894 research outputs found

    A Compact Tri-band Printed Antenna for MIMO Applications

    Get PDF
    In this paper, a compact tri-band printed multi-input multi-output (MIMO) antenna with high isolation is presented to operate within WLAN and WiMAX frequency bands. By adopting a rectangular open-ended slot combined with a rectangular strip with an inverted L-shaped open-ended slot, three operating frequency bands can be obtained. The proposed compact MIMO antenna occupies an overall size of 19×33 mm2. Good port-to-port isolation is obtained. The simulated and measured results show that the presented antenna is suitable for multiband MIMO applications

    Structural behaviour of beam with HDPE plastic balls subjected to flexure load

    Get PDF
    This paper presents the structural behavior of reinforced concrete beam embedded with high density polyethylene balls (HDPE) subjected to flexural load. The HDPE balls with 180 mm diameter were embedded to create the spherical voids in the beam which lead to reduction in its self-weight. Two beam specimens with HDPE balls (RC-HDPE) and one solid beam (RC-S) with dimension 250 mm x 300 mm x 1100 mm were cast and tested until failure. The results are analysed in the context of its ultimate load, load-deflection profile, and crack pattern and failure mode. It was found that the ultimate load of RC-HDPE was reduced by 32% compared to RC-S beam while the maximum deflection at its mid span was increased by 4%. However, RC-HDPE is noticed to be more ductile compared to RC-S beam. Both types of beams experienced flexure cracks and diagonal tension cracks before failur

    Extracting dualband antenna response from UWB based on current distribution analysis

    Get PDF
    An entirely new design approach has been employed to create the printed dualband monopole antenna that was the subject of this investigation. The printed monopole antenna construction is the primary component of the suggested design. CPW transmission lines with 50 Ohm impedance and a relative dielectric constant of 4.6 were used to power the antennas, which were housed in thin substrates with thicknesses of 1.6 millimeters (mm). In this study, the antennas discussed were modeled and analyzed by Computer Simulation Technique (CST) simulator. Using fractal structures on the radiating element of a dualband antenna can improve the resonance of the antenna as well as the coupling of the resonating bands that emerge from the resonance

    A Four Slot Dual Feed and Dual Band Reconfigurable Antenna for Fixed Satellite Service Applications

    Get PDF
    A dual feed and dual-band reconfigurable antenna is designed, analyzed, and prototyped in this work for fixed satellite service communication applications. The designed model occupies the compact dimension of 24X21X1.2 mm on FR4 substrate and provides an input impedance of 50 ohms at both ports. The proposed model offers additional circular polarization characteristics at both the resonating bands. The PIN diode-based switching conditions, and the frequency reconfigurability analysis in both simulation and measurement are almost match. The combination of dual-band resonance, frequency reconfigurable nature, and compact dimension makes this model an attractive candidate in the specified field with considerable gain (8.5 dB) and efficiency (80%)

    Wideband and UWB antennas for wireless applications. A comprehensive review

    Get PDF
    A comprehensive review concerning the geometry, the manufacturing technologies, the materials, and the numerical techniques, adopted for the analysis and design of wideband and ultrawideband (UWB) antennas for wireless applications, is presented. Planar, printed, dielectric, and wearable antennas, achievable on laminate (rigid and flexible), and textile dielectric substrates are taken into account. The performances of small, low-profile, and dielectric resonator antennas are illustrated paying particular attention to the application areas concerning portable devices (mobile phones, tablets, glasses, laptops, wearable computers, etc.) and radio base stations. This information provides a guidance to the selection of the different antenna geometries in terms of bandwidth, gain, field polarization, time-domain response, dimensions, and materials useful for their realization and integration in modern communication systems

    Packaging Technique for Gain Improvement of Multi-resonance CPW-fed Antenna for Satellite Applications

    Get PDF
    A suitable technique for gain improvement of multi-resonance CPW-fed antenna for satellite application at Ku-, K- and Ka-bands for user terminals is presented in this paper. New concept of stacking numerous layers with different dielectric material has been also presented. The conventional antenna design consists of a CPW-fed patch antenna with modified CPW elements printed on Rogers TMM4 substrate. In order to improve the antenna performance in term of gain and bandwidth, we propose two different configurations. The first one consists of designing a stacked structure by adding on the top of the single antenna an additional layer with parasitic elements. The dielectric added consists in Rogers RO3010 substrate with a high permittivity of 10.2. The proposed antenna is formed by two layers separated by an air gap; this new configuration provides major reduction on antenna beam width and allows gain enhancement. The second one implement the design of 2×1 and 4×1 series feed antenna arrays based on the conventional CPW-fed antenna. These array configurations are used to achieve higher gain in comparison with stacked solution. Finally we combined both techniques yielding the stacked 4×1 series feed antenna array. Fabricated CPW-fed antenna and the achieved results demonstrate the performance of presented techniques for gain improvements

    Ultra-Wideband Antenna and Design

    Get PDF

    Fully Printable Chipless RFID Tag

    Get PDF

    Miniaturized Microwave Devices and Antennas for Wearable, Implantable and Wireless Applications

    Full text link
    This thesis presents a number of microwave devices and antennas that maintain high operational efficiency and are compact in size at the same time. One goal of this thesis is to address several miniaturization challenges of antennas and microwave components by using the theoretical principles of metamaterials, Metasurface coupling resonators and stacked radiators, in combination with the elementary antenna and transmission line theory. While innovating novel solutions, standards and specifications of next generation wireless and bio-medical applications were considered to ensure advancement in the respective scientific fields. Compact reconfigurable phase-shifter and a microwave cross-over based on negative-refractive-index transmission-line (NRI-TL) materialist unit cells is presented. A Metasurface based wearable sensor architecture is proposed, containing an electromagnetic band-gap (EBG) structure backed monopole antenna for off-body communication and a fork shaped antenna for efficient radiation towards the human body. A fully parametrized solution for an implantable antenna is proposed using metallic coated stacked substrate layers. Challenges and possible solutions for off-body, on-body, through-body and across-body communication have been investigated with an aid of computationally extensive simulations and experimental verification. Next, miniaturization and implementation of a UWB antenna along with an analytical model to predict the resonance is presented. Lastly, several miniaturized rectifiers designed specifically for efficient wireless power transfer are proposed, experimentally verified, and discussed. The study answered several research questions of applied electromagnetic in the field of bio-medicine and wireless communication.Comment: A thesis submitted for the degree of Ph

    Bandwidth Optimization of Microstrip Patch Antenna- A Basic Overview

    Get PDF
    An antenna is a very important device in wireless applications. It converts the electrical energy into RF signal at the transmitter and RF signal into electrical energy at the receiver side. A micro strip antenna consists of a rectangular patch on a ground plane separated by dielectric substrate. The patch in the antenna is made of a conducting material Cu (Copper) or Au (Gold) and this can be in any shape of rectangular, circular, triangular, elliptical or some other common shape. Researches of past few year shows that, various work on Microstrip Patch Antenna is attentive on designing compact sized Microstrip Antenna with efficiency and bandwidth optimized. But inherently Microstrip Patch Antenna have narrow bandwidth so to enhance bandwidth various techniques are engaged. Today’s Communication devices need several applications which require higher bandwidth; such as mobile phones these days are getting thinner and smarter but many applications supported by them require higher bandwidth, so microstrip antenna used for performing this operation should provide wider bandwidth as well as their shape should be more efficient and size should be compact so that it should occupy less space while keeping the size of device as small as possible. In this review paper, a review of different techniques used for bandwidth optimization & various shapes of compact and broadband microstrip patch antenna is given
    corecore