the 
production of the various components [3].  

The conventional design methodology prescribed a sequential approach where optimal dimensions were designed first followed by a tolerance 

analysis or tolerance allocation [6]. However, researchers quickly learned that superior designs could be achieved by designing the optimal system 
parameters concurrently with the allocation of the geometric tolerances [7, 9].  

It is the understanding of the authors of this work that these studies have focused solely on the affects of geometric related uncertainties of 
relatively small magnitude. Conversely, this work presents a novel framework that extends the ability to apportion uncertainties including, but not 
limited to, geometric related tolerances. Specifically, the new framework simultaneously performs robust design optimization (RDO) and optimal 
uncertainty apportionment (OUA) of dynamical systems described by linear or nonlinear ordinary differential equations (ODEs). Examples of non-
geometric uncertainties include: initial conditions (ICs), sensor and actuator noise, external forcing, and non-geometric related system parameters. 
Uncertainties from geometric and non-geometric sources may be relatively large in magnitude and are addressed in a unified manner; namely, they 
are modeled using Generalized Polynomial Chaos (gPC) and are solved quantitatively using a non-intrusive least-square collocation method (LSCM). 
The computational efficiencies gained by gPC and LSCM enable the inclusion of uncertainty statistics in the optimization process; thus enabling the 
concurrent OUA and RDO.   

The new framework is initially presented in a constrained NLP-based formulation; this formulation is general and independent to the constrained 
NLP solver approach selected (i.e. gradient versus non-gradient based solvers); however, in the event that an unconstrained solver technique (such as 
Genetic Algorithms, Differential Evolution, or some other Evolutionary Algorithm) is selected, an unconstrained penalty-based formulation is also 
provided. 

A simple kinematic tolerance analysis case study is presented to first illustrate how geometric tolerances may be accounted for through gPC. The 
benefits of the new framework are then illustrated in an optimal vehicle suspension design case-study where the optimal apportionment of system 
parameters minimizes the cost-to-build while maintaining optimal and robust performance. The suspension case-study was specifically selected to 
illustrate the apportionment of non-geometric related uncertainties. 

The author’s prior work related to RDO [10] and motion planning [11-14] of uncertain dynamical systems may be found in these respective 
references. These works contain an additional review of literature and information related to uncertainty quantification, gPC, RDO, and motion 
planning of uncertain systems. 

2 UNCERTAINTY QUANTIFICATION 

2.1 GENERALIZED POLYNOMIAL CHAOS 

Generalized Polynomial Chaos (gPC), first introduced by Wiener [15], is an efficient method for analyzing the effects of uncertainties in second 
order random processes [16]. This is accomplished by approximating a source of uncertainty, v, with an infinite series of weighted orthogonal 

polynomial bases called Polynomial Chaoses. Clearly, an infinite series is impractical; therefore, a truncated set of 91 + 1 terms is used with 91 ∈ ℕ 
representing the order of the approximation.  Or, 

v��� = x v^85
yK ��� (1) 

where  v ∈ ℝ are known coefficients; and ^ ∈ ℝ are individual single dimensional orthogonal basis terms (or modes). The bases are orthogonal 
with respect to the ensemble average inner product, 〈^����, ^���〉  =  | ^����^���Z���$�

Ω
=  0,    for i≠j (2) 

where ���� ∈ ℝ is a random variable that maps the random event � ∈ Ω, from the sample space, Ω, to the domain of the orthogonal polynomial 

basis (e.g., �: Ω → �−1,1�); Z��� is the weighting function that is equal to the joint probability density function of the random variable. Also, 〈Ψ , Ψ〉 = 1, ∀� when using normalized basis; standardized basis are constant and may be computed off-line for efficiency using (2). 

The choice of basis to be used is dependent on the type of statistical distribution that best models a given uncertain parameter. In [16], a family of 
orthogonal polynomials and statistical distribution pairs was presented. Therefore, gPC allows a designer to pick an appropriate distribution and 
polynomial pair to model the uncertainty. For example, the tolerance analysis community generally models geometric uncertainties with either a 
Normal, or Gaussian, distribution, denoted by e��, !�, or with a Uniform distribution, denoted by f��, g�; where � is the mean, ! is the standard 

deviation, and � and g are the lower and upper bounds of the distribution range, respectively. When modeling an uncertainty with e��, !� the 

corresponding expansion basis is the probabilist’s Hermite polynomials, c4���, and the expansion with known coefficients is,  v��� = � cK��� +  ! c`��� + 0 c"��� + ⋯ +  0 c85��� (3) 

where the domain is �: Ω → �−∞, ∞�. Similarly, when the uncertainty is better modeled with f��, g�, then Legendre polynomials are used, d4���, 
and the expansion with known coefficients is,   v��� = �� + g − �2 � dK��� + �g − �2 � d`��� + 0 d"��� + ⋯ +  0 d85��� (4) 

where the domain is �: Ω → �−1,1�. (For more information regarding possible distribution/polynomial pairs the interested reader should refer to 
[16].) 

Any quantity dependent on a source of uncertainty becomes uncertain and can be approximated in a similar fashion as (1), 

λ�v���� = λ��� = x λ� Ψ4b
yK ��� (5) 

where λ��� is an approximated dependent quantity; λ� are the unknown gPC expansion coefficients; and %: ∈ ℕ is the number of basis terms in the 
approximation.  
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The orthogonal basis may be multidimensional in the event that there are multiple sources of uncertainty. The multidimensional basis functions 

are represented by Ψ� ∈ ℝ4b. Additionally, � becomes a vector of random variables, � = {�`, … , �4k} ∈ ℝ4k, and maps the sample space, Ω, to an %8 

dimensional cuboid,  �: Ω → �−1,1�4k (as in the example of Legendre chaoses). 
The multidimensional basis is constructed from a product of the single dimensional basis in the following manner, Ψ = `̂��^"�� … ^4k��k ,    �� = 0 … 91 , � = 1 … %8 (6) 

where subscripts represent the uncertainty source and superscripts represent the associated basis term (or mode). A complete set of basis may be 
determined from a full tensor product of the single dimensional bases. This results in an excessive set of �91 + 1�4k basis terms. Fortunately, the 

multidimensional sample space can be spanned with a minimal set of %: = .%8 + 910!/.%8!  91!0 basis terms. The minimal basis set can be 

determined by the products resulting from these index ranges, �` = 0 … 91,  �" = 0 … �91 − �`�,  ⋮   �4k = 0 … �91 − �` − �" − ⋯ − ��4k�`�� 

The number of multidimensional terms, %:, grows quickly with the number of uncertain parameters, %8, and polynomial order, 91. Sandu et. al. 

showed that gPC is most appropriate for modeling systems with a relatively low number of uncertainties [17, 18] but can handle large nonlinear 
uncertainty magnitudes.  

Once all sources of uncertainty, v���, and dependent quantities, λ���, have been expanded then the constitutive relations defining a given 
problem may be updated. For example, constitutive relations may be algebraic or differential equations, h�λ�ξ�, θ�ξ�� = 0 (7) λF �t; �� = i�λ�t; ��, v����  (8) 

Equation (7) is an implicit algebraic constitutive relation and (8) is a differential constitutive relation. It is important to note that the dependent 
quantities are functions of time in (8), therefore, (5) is modified to, 

λ��, v���� = λ��; �� = x λ���� Ψ4b
yK ��� (9) 

It is instructive to notice how time and randomness are decoupled within a single term of the gPC expansion. Only the expansion coefficients are 
dependent on time, and only the basis terms are dependent on the %: random variables, �. If any sources of uncertainty are also functions of time then 
(1) needs to be updated in a similar fashion as (9) and then all dependent quantities will have to be expanded using (9). Without loss of generality, the 
proceeding presentation will assume that all sources of uncertainty are time-independent to simplify the notation.  

Substituting the appropriate expansions from (1), (5), or (9) into the constitutive relations results in uncertain constitutive equations, 

h �x λ���� Ψ4b
yK ���, x v^85

yK ���� = 0 (10) 

x λF ���; �� Ψ4b
yK ��� = i �x λ���� Ψ4b

yK ���, x v^85
yK ����  (11) 

where the %: expansion coefficients, λ� or λ���� , from the dependent quantities are the unknowns to be solved for.  
There are a number of methods in the literature for solving equations such as (10)–(11). The Galerkin Projection Method (GPM) is a commonly 

used method; however, this is a very intrusive technique and requires a custom reformulation of (10)–(11). As an alternative, sample-based 
collocation techniques can be used without the need to modify the base equations.  

Sandu et. al. [18, 19] showed that the collocation method solves equations such as (10)–(11) by solving (7)–(8) at a set of points, j� ∈ ℝ4k ,   � =1 … %*8, selected from the %8 dimensional domain of the random variables � ∈ ℝ4k. Meaning, at any given instance in time, the random variables’ 

domain is sampled and solved %*8 times with � = j�  (updating the approximations of all sources of uncertainty for each solve), then the uncertain 

coefficients of the dependent quantities can be determined. This can be accomplished by defining intermediate variables such as, 

Λ. j� 0 = x λ�Ψ4b
yK ���,   � = 0 … %*8 (12) 

Substituting the appropriate intermediate variables into (10) and (11) respectively yields, h �Λ. j� 0, Θ�� . j� 0� = 0 (13) ΛF . j� 0 = i �Λ. j� 0, Θ�� . j� 0� (14) 

where � = 0 … %*8,  = 1 … %8, and each uncertainty’s intermediate variable is, 

Θ�� . j� 0 = x v�
85

yK ^. j� 0  (15) 

Equations (13)–(14) provide a set of %*8 independent equations whose solutions determine the uncertain expansion coefficients of the dependent 

quantities. Since (13) is implicitly defined, there are two options in determining Λ. j� 0: use a numerical nonlinear system solver such as Newton-
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Raphson, or, solve (7) for a new relation that defines Λ. j� 0 explicitly. The uncertain expansion coefficients of the dependent quantities are 

determined by recalling the relationship of the expansion coefficients to the solutions as in (12). In matrix notation, (12) can be expressed as,  Λ� =  . j� 0¡¢ (16) 

where the matrix, U�, = Ψ. �� 0,   � = 0 … %: , � = 0 … %*8 (17) 

is defined as the collocation matrix. It’s important to note that %: ≤ %*8. The expansion coefficients can now be solved for using (16), ¢ = £#¤ (18) 

where U# is the pseudo inverse of U if %: < %*8. If %: = %*8, then (18) is simply a linear solve. However, [19-23] presented the least-squares 

collocation method (LSCM) where the stochastic dependent variable coefficients are solved for, in a least squares sense, using (18) when %: < %*8. 

Reference [19] also showed that as %*8 → ∞ the LSCM approaches the GPM solution; by selecting 3%: ≤ %*8 ≤ 4%: the greatest convergence 

benefit is achieved with minimal computational cost. LSCM also enjoys the same exponential convergence rate as 91 → ∞.   
The nonintrusive nature of the LSCM sampling approach is arguably its greatest benefit; (7) or (8) may be repeatedly solved without 

modification. Also, there are a number of methods for selecting the collocation points and the interested reader is recommended to consult [18, 19, 
24-26] for more information. 

Once the expansion coefficients of the dependent quantities are determined then statistical moments, such as the expected value and variance, can 
be efficiently calculated. Arguably the greatest benefit of modeling uncertainties with gPC is the computational efficiencies gained when calculating 
the various statistical moments of the dependent quantities. For example, [27] defines the statistical expected value as, 

�¨ = ��m���� = © m��� s���$�ª  (19) 

and the variance, 

!̈" = �� �m���� = © �m��� − �¨�" s���$�ª = ���m��� − �¨�"� (20) 

with the standard deviation, !̈ = «�� �m����. Given these definitions and leveraging the orthogonality of the gPC basis, these moments may be 

efficiently computed by a reduced set of arithmetic operations of the expansion coefficients, �¨ = ��m���� = mK〈ΨK, ΨK〉 (21) 

!̈ = «���m��� − �¨�"� = ¬x�m�"4b
y` 〈Ψ , Ψ〉 (22) 

Also, recall that 〈Ψ , Ψ〉 = 1, ∀� when using normalized basis; standardized basis are constant and may be computed off-line for efficiency using 
(2). A number of efficient statistical moments may be determined from the expansion coefficients. The authors presented a number of gPC based 
measures using efficient moments such as (21)–(22) in [10-14].  

To summarize, the following basic steps are taken in order to model uncertainty and solve for statistical moments of quantities dependent on 
uncertainties: 

1. Model all sources of uncertainty by associating an appropriate probability density function (PDF). 
2. Expand all sources of uncertainty with an appropriate single dimensional orthogonal polynomial basis. The known expansion 

coefficients are determined from the PDF modeling the uncertainty. 
3. Expand all dependent quantities with an appropriately constructed multi-dimensional basis.  
4. Update constitutive relations with the expansions from steps 2–3. The new unknowns are now the expansion coefficients from the 

dependent quantities. 
5. Solve the uncertain constitutive relations for the unknown expansion coefficients; this work uses the LSCM technique.  
6. Calculate appropriate statistical moments from the expansion coefficients. 

The following two sections summarize this material in the context of: uncertain kinematic assemblies, and uncertain dynamical systems. 

2.2 UNCERTAIN KINEMATIC ASSEMBLIES 

Generalized Polynomial Chaos may be employed for tolerance analysis, where the effects of geometric uncertainties in kinematically assembled 
systems are quantified. The assembly features to be analyzed may be defined through an explicit algebraic constitutive relation such as, A = >?@�¢, � (23) 

where A represents assembly relations such as gaps, positions, and orientations of subcomponent features [28]. The dependent assembly variables, ¢, 
must satisfy closed kinematic constraints, if any; these may be implicitly defined as was shown in (7), >B@�¢, � = J (24) 

After solving (24) then any assembly feature defined by (23) may be evaluated.  

Once the independent kinematic features, or contributing dimensions, have manufacturing tolerances prescribed, θ��®�, then (23)–(24) become 

uncertain constitutive relations. Solving the uncertain versions of (24) yields the uncertain dependent assembly variables, ¢�®�, and (23) may then be 

solved for the uncertain assembly features, A�®� .  

The procedure defined in Section 2.1 for algebraic constitutive relations allows designers to calculate statistical moments of the dependent 
assembly features and quantify the effects of the prescribed dimension tolerances. A simple tolerance analysis example based on gPC is presented in 
Section 4. 
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2.3 UNCERTAIN DYNAMICAL SYSTEMS 

Generalized Polynomial Chaos has previously been shown to be an effective tool in quantifying uncertainty within RDO [10] and robust motion 
control [11-14] settings. This work presents a new framework that enables RDO concurrently with OUA of dynamical systems described by ODEs. 
The new framework is not dependent on a specific formulation of the equations-of-motion (EOMs); formulations such as Newtonian, Lagrangian, 
Hamiltonian, and Geometric methodologies are all applicable. An Euler-Lagrange ODE formulation may describe a dynamical system [29, 30] by,   O�C���, [�HF ��� + P�C���, H���, [�H��� + R�C���, H���, [� = S�C���, H���, HF ���, [� = 6��� 

(25) 

where C��� ∈ ℝ4DE  are the generalized coordinates with %)* ≥ %&; H��� ∈ ℝ4I are the generalized velocities and—using Newton’s dot notation—HF ��� contains their time derivatives; [ ∈ ℝ4k includes system parameters of interest; ¯�C���, [� ∈ ℝ4I×4I is the square inertia matrix; P�C���, H���, [� ∈ ℝ4I×4I  includes centrifugal, gyroscopic, and Coriolis effects; R�C���, H���, [� ∈ ℝ4I  are the generalized gravitational and joint 

forces; and 6��� ∈ ℝ47  are the %� applied wrenches (e.g., forces or torques). (For notational brevity, all future equations will drop the explicit time 
dependence.) 

The relationship between the time derivatives of the independent generalized coordinates and the generalized velocities is, CF = L�C, [�H (26) 

where L�C, [� is a skew-symmetric matrix that is a function of the selected kinematic representation (e.g., Euler Angles, Tait-Bryan Angles, Axis-
Angles, Euler Parameters, etc.) [13, 31, 32]. However, if (25) is formulated with independent generalized coordinates and the system has a fixed base 
then (26) becomes CF = H.   

The trajectory of the system is determined by solving (25)–(26) as an initial value problem, where C�0� = CK and
 
H�0� = HK. Also, the system 

measured outputs are defined by, 2 = T�C, CF , [� (27) 

where 2 ∈ ℝ45 with %1 equal to the number of outputs. One helpful observation is that the dynamic outputs defined in (27) are analogous to the 
kinematic assembly features in (23); they are both functions of the dependent quantities of their respective systems defined in (24) and (25)–(26), 
respectively. 

The EOMs defined in (25)–(26) have the form of the differential constitutive relations defined in (8). Any uncertainties in ICs, actuator inputs, 
sensor outputs, or system parameters are accounted for by [���. All system states, {C, H}, and associated outputs, 2, are dependent quantities 

represented by ¢�®�.  

The procedure defined in Section 2.1 for differential constitutive relations allows designers to calculate statistical moments of the dynamic states 
and outputs, thus quantifying the effects of the system uncertainties over the trajectory of the system. The new framework presented in Section 3 will 
build upon this formulation to enable RDO concurrently with OUA of dynamical systems described by ODEs. 

3 OPTIMAL DESIGN AND UNCERTAINTY APPORTIONMENT 
The new framework for simultaneous RDO and OUA of dynamical systems described by ODEs is now presented. This formulation builds upon 

the gPC-based uncertainty quantification techniques presented in Sections 2.1 and 2.3. Sources of uncertainty may come from ICs, actuator inputs, 
sensor outputs, and system parameters; where parametric uncertainties may include both geometric and non-geometric sources. The NLP-base 
formulation of the new framework is, 

min�   J = °.±���0   s. t. S.C��; ��, H��; ��, HF ��; ��, [��; ��0 = 6��; �� CF ��; �� = L.C��; ��, [��; ��0H��; �� 2��; �� = T.C��; ��, CF ��; ��, [��; ��0 t�2��; ��, [��; ��, 6��; ��, �� ≤ J C�0; �� = C0, C.�́ ; �0 = Cµ¶ CF �0; �� = CF 0, CF .�́ ; �0 = CF µ¶  
 

(28) 

where the problem objective, J, is a weighted vector function, ° ∈ ℝ4·, defining %; cost-uncertainty trade-off curves for the manufacturing cost 
associated with each uncertainty being apportioned. Equation (28) is subject to the dynamic constitutive relations defined in (25)–(27), and their 

associated ICs and optional terminal conditions (TCs). When performing simultaneous RDO and OUA, the list of optimization variables, � ∈ ℝ4¸, 
includes select nominal design parameters as well as variances, or standard deviations, of the uncertainties to be apportioned. Concurrent RDO and 
OUA is possible by converting the robust performance objectives of RDO to constraints and adding them to the list of problem constraints itemized 
in t�2, [, 6, �� ≤ J. The authors’ work in [10] illustrates how robust performance objectives may be defined within a gPC setting. Therefore, the 
solution of (28) yields a system design that minimizes the manufacturing cost-to-build subject to specified robust performance criterion defined 
through constraints. Equation (28) is formulated as a constrained multi-objective optimization (cMOO) problem, meaning, as long as at least two 
performance constraints have opposing influences on the optimum, then a Pareto optimal set may be determined as the constraint boundaries are 

adjusted. For example, if each robust performance constraint, ¹, is bounded in the following manner ¹ ≤ ¹ ≤ ¹. A Pareto set will be obtained for 

unique values of ¹ and/or ¹ as long as the associated constraint is active. Once a given constraint becomes inactive, that constraint has no influence 

on the optimal value. 

The NLP defined in (28) may be approached from either a sequential nonlinear programming (SeqNLP), or from a simultaneous nonlinear 

programming (SimNLP) perspective [33, 34]. (The literatures occasionally refers to the SeqNLP approach as partial discretization and to the 
SimNLP as full discretization [35].) In the SeqNLP approach, the dynamical equations (25)–(27) remain as continuous functions that may be 
integrated with standard off-the-shelf ODE solvers (such as Runge-Kutta). This directly leverages the LSCM-based gPC techniques described in 

Section 2.1 and yields a smaller optimization problem as only the optimization variables, �, are discretized. On the contrary, the SimNLP approach 
discretizes (25)–(27) over the trajectory of the system and treats the complete set of equations as equality constraints for the NLP. The discretized 
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state variables are added to � to complete the full discretization. As such, the SimNLP approach requires a slight modification in the formulation to 
account for the full discretization of (25)–(27) in light of the LSCM technique:  

min�   J = °.±���0   s. t. S �C. j` 0, H. j` 0, HF . j` 0, [. j` 0� = 6. j` 0 CF . j` 0 = L �C. j` 0, [. j` 0� H. j` 0 2. j` 0 = T �C. j` 0, CF . j` 0, [. j` 0� C.0; j` 0 = C0,1, CF .0; j` 0 = CF 0,1 ⋮ S �C � j4Ek � , H � j4Ek � , HF � j4Ek � , [ � j4Ek �� = 6 � j4Ek � CF � j4Ek � = L �C � j4Ek � , [ � j4Ek �� H � j4Ek � 2 � j4Ek � = T �C � j4Ek � , CF � j4Ek � , [ � j4Ek �� C �0; j4Ek � = C0,4Ek , CF �0; j4Ek � = CF 0,4Ek t�2���, [���, 6���, �� ≤ J 
 

(29) 

Equation (29) duplicates the deterministic dynamical equations (25)–(27) %*8 times where each set has a unique collocation point, j� . Each unique 

set of dynamical equations is then fully discretized and � is updated appropriately. However, the system constraints, t�2���, [���, 6���, �� ≤ J, are 

calculated using the statistical properties determined by the LSCM and the %*8 sets of dynamical equations. Thus, the SimNLP approach has a much 

larger set of constraints and optimization variables than the SeqNLP approach, but, enjoys a more structured NLP that typically experiences faster 
convergence. 

The Direct Search (DS) class of optimization solvers—techniques such as Genetic Algorithms, Differential Evolution, and Particle Swarm—
typically only treat unconstrained optimization problems. To use this kind of solver, all the inequality constraints in (28) need to be converted from 
hard constraints to soft constraints; where hard constraints are explicitly defined as shown in (28), and constraints that are added to the definition of 
the objective function, J, are referred to as soft constraints. This is accomplished by additional objective penalty terms of the form,  

            JB?º»¼�t; �� = ∑ ¾ ¿�� �0, À��t; ���"4E�y`  (30) 

where %* represents the number of system constraints, and ¾ is a large constant. With a large ¾, this relationship is analogous to an inequality like 

penalizing term, meaning, if the constraint À� is outside of its bounds—or outside the feasible region—then it’s heavily penalized. When it’s within 
the feasible region there is no penalty. Also, by squaring the max function its discontinuity is smoothed out; however, this is an optional feature and 
only necessary for a solver that uses gradient information.  

Once the inequality constraints have been converted to objective penalty terms, equation (28) can be reformulated as, 

min�   J = °.±���0   + JB?º»¼�t; �� s. t. S.C��; ��, H��; ��, HF ��; ��, [��; ��0 = 6��; �� CF ��; �� = L.C��; ��, [��; ��0H��; �� 2��; �� = T.C��; ��, CF ��; ��, [��; ��0 C�0; �� = C0, CF �0; �� = CF 0 
 

(31) 

where the equality constraints from the continuous dynamics are implicit in the calculation of the objective function. This SeqNLP approach enables 
(31) to be solved by the DS class of unconstrained solvers.  

The new framework presented in (28), (29) or (31) allows designers to directly treat the effects of modeled uncertainties during a concurrent 
RDO and OUA design process. The formulations are independent of the optimization solver selected; meaning, if a constrained NLP solver—such as 
sequential quadratic programming (SQP) or interior point (IP)—is selected, then any of the three formulations presented is appropriate, depending 
upon the designer’s preferences regarding hard/soft constraint definition and partial/full discretization. On the contrary, if an unconstrained solver is 
selected, then (31) is the formulation of choice.  

The computational efficiencies of gPC enable the inclusion of statistical moments in the OUA objective function definition as well as in the RDO 
constraint specifications; these statistical measures are available at a reduced computational cost as compared to contemporary techniques. However, 
the framework does introduce an additional layer of modeling and computation [12]. In [10], the authors presented general guidelines of when to 
apply the framework for RDO problems. From an OUA perspective, the following general guidelines can help determine if a given design will 
benefit from the new framework: 

1. Non-Geometric Uncertainties: Traditional tolerance allocation techniques have been developed for the apportionment of geometric related 
uncertainties. The new framework provides a unified framework that enables the simultaneous apportionment of both geometric and non-
geometric related uncertainties simultaneously in dynamical systems. 

2. Large Magnitude Uncertainties: Again, traditional tolerance allocation techniques have been developed under the assumption that the 
uncertainty magnitudes are sufficiently small. This assumption is generally valid for geometric manufacturing related uncertainties, 
however, it may not be valid for non-geometric related uncertainties. This point is illustrated in the case study presented in Section 5. 

3. Simultaneous RDO/OUA Design: As mentioned in Section 1, the research community has already found that concurrent optimal design 
and tolerance allocation yields a superior design than the traditional sequential optimization approach. However, the concurrent design 
studies to date have only treated geometric uncertainties; the new framework in (28), (29) or (31) enables RDO concurrently with OUA and 
treats non-geometric uncertainties in addition to the geometric. 
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In what follows, Section 4 presents a tolerance analysis

purpose of Section 4 is to show that the gPC framework is
framework for simultaneous RDO and OUA when applied to a vehicle suspension subject to non

4 TOLERANCE ANALYSIS BASED ON GPC
This section illustrates gPC-based tolerance analysis

the problem definition was borrowed from [36] and will 
an outer ring, a hub, and a roller bearing in a close-loop kinematic relation. 
quarter of the mechanism; its independent assembly variables are 

tolerance analysis is to ensure that the pressure angle remains within the specified range of 

The assembly feature being analyzed, the pressure angle 
relation as defined in (23), only the closed-loop kinematic constraint equation >�Á, Â, Ã, Ä, Å
resulting in three equations for the three dependent unknowns.

Figure 1—One quarter of a clutch assembly. The independent variables are dimensions 

are {Â, Æ, Ç}. Proper operation of the clutch requires 
The independent variables, or dimensions, are assigned tolerances

standard deviation values are presented in Table 1. 

Table 1—Independ

Parameter � È, $ É 

The analysis proceeds by applying the procedure outlined in Section 

uncertain dependent variables ¢�®� are expanded using 

constitutive relations. The LSCM method samples the 

through least-squares using (18). The respective mean and standard deviation statistical moments are then efficiently determined by 
results of this analysis for various gPC approximation orders are shown in 

Table 2—Various results for the 

Parameter 

DLM 

gPC, 91 = 2 

gPC, 91 = 3 

gPC, 91 = 5 

MC 

Table 2 also contains the results of the analysis when applying the direct linearization method
(MC) based analysis using 2.5 million samples. Additionally, 
methods when compared to the MC results, |ΔÍÎ|,
associated computation times are shown the fifth column

example, the DLM method had the largest reported variation and its 

specification.  

Using the high sample MC solution as a baseline for comparison shows that the 2
The 3rd order gPC solution seems to be the best approximation point when considering 
computation times were taken from an unoptimized Mathematica code running on 

8/16/2011 

tolerance analysis example for a simple assembly described by kinematic algebraic constraints. The 
is to show that the gPC framework is immediately applicable to tolerance analysis problems

framework for simultaneous RDO and OUA when applied to a vehicle suspension subject to non-geometric uncertainties.

BASED ON GPC 
tolerance analysis using a one-way mechanical clutch found  in a lawn mower or some other small machinery

will be used for comparison purposes. The clutch assembly, shown in
loop kinematic relation. Leveraging the system symmetry, the problem 

m; its independent assembly variables are  = {�, È, $, É} and dependent variables are ¢ =
is to ensure that the pressure angle remains within the specified range of 6° ≤ Ð ≤ 8°.  

analyzed, the pressure angle Ð, is a dependent variable, therefore, there is no need 
loop kinematic constraint equation (24) is necessary. This two dimensional vector Å, Ð, Ò� = Ó Á��	 + Â��	 + Ã�	 + Ä��	 + Å�	 = J∠Á + ∠Â + ∠Ã + ∠Ä + ∠Å + Ð + Ò = 0Ô 

resulting in three equations for the three dependent unknowns. 

 
One quarter of a clutch assembly. The independent variables are dimensions {Á, Ã, Ä, Å} and the dependent variables 

. Proper operation of the clutch requires Õ° ≤ Æ ≤ Ö°. 
are assigned tolerances where each is assumed to have a normal distribution

Independent variable mean and standard deviations 

Mean (j) Std (±) Units (SI) 

27.645 0.0167 mm 

11.430 0.0033 mm 

50.800 0.0042 mm 

The analysis proceeds by applying the procedure outlined in Section 2.1, where each independent variable θ��®� is approximated as 

expanded using (5); and all approximations are substituted into (32) 

LSCM method samples the probability space %*8 times and solves for the dependent variable expansion coefficients 

spective mean and standard deviation statistical moments are then efficiently determined by 
results of this analysis for various gPC approximation orders are shown in Table 2.  

Various results for the ×±Æ one-way clutch pressure angle variation
Variation �×±� |ØÙÚ| # of samples, or 

collocation points 

Computation 

time �Û
0.65788 0.00135 n/a 0.06 

0.65822 0.00101 30 0.34 

0.65900 0.00023 60 0.51 

0.65901 0.00022 168 2.73 

0.65923 0 2,500,000 217.42

also contains the results of the analysis when applying the direct linearization method (DLM), as used in [
Additionally, Table 2 reports the absolute value of the errors between the 

, in the third column; the number of samples used are shown in the fourth column; 
column. All methods validate that the pressure angle remains within the specified range

ad the largest reported variation and its 3!Ü solution had a range of 6.3605° ≤
Using the high sample MC solution as a baseline for comparison shows that the 2nd order gPC solution results in comparable results 

order gPC solution seems to be the best approximation point when considering both computational cost and accuracy. 
optimized Mathematica code running on an HP Pavilion with the Intel i7 processor and 6 GB of RAM. 

8 

mple for a simple assembly described by kinematic algebraic constraints. The 
problems. Section 5 show-cases the new 

geometric uncertainties. 

in a lawn mower or some other small machinery; 
The clutch assembly, shown in Figure 1, is comprised of 

, the problem considers explicitly only a = {g, Ð, Ò}. The basic goal of the 

 for an explicit assembly feature 
two dimensional vector relation is: 

(32) 

} and the dependent variables 
each is assumed to have a normal distribution; their respective mean and 

� � is approximated as shown in (1); 

 resulting in uncertain algebraic 

times and solves for the dependent variable expansion coefficients 

spective mean and standard deviation statistical moments are then efficiently determined by (21)–(22). The 

way clutch pressure angle variation 

Computation �Û� 
 

 

 

 

217.42 

[1, 36], as well as a Monte Carlo 
he absolute value of the errors between the solution of the different 

are shown in the fourth column; and the 
All methods validate that the pressure angle remains within the specified range; for ≤ Ð ≤ 7.6763°, which is within 

order gPC solution results in comparable results to the DLM. 
computational cost and accuracy. The reported 

lion with the Intel i7 processor and 6 GB of RAM. 
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Clearly the gPC approach is more computationally burdensome than the DLM, however, when considering the more general nature of the gPC 
approach—as discussed in Section 2.1 and Section 3—and the relatively cheap cost to increase the accuracy of the solution beyond what the DLM 
can provide, a designer may find that this trade-off is worth the expense. In Section 5, the benefits of the gPC approach become more apparent when 
large magnitude variations and non-geometric uncertainties are included within a problem’s scope.  

5 AN ILLUSTRATIVE CASE-STUDY OF CONCURRENT RDO & OUA 
This section illustrates the benefits of the new framework presented in Section 3 through a vehicle suspension design case-study where RDO and 

OUA are carried out concurrently. The case-study showcases OUA for a nonlinear system subject to large magnitude non-geometric uncertainties. 
A brief overview of the system dynamics follows to help clarify the concurrent RDO/OUA design presented thereafter; however, the interested 

reader may consult  [10] where more detailed information is presented to explain the cMOO formulation that is used to carry out both a deterministic 
and RDO of the suspension. This work focuses on illustrating OUA when performed simultaneously with RDO.  

5.1 VEHICLE SUSPENSION MODEL 

The case-study uses an idealized two degree-of-freedom (DOF) nonlinear quarter-car suspension model which is shown in Figure 2. When all the 
system parameters are known exactly, the system is described by the following deterministic nonlinear dynamical EOMs, ÞG, = − �,¿, �Þ, − Þß� − 1¿, à�ÞF,, ÞFß�

ÞGß = �,¿ß �Þ, − Þß� + 1¿ß à�ÞF,, ÞFß� − �ß¿ß .Þß − Þ)0 (33) 

The model has sprung and unsprung masses, ¿, and ¿ß; vertical mass positions about the equilibrium, {Þ, , Þß}, and velocities {ÞF,, ÞFß}; suspension 

spring and damping coefficients, �, and g,; tire spring coefficient, �ß; and ground input position, Þ). The system is nonlinear due to the asymmetric 

damping force that is dependent on the velocity direction.  à�ÞF,, ÞFß� = Ó g,�ÞF, − ÞFß�,   �ÞF, − ÞFß� ≥ 0á g,�ÞF, − ÞFß�,   �ÞF, − ÞFß� ≥ 0Ô (34) 

The ratio of damping forces is determined by the scalar á.  

The ground input position, Þ), is modeled by a series of isolated road bumps defined by, Þ) = U #�%�V �� (35) 

where U represents the amplitude of the bump; V = â ã/W is the frequency of the irregularity determined by the vehicle velocity ã and base length of 

the irregularity W; and � represents time. Each bump was uniquely spaced with no overlap with one another and their amplitudes were U = 0.15 

meters. The frequencies of the speed bumps were selected to be ä = �1, 5, 10, 15� Hertz. Filtered Gaussian noise with a maximum amplitude of U = 0.03 meters was super-imposed over the series of speed bumps. The cut-off frequency of the filtered Gaussian noise was 35 Hertz.  

 

Figure 2—An uncertain 2-DOF quarter-car suspension model with a nonlinear asymmetric damper. The five uncertain 

parameters are, [��� = {åÛ���, æÛ���, ÂÛ���, ç���, æè���}. 
Varying passenger and cargo loads, fatiguing/deteriorating suspension components, and variations in tire air pressure are all very practical 

sources of uncertainty in a vehicle. Therefore, five uncertain system parameters were selected for this study, [��� = {¿#���, �#���, g#���, á���, �é���}. 
Each uncertain parameter is assumed to have a uniform distribution and is therefore modeled with a Legendre polynomial expansion. This takes the 
form of, v����� = v�K + v�̀ �� ,  = 1 … %8 (36) 

This system results in the following set of uncertain nonlinear EOMs, ÞG,��� = − �,���¿,��� .Þ,��� − Þß���0 − 1¿,��� à.ÞF,���, ÞFß���0 

ÞGß��� = �,���¿ß .Þ,��� − Þß���0 + 1¿ß à.ÞF,���, ÞFß���0 − �ß���¿ß �Þß��� − Þ)���� 

(37) 

The ultimate goal for an optimal vehicle suspension design is to characterize the trade-off effects between three conflicting objectives: the 
passenger comfort  (ride), which is modeled as the acceleration of the sprung mass; the suspension displacement (rattle); and the tire road holding 
forces (holding). Once the optimal trade-off relationship of these opposing objectives is determined, the engineers are more to select a parameter set 
that optimally satisfies the design’s requirements.  
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5.2 CONCURRENT OUA/RDO 

It is assumed that the standard deviations of the uncertain sprung mass, !êM = ¿,̀ , and tire spring constant, !�M = �ß̀, cannot be manipulated by 

the design; therefore, they are treated as fixed uncertainties. It is also assumed that the mean nonlinear damping coefficient, �ëM = á,K, is fixed. 

Therefore, the search variables to carry out the OUA are �ìíî = { �,̀ , g,̀ , á,̀ }. The same search variables used in [10] for RDO are reused here; they 

are �ïðì = { �,K, g,K}. The final list of problem search variables is the union of the two sets, or �ìíî ∪ �ïðì.  

There are a number of methods presented in the literature for defining a cost-uncertainty trade-off curve [3]. This case-study assumes that the 
reciprocal power cost-uncertainty trade-off curve used by the manufacturing community is a reasonable definition for the selected non-geometric 
uncertainties in this case study. The reciprocal power curve is defined as, ò� = U� + ó�ô�� , � = 1 … %; (38) 

where U� is a bias cost associated with the ith source of uncertainty being apportioned; ó� is the cost that is scaled by the reciprocal power of the selected 

variation magnitude, ô��, with � ∈ ℝ defining the exponential power. Table 3 shows the U, ó, and � values used for the uncertainties associated with õ� =����ö÷U. 

Table 3—Independent variable means and standard deviations 

Parameter Bias (£ø) Scaled Cost (ùø) Power (æ) �,̀  0.5 1.40 e+6 1.5 g,̀  0.75 3.31 e+5 2 á,̀  0.85 7.33 e-1 1 

With this selected set of search variables, defined cost-uncertainty trade-off curves, and uncertain vehicle suspension dynamics described in (37), 
the corresponding concurrent OUA/RDO problem may be defined as, 

min�={ �#0,�#1,g#0,g#1,á#1}
  x s� úU� + ó�ô��û%�

�y`  s. t. ÞG,��� = − �,���¿,��� .Þ,��� − Þß���0 − 1¿,��� à.ÞF,���, ÞFß���0 

ÞGß��� = �,���¿ß .Þ,��� − Þß���0 + 1¿ß à.ÞF,���, ÞFß���0 − �ß���¿ß .Þß��� − Þ)0 

2 =
üýý
ýýý
ýþ Þ,���ÞF,���Þß���ÞFß���© .ÞG,���0" $�tf

K ¿#.Þß��� − Þ)0���
��
��
�

 

���&���� − ���&� ≤ 0 

��;µµ����� − ��;µµ�� ≤ 0,   �É��É%#��%� 

��;µµ�� − ��;µµ����� ≤ 0,   �È�¿9 É##��%� 

��1�&�4)��� − ��1�&�4) ≤ 0 �, ≤ �,K��� ≤ �, g, ≤ g,K��� ≤ g, 	�0� = 	0, 	F �0� = 	F 0 
 

(39) 

where s� is a scalarization weighting factor for the ith apportionment cost and the uncertain asymmetric damping force is, 

à.ÞF,���, ÞFß���0 = 
 g,���.ÞF,��� − ÞFß���0,   .ÞF,��� − ÞFß���0 ≥ 0á��� g,���.ÞF,��� − ÞFß���0,   .ÞF,��� − ÞFß���0 ≥ 0Ô (40) 

Therefore, (39) simultaneously performs RDO and OUA subject to the uncertain system dynamics defined in (37) and opposing performance 
constraints for vehicle ride, rattle, and holding. In other words, (39) determines the optimal apportionment of the uncertainties in �ìíî that satisfy 

the performance constraints; this is accomplished by simultaneously determining optimal nominal suspension values in �ïðì. Equation (39) is a 
robust cMOO formulation in that a Pareto optimal set accounting for the system’s uncertainties may be constructed by sweeping through a range of 

the performance constraint bounds, ����&� , ��;µµ�� , ��;µµ�� , ��1�&�4)�. Recalling the mean and standard deviation definitions provided in (21)–(22), the 

performance constraint definitions are, .μ�� + �`σ��0 − ���&� ≤ 0 �.μ�M + �"σ�M0 − .μ�� − ��σ��0� −  ��;µµ�� ≤ 0 
��;µµ�� − �.μ�M − ��σ�M0 − .μ�� + ��σ��0� ≤ 0 .μ�� + ��σ��0 − ��1�&�4) ≤ 0 

 

(41) 

Therefore, the performance constraints bound the mean values plus or minus a weighted standard deviation. The constants �� are weighting factors of 

the standard deviations; setting �� > 1.0 yields a more conservative design. The interested reader is referred to [10] for more details regarding the 
definition of the uncertain performance constraints and this approach to robust cMOO. 
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5.3 RESULTS 

The following results show the progression of the 
finally the concurrent OUA/RDO design based on the new framework. 
from the three designs; in the following figures the 
simultaneous OUA/RDA is referenced as aOpt.  

Figure 3 presents a specific 3D optimal solution in the constraint space as projections onto the three orthogonal 2D planes,  ���WÉ, ��W$�%� −  �$É,  ���WÉ −  �$É; this solution is obtained0.203 �¿�, and ��1�&�4) = 0.034 �¿�. The dOpt solution 

uOpt solution is represented by an asterisk. When all weighting factors are set to 
dimensions are determined by the original non-optimal uncertainty standard deviations. The projections of the 

lines. Upon close inspection of Figure 3 it is apparent that the 

solution was pushed to a significantly lower ��1�&�4)ßì8µ
 

 

Figure 3— Projection of the 3D dOpt, uOpt , and 

solutions were determined when: ��øÄÅ = ��J
each solution has a different set of active constraints.

Finally, the optimal mean solution obtained from the new framework for a simultaneous OUA/RDO design is rep
when all weighting factors are set to �� = 1, the mean solution is enclosed in a 3D cuboid whose dimensions are determined by the optimally 

apportioned uncertainty standard deviations, �ìíî. The projections of the 
uncertainties for the aOpt solution are significantly larger than the 
and holding constraints. Figure 3 confirms that �ìíî 
therefore, the simultaneous search finds the true optimal solution.

A Pareto optimal trade-off curve may be obtained by sweeping through a range of values of the bounding constraints. Since there are 
performance constraints the actual Pareto trade-off is a

OUA/RDO optimal solution is determined for a range of values of the 

illustrated as a 2D projection into the objective/rattle 

Figure 4—A single 2D plane from the 5D Pareto optimal set showing the trade

rattle constraint bound; the other constraints are held constant at 

two points on the curve are set to zero as these resulted in infeasible 
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The following results show the progression of the suspension design from a deterministic optimal performance design, to an RDO design, and 
finally the concurrent OUA/RDO design based on the new framework. Figure 3 best helps visualize the differences

 deterministic design optimization is referenced as dOpt; RDO

presents a specific 3D optimal solution in the constraint space as projections onto the three orthogonal 2D planes, 

; this solution is obtained when the bounding constraints are set to ���&� = 220
solution is represented by a solid dot and results in an active holding

solution is represented by an asterisk. When all weighting factors are set to �� = 1, the mean solution is enclosed in a 3D cuboid whose 
optimal uncertainty standard deviations. The projections of the uOpt 

it is apparent that the uOpt solution has an active rattle constraint. Since the 

 value when compared to the deterministic ��1�&�4)&ì8µ
 value.  

, and aOpt optimal solutions onto the three orthogonal 2D planes. Th

��J �å�/Û×�,  ��Á���Å = ��Á���Å = J.�J× �å�, and � !�Äø"#
each solution has a different set of active constraints. 

mean solution obtained from the new framework for a simultaneous OUA/RDO design is rep
, the mean solution is enclosed in a 3D cuboid whose dimensions are determined by the optimally 

. The projections of the aOpt cuboid are denoted by the dashed lines. Notice how the apportioned 
solution are significantly larger than the uOpt solution. Also, the result of the uncertainty apportionment yields active 

 and �ïðì are coupled in that the aOpt solution is shifted when compared to that found by 
earch finds the true optimal solution. 

off curve may be obtained by sweeping through a range of values of the bounding constraints. Since there are 
off is a 5D surface; however, to illustrate the ride and holding

for a range of values of the rattle bound; where ��;µµ�� = ��;µµ��. The resulting Pareto curve 

 plane; this is illustrated in Figure 4.  

A single 2D plane from the 5D Pareto optimal set showing the trade-off between the cost

constraint bound; the other constraints are held constant at ��øÄÅ = ��J �å�/Û×�, and � !�Äø"#
o points on the curve are set to zero as these resulted in infeasible aOpt designs. 

0.16 0.18 0.2 0.22 0.24

rattle [m]

Cost [$]

11 

rom a deterministic optimal performance design, to an RDO design, and 
s between the solutions obtained 

; RDO is referenced as uOpt; and the 

presents a specific 3D optimal solution in the constraint space as projections onto the three orthogonal 2D planes, ��W$�%� −220 �¿"/#��, ��;µµ�� = ��;µµ�� =
holding constraint. The mean of the 

, the mean solution is enclosed in a 3D cuboid whose 
 cuboid are denoted by the dotted 

Since the !�;µµ��ßì8µ
 is so large, the uOpt 

 

onto the three orthogonal 2D planes. These optimal 

 !�Äø"# = J. J×$ �å�. Notice how 
mean solution obtained from the new framework for a simultaneous OUA/RDO design is represented by a diamond. Again, 

, the mean solution is enclosed in a 3D cuboid whose dimensions are determined by the optimally 

cuboid are denoted by the dashed lines. Notice how the apportioned 
solution. Also, the result of the uncertainty apportionment yields active ride 

solution is shifted when compared to that found by uOpt; 

off curve may be obtained by sweeping through a range of values of the bounding constraints. Since there are four 
holding constraints are fixed and the 

. The resulting Pareto curve may be 

 

off between the cost-to-build objective and 

 !�Äø"# = J. J×$ �å�. The first 
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One interesting observation is that the OUA/RDO framework determined the first two design points shown in Figure 4 to be infeasible points; 
therefore, their values were set to the objective value that results if no optimization was performed. The reason for these infeasible constraints is best 
illustrated by Figure 5, which shows the 2D projection of the uOpt ride objective trade-off with the rattle constraint resulting from an RDO, or uOpt, 

design [10]; the holding bound is fixed at  ��1�&�4) = 0.034 �¿�. The diamond curve is obtained from a dOpt optimal design and the square curve is 

obtained from the RDO design, however, the triangle line shows the bounding constraint value assigned for the OUA/RDO, or aOpt, design (���&� =220 �¿"/#��). When the ride bound (triangle line) is below the uOpt curve (square curve) the OUA/RDO design requires the uncertainties to be 

reduced, or tightened, to satisfy the constraints. However, since the variations of the uncertain mass, ¿,̀ , and tire spring constant, �ß̀, were assumed 
to be uncontrollable, the required uncertainty reductions for the first two points ended up being infeasible.  

The resulting optimally allocated uncertainties for the various design points illustrated in Figure 4 are shown in Figure 6. The optimal distribution 
of the allocated uncertainties is a function of the selected cost-uncertainty trade-off curves defined by (38) and each associated weighting factor s�; 
Table 4 documents the apportionment results obtained from the specific case when  ���&� = 220 �¿"/#��,  ��;µµ�� = ��;µµ�� = 0.203 �¿�, and 

��1�&�4) = 0.034 �¿�. The final apportionment of optimal standard deviations resulted in changes as large as 300% relative to their respective initial 

values and as large as 64% relative to their respective mean values; this clearly show-cases the new concurrent OUA/RDO framework’s ability to 
treat uncertainties with large magnitudes.     

 

 

Figure 5—A single 2D plane showing the trade-off between the ride objective and rattle constraint bound when performing an 

RDO design; where � !�Äø"# = J. J×$ �å� is held fixed. The triangle curve represents the bounding value for ��øÄÅ when 
performing the OUA/RDO designs associated with Figure 3 and Figure 4. The first two points on the triangle curve require 

too large of a reduction in uncertainties and therefore result in infeasible aOpt designs. 

The final resulting cost-to-manufacture for the dOpt and uOpt designs was $17.70; this is based on the initial non-optimal uncertainty levels 
which apply to both designs. However, the aOpt solutions result in significant cost-to-manufacture reductions; Figure 4 shows the cost savings for 
the various design points, where savings as high as 74% were experienced. Clearly, the actual cost-savings achievable by applying the new 
simultaneous OUA/RDO framework defined in (28), (29) or (31) is very dependent upon the definition of the respective cost-uncertainty trade-off 
curves, however, this case-study illustrates the power of treating uncertainty up-front during the design process; robust optimally performing systems 
are designed at an optimal cost-to-manufacture.  

 

Figure 6—Optimally apportioned uncertainties determined from the new simultaneous OUA/RDO framework. The first two 

points were infeasible designs and therefore the values were set to their initial values. 

Table 4—Apportionment results obtained from the new concurrent OUA/RDO framework corresponding to the case when 

��øÄÅ = ��J �å�/Û×�,  ��Á���Å = ��Á���Å = J.�J× �å�, and � !�Äø"# = J. J×$ �å�. 
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g,̀  423.0763 20.19% 29.70% á,̀  0.5213 300.12% 50.00% 

6 CONCLUSIONS 
This work presents a novel framework that enables RDO concurrently with OUA for dynamical systems described by ODEs. Current state of the 

art methodologies are limited to only treating geometric uncertainties of small magnitude. The new framework removes these limitations by treating 
both geometric and non-geometric uncertainties in a unified manner within a concurrent RDO/OUA setting. Additionally, uncertainties may be 
relatively large in magnitude and the system constitutive relations may be highly nonlinear. The vehicle suspension design case-study supports this 
message; uncertainty allocations on the order of 300% of the initial value were obtained. 

The computational efficiency of the selected gPC approach allows statistical moments of the uncertain system to be explicitly included in the 
optimization-based design process. The framework, presented in a cMOO formulation, enables a Pareto optimal trade-off surface characterization for 
the entire family of systems within the probability space. The Pareto trade-off surface from the new framework is shown to be off-set from the 
traditional deterministic optimal trade-off surface as a result of the additional statistical moment information formulated into the objective and 
constraint relations. As such, the vehicle suspension case-study Pareto trade-off surface from the new framework enables a more robust and optimally 
performing design at an optimal manufacturing cost.    

In future work, the authors will expand the new framework to treat constrained dynamical systems described by differential algebraic equations 
(DAEs).    
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