10 research outputs found

    Обзор методов автоматической диагностики сердечной аритмии для принятия решений о необходимости проведения дефибрилляции

    Get PDF
    Ventricular fibrillation is considered the most common cause of sudden cardiac arrest. The fibrillation, and ventricular tachycardia often preceding it, are cardiac rhythms that may respond to emergency electroshock therapy and return to normal sinus rhythm when diagnosed early after cardiac arrest with the restoration of adequate cardiac pumping function. However, manually checking ECG signals on the existence of a pattern of such arrhythmias is a risky and time-consuming task in stressful situations and practically impossible in the absence of a qualified medical specialist. Therefore, systems of the computer classification of arrhythmias with the function of making a decision on the necessity of electric cardioversion with the parameters of a high-voltage pulse calculated adaptively for each patient are widely used for the automatic diagnosis of such conditions. This paper discusses methods of analyzing the electrocardiographic signal taken from the electrodes of an external automatic or semi-automatic defibrillator in order to make a decision on the necessity for defibrillation, which are applicable in the embedded software of automatic and semiautomatic external defibrillators. The paper includes an overview of applicable filtering techniques as well as subsequent algorithms for extracting, classifying and compressing features for the ECG signal.  Lipchak D. A., Chupov A. A. Methods of Signal Analysis for Automatic Diagnosis of Shockable Cardiac Arrhythmias: A Review. Ural Radio Engineering Journal. 2021;5(4):380–409. (In Russ.) DOI: 10.15826/ urej.2021.5.4.004. Фибрилляция желудочков сердца считается наиболее часто встречающейся причиной внезапной остановки сердца. Такая фибрилляция и часто предшествующая ей желудочковая тахикардия – это ритмы сердца, которые могут реагировать на экстренную электрошоковую терапию и вернуться к нормальному синусовому ритму при ранней диагностике после остановки сердца с восстановлением адекватной насосной функции сердца. Однако ручная проверка сигналов ЭКГ на наличие паттерна такой аритмии является сложной аналитической задачей, требующей немедленного принятия решения в стрессовой ситуации, практически невыполнимой в отсутствие квалифицированного медицинского специалиста. Поэтому для автоматической диагностики острых состояний широкое применение получили системы компьютерной классификации аритмий с функцией принятия решения о необходимости проведения электрокардиотерапии с параметрами высоковольтного импульса, вычисленного адаптивно для каждого пациента. В данной работе рассмотрены методы анализа электрокардиографического сигнала, снимаемого с электродов наружного автоматического или полуавтоматического дефибриллятора, с целью принятия решения о необходимости оказания дефибрилляции, применимые во встроенном программном обеспечении автоматических и полуавтоматических внешних дефибрилляторов. Работа включает обзор применимых методов фильтрации, а также последующих алгоритмов извлечения, классификации и сжатия характерных признаков для сигнала ЭКГ.  Липчак Д. А., Чупов А. А. Обзор методов автоматической диагностики сердечной аритмии для принятия решений о необходимости проведения дефибрилляции. Ural Radio Engineering Journal. 2021;5(4):380–409. DOI: 10.15826/urej.2021.5.4.004.

    Methods of Signal Analysis for Automatic Diagnosis of Shockable Cardiac Arrhythmias: A Review

    Get PDF
    Ventricular fibrillation is considered the most common cause of sudden cardiac arrest. Ventricular fibrillation, and ventricular tachycardia often preceding it, are cardiac rhythms that can respond to emergency electroshock therapy and return to normal sinus rhythm when diagnosed early after cardiac arrest with the restoration of adequate cardiac pumping function. However, manually checking ECG signals for the presence of a pattern of such arrhythmias is a risky and time- consuming task in stressful situations and practically impossible in the absence of a qualified medical specialist. Therefore, for the automatic diagnosis of such conditions, systems for the computer classification of arrhythmias to decide on the need for electric cardioversion with the parameters of a high-voltage pulse, calculated adaptively for each patient, are widely used. This paper discusses methods for analyzing the electrocardiographic signal taken from external automatic or semi-automatic defibrillator electrodes to decide the need for defibrillation, which is applicable in the embedded software of automatic, semi-automatic external defibrillators. The paper includes an overview of applicable filtering techniques and subsequent algorithms for extracting, classifying, and compressing features for the ECG signal. Both advantages and disadvantages are discussed for the studied algorithms. © 2022 IEEE.Russian Foundation for Basic Research, РФФИ, (20-37-90037)The reported study is funded by RFBR according to research project No. 20-37-90037

    Methods of Signal Analysis for Automatic Diagnosis of Shockable Cardiac Arrhythmias: A Review

    Full text link
    Поступила: 19.12.2021. Принята в печать: 18.01.2022.Received: 19.12.2021. Accepted: 18.01.2022.Фибрилляция желудочков сердца считается наиболее часто встречающейся причиной внезапной остановки сердца. Такая фибрилляция и часто предшествующая ей желудочковая тахикардия – это ритмы сердца, которые могут реагировать на экстренную электрошоковую терапию и вернуться к нормальному синусовому ритму при ранней диагностике после остановки сердца с восстановлением адекватной насосной функции сердца. Однако ручная проверка сигналов ЭКГ на наличие паттерна такой аритмии является сложной аналитической задачей, требующей немедленного принятия решения в стрессовой ситуации, практически невыполнимой в отсутствие квалифицированного медицинского специалиста. Поэтому для автоматической диагностики острых состояний широкое применение получили системы компьютерной классификации аритмий с функцией принятия решения о необходимости проведения электрокардиотерапии с параметрами высоковольтного импульса, вычисленного адаптивно для каждого пациента. В данной работе рассмотрены методы анализа электрокардиографического сигнала, снимаемого с электродов наружного автоматического или полуавтоматического дефибриллятора, с целью принятия решения о необходимости оказания дефибрилляции, применимые во встроенном программном обеспечении автоматических и полуавтоматических внешних дефибрилляторов. Работа включает обзор применимых методов фильтрации, а также последующих алгоритмов извлечения, классификации и сжатия характерных признаков для сигнала ЭКГ.Ventricular fibrillation is considered the most common cause of sudden cardiac arrest. The fibrillation, and ventricular tachycardia often preceding it, are cardiac rhythms that may respond to emergency electroshock therapy and return to normal sinus rhythm when diagnosed early after cardiac arrest with the restoration of adequate cardiac pumping function. However, manually checking ECG signals on the existence of a pattern of such arrhythmias is a risky and time-consuming task in stressful situations and practically impossible in the absence of a qualified medical specialist. Therefore, systems of the computer classification of arrhythmias with the function of making a decision on the necessity of electric cardioversion with the parameters of a high-voltage pulse calculated adaptively for each patient are widely used for the automatic diagnosis of such conditions. This paper discusses methods of analyzing the electrocardiographic signal taken from the electrodes of an external automatic or semi-automatic defibrillator in order to make a decision on the necessity for defibrillation, which are applicable in the embedded software of automatic and semiautomatic external defibrillators. The paper includes an overview of applicable filtering techniques as well as subsequent algorithms for extracting, classifying and compressing features for the ECG signal

    Brief review on electrocardiogram analysis and classification techniques with machine learning approaches

    Get PDF
    Electrocardiogram captures the electrical activity of the heart. The signal obtained can be used for various purposes such as emotion recognition, heart rate measuring and the main one, cardiac disease diagnosis. But ECG analysis and classification require experienced specialists once it presents high variability and suffers interferences from noises and artefacts. With the increase of data amount on long term records, it might lead to long term dependencies and the process become exhaustive and error prone. Automated systems associated with signal processing techniques aim to help on these tasks by improving the quality of data, extracting meaningful features, selecting the most suitable and training machine learning models to capture and generalize its behaviour. This review brings a brief stage sense of how data flows into these approaches and somewhat techniques are most used. It ends by presenting some of the countless applications that can be found in the research community.info:eu-repo/semantics/publishedVersio

    Atrial fibrillation classification based on MLP networks by extracting Jitter and Shimmer parameters

    Get PDF
    Atrial fibrillation (AF) is the most common cardiac anomaly and one that potentially threatens human life. Due to its relation to a variation in cardiac rhythm during indeterminate periods, long-term observations are necessary for its diagnosis. With the increase in data volume, fatigue and the complexity of long-term features make analysis an increasingly impractical process. Most medical diagnostic aid systems based on machine learning, are designed to automatically detect, classify or predict certain behaviors. In this work, using the PhysioNet MIT-BIH Atrial Fibrillation database, a system based on MLP artificial neural network is proposed to differentiate, between AF and non-AF, segments and ECG’s features, obtaining average accuracy of 80.67% in test set, for the 10-fold cross-validation method. As a highlight, the extraction of jitter and shimmer parameters from ECG windows is presented to compose the network input sets, indicating a slight improvement in the model's performance. Added to these, Shannon's and logarithmic energy entropies are determined, also indicating an improvement in performance related to the use of fewer features.This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UIDB/05757/2020.info:eu-repo/semantics/publishedVersio

    R PEAK DETERMINATION USING A WDFR ALGORITHM AND ADAPTIVE THRESHOLD

    Get PDF
    The determination of the R peak position in the ECG signal helps physicians not only to know the heart rate per minute, but also to monitor the patient’s health related to heart disease. This paper proposes a system to accurately determine the R peak position in the ECG signal. The system consists of a pre-processing block for filtering out noise using a WDFR algorithm and highlighting the amplitude of the R peak and a threshold value is calculated for determining the R peak. In this research, the MIT-BIH ECG dataset with 48 records are used for evaluation of the system. The results of the SEN, +P, DER and ACC parameters related to the system quality are 99.70%, 99.59%, 0.70% and 99.31%, respectively. The obtained performance of the proposed R peak position determination system is very high and can be applied to determine the R peak of the ECG signal measuring devices in practice

    A model to enhance the atrial fibrillations’ risk detection using deep learning

    Get PDF
    Atrial fibrillation (AF) is a complex arrhythmia linked to a variety of common cardiovascular illnesses and conventional cardiovascular risk factors. Although awareness and improved detection of AF have improved over the last decade as the incidence and prevalence of AF has increased, current trends in using machine learning approaches to diagnose AF are still lacking in precision. To determine the true nature of the Electrocardiography (ECG) signal segments, a Convolutional Neural Network (CNN) model was employed to discover hidden information. Fully Connected (FC) layers were then utilized to categorize the ECG data segments as normal or abnormal. The suggested algorithm's findings were compared to state-of-the-art arrhythmia identification algorithms in the literature for the MIT-BIH ECG database. The methodology proved not only to yield high classification performance (98.5%) but also low processing computational advantage where the CNN was the most accurate algorithm used for atrial fibrillation detection hence. To conclude the findings of the research, a model was prepared to test the accuracy of the most common ML algorithms used for AF detection. After comparing the results of the experiment, it was clear that CNN algorithm is the best approach compared to Support Vector Machine (SVM) and K-Nearest Neighbor (KNN)

    Implementação de um sistema de análise automática do ECG para identificação de episódios de fibrilação atrial utilizando uma plataforma de aquisição BITalino® e um smartphone Android™

    Get PDF
    Mestrado de dupla diplomação com a UTFPR - Universidade Tecnológica Federal do ParanáAs arritmias cardíacas são distúrbios que afetam a frequência e/ou o ritmo dos batimentos cardíacos. O diagnóstico da maioria das arritmias é feito através da análise do eletrocardiograma (ECG), o qual consiste na representação gráfica da atividade elétrica do coração. A fibrilação atrial (AF) é um tipo de arritmia cardíaca, sendo a mais presente na população mundial. Se não identificada nos estágios iniciais, aumenta as chances de ocorrência de paragens cardíacas e acidente vascular cerebral, que constituem uma das maiores causas de morte no mundo. Uma das principais características presentes no sinal de ECG de indivíduos com AF é a irregularidade no ritmo cardíaco, ou seja, variação no intervalo entre dois picos R consecutivos. Pelo fato da AF muitas vezes se apresentar de forma assintomática, o uso de sistemas computacionais para a análise automática do sinal de ECG se apresenta como uma alternativa interessante para auxiliar o profissional de saúde no diagnóstico dessa arritmia. Nesse contexto, o presente trabalho trata da implementação de um sistema de análise automática do sinal de ECG para identificação de episódios de AF. O sistema consiste em uma etapa de aquisição do sinal realizada por um sensor de ECG BITalino conectado à plataforma BITalino (r)evolution Core, ambos desenvolvidos pela PLUX – Wireless Biosignals S.A. O sinal adquirido é transmitido via comunicação bluetooth para um smartphone com sistema operacional Android™. O processamento do sinal é feito através de um aplicativo desenvolvido através da IDE Android™ Studio. O sistema de análise foi desenvolvido através do software MATLAB® e, posteriormente, implementado no aplicativo com o auxílio da aplicação MATLAB Coder™ e da interface JNI. Em linhas gerais, o sistema de análise é composto por um algoritmo para detecção dos picos da onda R do sinal de ECG, seguido de uma etapa de extração de características, e outra de classificação. A característica utilizada na entrada do modelo de classificação foi o intervalo entre picos R consecutivos. O modelo de classificação utilizado é baseado em redes neurais do tipo LSTM (Long Short-Term Memory). Quando validado sobre os sinais do banco de dados MIT-BIH Atrial Fibrillation, o algoritmo de detecção dos picos da onda R apresentou valores médios de sensibilidade (Se) e preditividade positiva (P+) de 98,99% e 95,95%, respectivamente. O modelo de classificação utilizado apresentou exatidão média de 94,94% na identificação de episódios de AF.Cardiac arrhythmias are disorders that affect the rate and/or rhythm of the heartbeats. The diagnosis of most arrhythmias is made through the analysis of the electrocardiogram (ECG), which consists of a graphic representation of the electrical activity of the heart. Atrial fibrillation (AF) is a type of cardiac arrhythmia, being the most present in the world population. If not identified in the early stages, it increases the chances of cardiac arrest and stroke, which are one of the biggest causes of death in the world. One of the main characteristics present in the ECG signal of individuals with AF is the irregularity in the cardiac rhythm, that is, variation in the interval between two consecutive R peaks. Since AF is often asymptomatic, the use of computer systems for the automatic analysis of the ECG signal is an interesting alternative to assist health professionals in diagnosing this arrhythmia. In this context, this work deals with the implementation of an automatic ECG signal analysis system to identify AF episodes. The system consists of a signal acquisition step performed by a BITalino ECG sensor connected to the BITalino (r)evolution Core platform, both developed by PLUX – Wireless Biosignals SA. The acquired signal is transmitted via bluetooth communication to a smartphone with Android™ operating system. The signal processing is done through an application developed using the IDE Android™ Studio. The analysis system was developed using the MATLAB® software and later implemented in the application with the help of the MATLAB Coder™ application and the JNI interface. In general terms, the analysis system is composed of an algorithm for detecting the peaks of the R wave of the ECG signal, followed by a feature extraction step, and a classification step. The feature used in the entry of the classification model was the interval between consecutive R peaks (RRi). The classification model used is based on a LSTM neural network. When validated over the signals from the MIT-BIH Atrial Fibrillation database, the R-wave peak detection algorithm showed mean values of sensitivity (Se) and positive predictivity (P+) of 98.99% and 95.95%, respectively. The classification model used had an average accuracy of 94.94% in identifying AF episodes

    A Novel Deep Arrhythmia-Diagnosis Network for Atrial Fibrillation Classification Using Electrocardiogram Signals

    No full text

    Classificação de episódios de fibrilação atrial por análise do ECG com redes neuronais artificiais MLP e LSTM

    Get PDF
    Mestrado de dupla diplomação com a UTFPR - Universidade Tecnológica Federal do ParanáA fibrilação atrial (AF) é uma doença cardíaca que afeta aproximadamente 1% da população mundial, sendo a anomalia cardíaca mais comum. Apesar de não ser uma causa direta de morte, frequentemente está associada ou gera outros problemas que ameaçam a vida humana, como o derrame e a doença da artéria coronária. As principais características da AF são: a alta variação do ritmo cardíaco, o enfraquecimento ou desaparecimento da contração atrial e a ocorrência de irregularidades nas atividades dos ventrículos. O diagnóstico da AF é realizado por um médico especialista, principalmente através da inspeção visual de gravações de eletrocardiograma (ECG) de longo termo. Tais gravações podem chegar a várias horas, e são necessárias pois a AF pode ocorrer a qualquer momento do dia. Dessa forma surgem os problemas quanto ao grande volume de dados e as dependências de longo termo. Além disso, as particularidades e as variabilidades dos padrões de deformação de cada sujeito fazem com que o problema esteja também relacionado com a experiência do cardiologista. Assim, a proposta de um sistema computacional de auxílio ao diagnóstico médico baseado em inteligência artificial se torna muito interessante, uma vez que não sofre com a fadiga e é fortemente indicado para lidar com dados em grande quantidade e com alta variabilidade. Portanto, neste trabalho foi proposta a exploração de modelos de aprendizagem de máquina para análise e classificação de sinais ECG de longo termo, para auxiliar no diagnóstico da AF. Os modelos foram baseados em redes neuronais artificiais do tipo Multi-Layer Perceptron (MLP) e Long Short-Term Memory (LSTM). Utilizam-se os sinais da base de dados MIT-BIH Atrial Fibrillation, sem remoção de ruído, tendências ou artefatos, numa etapa de extração de características temporais, morfológicas, estatísticas e em tempo-frequência sobre segmentos de contexto variável (duração em segundos ou contagem de intervalos entre picos R). As características do sinal ECG utilizadas, foram: duração dos intervalos R-R (RRi) consecutivos, perturbação Jitter, perturbação Shimmer, entropias de Shannon e energia logarítmica, frequências instantâneas, entropia espectral e transformada Scattering. Sobre estes atributos foram aplicadas diferentes estratégias de normalização por Z-score e valor máximo absoluto, de forma a normalizar os indicadores de acordo com o contexto do sujeito ou local do segmento. Após a exploração de várias combinações destas características e dos parâmetros das redes MLP, obteve-se uma acurácia de classificação para a metodologia 10-fold cross-validation de 80,67%. Entretanto, notou-se que as marcações do pico das ondas R advindas da base de dados eram imprecisas. Dessa forma, desenvolveu-se um algoritmo de detecção do pico das ondas R baseado na combinação entre a derivada do sinal, a energia de Shannon e a transformada de Hilbert, resultado em uma acurácia de marcação dos picos R de 98,95%. A partir das novas marcações, determinou-se todas as características e em seguida foram exploradas diversas estruturas de redes neuronais MLP e LSTM, sendo que os melhores resultados em acurácia/exatidão para estas arquiteturas foram, respectivamente, 91,96% e 98,17%. Em todos os testes, a MLP demonstrou melhora de desempenho à medida que mais características foram sendo agregadas nos conjuntos de dados. A LSTM por outro lado, obteve os melhores resultados quando foram combinados 60 RRi e as respectivas entropias das ondas P, T e U.Atrial fibrillation (AF) is a heart disease that affects approximately 1% of the world population, being the most common cardiac anomaly. Although it is not a direct cause of death, it is often associated with or generates other problems that threaten human life, such as stroke and coronary artery disease. The main characteristics of AF are the high variation in heart rate, the weakening or disappearance of atrial contraction and the occurrence of irregularities in the activities of the ventricles. The diagnosis of AF is performed by a specialist doctor, mainly through visual inspection of long-term electrocardiogram (ECG) recordings. Such recordings can take several hours and are necessary because AF can occur at any time of the day. Thus, problems arise regarding the large amount of data and long-term dependencies. In addition, the particularities and variability of the deformation patterns of each subject make the problem also related to the cardiologist's experience. Thus, the proposal for a computational system to aid medical diagnosis based on artificial intelligence becomes very interesting, since it does not suffer from fatigue and is strongly indicated to deal with data in large quantities and with high variability. Therefore, in this work it was proposed to explore machine learning models for the analysis and classification of long-term ECG signals, to assist in the diagnosis of AF. The models were based on artificial neural networks Multi-Layer Perceptron (MLP) and Long Short-Term Memory (LSTM). The signals from the MIT-BIH Atrial Fibrillation database are used, without removing noise, trends or artifacts, in a stage of extracting temporal, morphological, statistical and time-frequency features over segments of variable context (duration in seconds or counting intervals between peaks R). The features of the ECG signal used were: duration of consecutive R-R (RRi) intervals, Jitter disturbance, Shimmer disturbance, Shannon entropies and logarithmic energy, instantaneous frequencies, spectral entropy and Scattering transform. On these attributes, different normalization strategies were applied by Z-score and absolute maximum value, to normalize the indicators according to the context of the subject or location of the segment. After exploring various combinations of these features and the parameters of the MLP networks, the accuracy of classification for the 10-fold cross-validation methodology was 80.67%. However, it was noted that the annotations of the peak of R waves from the database were inaccurate. Thus, an algorithm for detecting the peak of R waves was developed based on the combination of the derivative of the signal, the Shannon energy, and the Hilbert transform, resulting in an accuracy of marking the R peaks of 98.95%. From the new markings, all features were determined and then several structures of neural networks MLP and LSTM were explored, and the best results in accuracy for these architectures were, respectively, 91.96% and 98.17%. In all tests, MLP showed improvement in performance as more features were added to the data sets. LSTM, on the other hand, obtained the best result when 60 RRi and the respective entropies of the P, T and U waves were combined
    corecore