503 research outputs found

    GETNET: A General End-to-end Two-dimensional CNN Framework for Hyperspectral Image Change Detection

    Full text link
    Change detection (CD) is an important application of remote sensing, which provides timely change information about large-scale Earth surface. With the emergence of hyperspectral imagery, CD technology has been greatly promoted, as hyperspectral data with the highspectral resolution are capable of detecting finer changes than using the traditional multispectral imagery. Nevertheless, the high dimension of hyperspectral data makes it difficult to implement traditional CD algorithms. Besides, endmember abundance information at subpixel level is often not fully utilized. In order to better handle high dimension problem and explore abundance information, this paper presents a General End-to-end Two-dimensional CNN (GETNET) framework for hyperspectral image change detection (HSI-CD). The main contributions of this work are threefold: 1) Mixed-affinity matrix that integrates subpixel representation is introduced to mine more cross-channel gradient features and fuse multi-source information; 2) 2-D CNN is designed to learn the discriminative features effectively from multi-source data at a higher level and enhance the generalization ability of the proposed CD algorithm; 3) A new HSI-CD data set is designed for the objective comparison of different methods. Experimental results on real hyperspectral data sets demonstrate the proposed method outperforms most of the state-of-the-arts

    Learning Spectral-Spatial-Temporal Features via a Recurrent Convolutional Neural Network for Change Detection in Multispectral Imagery

    Full text link
    Change detection is one of the central problems in earth observation and was extensively investigated over recent decades. In this paper, we propose a novel recurrent convolutional neural network (ReCNN) architecture, which is trained to learn a joint spectral-spatial-temporal feature representation in a unified framework for change detection in multispectral images. To this end, we bring together a convolutional neural network (CNN) and a recurrent neural network (RNN) into one end-to-end network. The former is able to generate rich spectral-spatial feature representations, while the latter effectively analyzes temporal dependency in bi-temporal images. In comparison with previous approaches to change detection, the proposed network architecture possesses three distinctive properties: 1) It is end-to-end trainable, in contrast to most existing methods whose components are separately trained or computed; 2) it naturally harnesses spatial information that has been proven to be beneficial to change detection task; 3) it is capable of adaptively learning the temporal dependency between multitemporal images, unlike most of algorithms that use fairly simple operation like image differencing or stacking. As far as we know, this is the first time that a recurrent convolutional network architecture has been proposed for multitemporal remote sensing image analysis. The proposed network is validated on real multispectral data sets. Both visual and quantitative analysis of experimental results demonstrates competitive performance in the proposed mode

    A Study on Change Detection in Hyperspectral Image

    Get PDF
    Change detection is the procedure of obtaining changes between two Hyperspectral pictures of same topographical zone taken at two unique times. It conveys the essential and important change data of a scene. Due to a breakthrough in Hyperspectral remote sensing Hyperspectral remote sensors can capable of producing narrow spectral resolution images. These high resolution spectral and spatial hyperspectral images can find small variations in images. This work describes an efficient algorithm for detecting changes in Hyperspectral images by using spectral signatures of Hyperspectral images. The objective is developing of a proficient algorithm that can show even small variations in Hyperspectral images. It reviews Hierarchical method for finding changes in Hyperspectral images by comparing spectral homogeneity between spectral change vectors. For any scenery locating and also exploration regarding adjust delivers treasured data regarding achievable changes. Hyperspectral satellite detectors get effectiveness throughout gathering data with large spectral rings. These types of detectors typically deal with spatially and also spectrally high definition graphics and this can be used by adjust discovery. This particular function is actually elaborated and also applied your adjust discovery procedure by simply controlling Hyperspectral graphics. The main aim with this thesis is actually studying and also constructing of Hyperspectral adjust discovery algorithms This kind of analysed approach is really applied to assess Hyperspectral picture image resolution files along with the approach analysed in this particular thesis is really change breakthrough making use of Hierarchical method of spectral change vectors and also making use of principal ingredient examination and also k-means clustering. This particular document offers applying and also verify of trends Hyperspectral image

    An Unsupervised Algorithm for Change Detection in Hyperspectral Remote Sensing Data Using Synthetically Fused Images and Derivative Spectral Profiles

    Get PDF
    Multitemporal hyperspectral remote sensing data have the potential to detect altered areas on the earth’s surface. However, dissimilar radiometric and geometric properties between the multitemporal data due to the acquisition time or position of the sensors should be resolved to enable hyperspectral imagery for detecting changes in natural and human-impacted areas. In addition, data noise in the hyperspectral imagery spectrum decreases the change-detection accuracy when general change-detection algorithms are applied to hyperspectral images. To address these problems, we present an unsupervised change-detection algorithm based on statistical analyses of spectral profiles; the profiles are generated from a synthetic image fusion method for multitemporal hyperspectral images. This method aims to minimize the noise between the spectra corresponding to the locations of identical positions by increasing the change-detection rate and decreasing the false-alarm rate without reducing the dimensionality of the original hyperspectral data. Using a quantitative comparison of an actual dataset acquired by airborne hyperspectral sensors, we demonstrate that the proposed method provides superb change-detection results relative to the state-of-the-art unsupervised change-detection algorithms

    Efficient multitemporal change detection techniques for hyperspectral images on GPU

    Get PDF
    Hyperspectral images contain hundreds of reflectance values for each pixel. Detecting regions of change in multiple hyperspectral images of the same scene taken at different times is of widespread interest for a large number of applications. For remote sensing, in particular, a very common application is land-cover analysis. The high dimensionality of the hyperspectral images makes the development of computationally efficient processing schemes critical. This thesis focuses on the development of change detection approaches at object level, based on supervised direct multidate classification, for hyperspectral datasets. The proposed approaches improve the accuracy of current state of the art algorithms and their projection onto Graphics Processing Units (GPUs) allows their execution in real-time scenarios

    Deep learning-based change detection in remote sensing images:a review

    Get PDF
    Images gathered from different satellites are vastly available these days due to the fast development of remote sensing (RS) technology. These images significantly enhance the data sources of change detection (CD). CD is a technique of recognizing the dissimilarities in the images acquired at distinct intervals and are used for numerous applications, such as urban area development, disaster management, land cover object identification, etc. In recent years, deep learning (DL) techniques have been used tremendously in change detection processes, where it has achieved great success because of their practical applications. Some researchers have even claimed that DL approaches outperform traditional approaches and enhance change detection accuracy. Therefore, this review focuses on deep learning techniques, such as supervised, unsupervised, and semi-supervised for different change detection datasets, such as SAR, multispectral, hyperspectral, VHR, and heterogeneous images, and their advantages and disadvantages will be highlighted. In the end, some significant challenges are discussed to understand the context of improvements in change detection datasets and deep learning models. Overall, this review will be beneficial for the future development of CD methods

    Online Graph-Based Change Point Detection in Multiband Image Sequences

    Full text link
    The automatic detection of changes or anomalies between multispectral and hyperspectral images collected at different time instants is an active and challenging research topic. To effectively perform change-point detection in multitemporal images, it is important to devise techniques that are computationally efficient for processing large datasets, and that do not require knowledge about the nature of the changes. In this paper, we introduce a novel online framework for detecting changes in multitemporal remote sensing images. Acting on neighboring spectra as adjacent vertices in a graph, this algorithm focuses on anomalies concurrently activating groups of vertices corresponding to compact, well-connected and spectrally homogeneous image regions. It fully benefits from recent advances in graph signal processing to exploit the characteristics of the data that lie on irregular supports. Moreover, the graph is estimated directly from the images using superpixel decomposition algorithms. The learning algorithm is scalable in the sense that it is efficient and spatially distributed. Experiments illustrate the detection and localization performance of the method

    Kernel-Based Framework for Multitemporal and Multisource Remote Sensing Data Classification and Change Detection

    Get PDF
    The multitemporal classification of remote sensing images is a challenging problem, in which the efficient combination of different sources of information (e.g., temporal, contextual, or multisensor) can improve the results. In this paper, we present a general framework based on kernel methods for the integration of heterogeneous sources of information. Using the theoretical principles in this framework, three main contributions are presented. First, a novel family of kernel-based methods for multitemporal classification of remote sensing images is presented. The second contribution is the development of nonlinear kernel classifiers for the well-known difference and ratioing change detection methods by formulating them in an adequate high-dimensional feature space. Finally, the presented methodology allows the integration of contextual information and multisensor images with different levels of nonlinear sophistication. The binary support vector (SV) classifier and the one-class SV domain description classifier are evaluated by using both linear and nonlinear kernel functions. Good performance on synthetic and real multitemporal classification scenarios illustrates the generalization of the framework and the capabilities of the proposed algorithms.Publicad

    SSA-LHCD: a singular spectrum analysis-driven lightweight network with 2-D self-attention for hyperspectral change detection.

    Get PDF
    As an emerging research hotspot in contemporary remote sensing, hyperspectral change detection (HCD) has attracted increasing attention in remote sensing Earth observation, covering land mapping changes and anomaly detection. This is primarily attributable to the unique capacity of hyperspectral imagery (HSI) to amalgamate both the spectral and spatial information in the scene, facilitating a more exhaustive analysis and change detection on the Earth's surface, proving to be successful across diverse domains, such as disaster monitoring and geological surveys. Although numerous HCD algorithms have been developed, most of them face three major challenges: (i) susceptibility to inherent data noise, (ii) inconsistent accuracy of detection, especially when dealing with multi-scale changes, and (iii) extensive hyperparameters and high computational costs. As such, we propose a singular spectrum analysis-driven-lightweight network for HCD, where three crucial components are incorporated to tackle these challenges. Firstly, singular spectrum analysis (SSA) is applied to alleviate the effect of noise. Next, a 2-D self-attention-based spatial–spectral feature-extraction module is employed to effectively handle multi-scale changes. Finally, a residual block-based module is designed to effectively extract the spectral features for efficiency. Comprehensive experiments on three publicly available datasets have fully validated the superiority of the proposed SSA-LHCD model over eight state-of-the-art HCD approaches, including four deep learning models
    corecore