7,534 research outputs found

    A survey of kernel and spectral methods for clustering

    Get PDF
    Clustering algorithms are a useful tool to explore data structures and have been employed in many disciplines. The focus of this paper is the partitioning clustering problem with a special interest in two recent approaches: kernel and spectral methods. The aim of this paper is to present a survey of kernel and spectral clustering methods, two approaches able to produce nonlinear separating hypersurfaces between clusters. The presented kernel clustering methods are the kernel version of many classical clustering algorithms, e.g., K-means, SOM and neural gas. Spectral clustering arise from concepts in spectral graph theory and the clustering problem is configured as a graph cut problem where an appropriate objective function has to be optimized. An explicit proof of the fact that these two paradigms have the same objective is reported since it has been proven that these two seemingly different approaches have the same mathematical foundation. Besides, fuzzy kernel clustering methods are presented as extensions of kernel K-means clustering algorithm. (C) 2007 Pattem Recognition Society. Published by Elsevier Ltd. All rights reserved

    BigFCM: Fast, Precise and Scalable FCM on Hadoop

    Full text link
    Clustering plays an important role in mining big data both as a modeling technique and a preprocessing step in many data mining process implementations. Fuzzy clustering provides more flexibility than non-fuzzy methods by allowing each data record to belong to more than one cluster to some degree. However, a serious challenge in fuzzy clustering is the lack of scalability. Massive datasets in emerging fields such as geosciences, biology and networking do require parallel and distributed computations with high performance to solve real-world problems. Although some clustering methods are already improved to execute on big data platforms, but their execution time is highly increased for large datasets. In this paper, a scalable Fuzzy C-Means (FCM) clustering named BigFCM is proposed and designed for the Hadoop distributed data platform. Based on the map-reduce programming model, it exploits several mechanisms including an efficient caching design to achieve several orders of magnitude reduction in execution time. Extensive evaluation over multi-gigabyte datasets shows that BigFCM is scalable while it preserves the quality of clustering

    Semantic distillation: a method for clustering objects by their contextual specificity

    Full text link
    Techniques for data-mining, latent semantic analysis, contextual search of databases, etc. have long ago been developed by computer scientists working on information retrieval (IR). Experimental scientists, from all disciplines, having to analyse large collections of raw experimental data (astronomical, physical, biological, etc.) have developed powerful methods for their statistical analysis and for clustering, categorising, and classifying objects. Finally, physicists have developed a theory of quantum measurement, unifying the logical, algebraic, and probabilistic aspects of queries into a single formalism. The purpose of this paper is twofold: first to show that when formulated at an abstract level, problems from IR, from statistical data analysis, and from physical measurement theories are very similar and hence can profitably be cross-fertilised, and, secondly, to propose a novel method of fuzzy hierarchical clustering, termed \textit{semantic distillation} -- strongly inspired from the theory of quantum measurement --, we developed to analyse raw data coming from various types of experiments on DNA arrays. We illustrate the method by analysing DNA arrays experiments and clustering the genes of the array according to their specificity.Comment: Accepted for publication in Studies in Computational Intelligence, Springer-Verla

    Fuzzy spectral clustering methods for textual data

    Get PDF
    Nowadays, the development of advanced information technologies has determined an increase in the production of textual data. This inevitable growth accentuates the need to advance in the identification of new methods and tools able to efficiently analyse such kind of data. Against this background, unsupervised classification techniques can play a key role in this process since most of this data is not classified. Document clustering, which is used for identifying a partition of clusters in a corpus of documents, has proven to perform efficiently in the analyses of textual documents and it has been extensively applied in different fields, from topic modelling to information retrieval tasks. Recently, spectral clustering methods have gained success in the field of text classification. These methods have gained popularity due to their solid theoretical foundations which do not require any specific assumption on the global structure of the data. However, even though they prove to perform well in text classification problems, little has been done in the field of clustering. Moreover, depending on the type of documents analysed, it might be often the case that textual documents do not contain only information related to a single topic: indeed, there might be an overlap of contents characterizing different knowledge domains. Consequently, documents may contain information that is relevant to different areas of interest to some degree. The first part of this work critically analyses the main clustering algorithms used for text data, involving also the mathematical representation of documents and the pre-processing phase. Then, three novel fuzzy versions of spectral clustering algorithms for text data are introduced. The first one exploits the use of fuzzy K-medoids instead of K-means. The second one derives directly from the first one but is used in combination with Kernel and Set Similarity (KS2M), which takes into account the Jaccard index. Finally, in the third one, in order to enhance the clustering performance, a new similarity measure S∗ is proposed. This last one exploits the inherent sequential nature of text data by means of a weighted combination between the Spectrum string kernel function and a measure of set similarity. The second part of the thesis focuses on spectral bi-clustering algorithms for text mining tasks, which represent an interesting and partially unexplored field of research. In particular, two novel versions of fuzzy spectral bi-clustering algorithms are introduced. The two algorithms differ from each other for the approach followed in the identification of the document and the word partitions. Indeed, the first one follows a simultaneous approach while the second one a sequential approach. This difference leads also to a diversification in the choice of the number of clusters. The adequacy of all the proposed fuzzy (bi-)clustering methods is evaluated by experiments performed on both real and benchmark data sets

    A Short Survey on Data Clustering Algorithms

    Full text link
    With rapidly increasing data, clustering algorithms are important tools for data analytics in modern research. They have been successfully applied to a wide range of domains; for instance, bioinformatics, speech recognition, and financial analysis. Formally speaking, given a set of data instances, a clustering algorithm is expected to divide the set of data instances into the subsets which maximize the intra-subset similarity and inter-subset dissimilarity, where a similarity measure is defined beforehand. In this work, the state-of-the-arts clustering algorithms are reviewed from design concept to methodology; Different clustering paradigms are discussed. Advanced clustering algorithms are also discussed. After that, the existing clustering evaluation metrics are reviewed. A summary with future insights is provided at the end
    corecore